Rational invariant tori, phase space tunneling, and spectra for non-selfadjoint operators in dimension 2
Annales scientifiques de l'École Normale Supérieure, Série 4, Volume 41 (2008) no. 4, p. 513-573
We study spectral asymptotics and resolvent bounds for non-selfadjoint perturbations of selfadjoint h-pseudodifferential operators in dimension 2, assuming that the classical flow of the unperturbed part is completely integrable. Spectral contributions coming from rational invariant Lagrangian tori are analyzed. Estimating the tunnel effect between strongly irrational (Diophantine) and rational tori, we obtain an accurate description of the spectrum in a suitable complex window, provided that the strength of the non-selfadjoint perturbation h (or sometimes h 2 ) is not too large.
Nous étudions des asymptotiques spectrales et des estimations de la résolvante des perturbations non-autoadjointes d’opérateurs h-pseudodifférentiels autoadjoints en dimension 2, en supposant que le flot classique de la partie non-perturbée soit complètement intégrable. Les contributions spectrales parvenant des tores invariants lagrangiens rationnels sont analysées. En estimant l’effet tunnel entre des tores diophantiens et rationnels, nous obtenons une description précise du spectre dans une région convenable du plan complexe spectral, sous l’hypothèse que la force de la perturbation non-autoadjointe h (ou parfois h 2 ) ne soit pas trop grande.
DOI : https://doi.org/10.24033/asens.2075
Classification:  35P15,  35P20,  37J35,  37J40,  53D22,  58J37,  58J40,  70H08
Keywords: non-selfadjoint, eigenvalue, spectral asymptotics, resolvent, lagrangian, rational torus, diophantine torus, completely integrable, relative determinant, secular perturbation theory, phase space, tunnel effect
@article{ASENS_2008_4_41_4_513_0,
     author = {Hitrik, Michael and Sj\"ostrand, Johannes},
     title = {Rational invariant tori, phase space tunneling, and spectra for non-selfadjoint operators in dimension $2$},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 41},
     number = {4},
     year = {2008},
     pages = {513-573},
     doi = {10.24033/asens.2075},
     zbl = {1171.35131},
     language = {en},
     url = {http://www.numdam.org/item/ASENS_2008_4_41_4_513_0}
}
Hitrik, Michael; Sjöstrand, Johannes. Rational invariant tori, phase space tunneling, and spectra for non-selfadjoint operators in dimension $2$. Annales scientifiques de l'École Normale Supérieure, Série 4, Volume 41 (2008) no. 4, pp. 513-573. doi : 10.24033/asens.2075. http://www.numdam.org/item/ASENS_2008_4_41_4_513_0/

[1] G. Benettin, L. Galgani, A. Giorgilli & J.-M. Strelcyn, A proof of Kolmogorov's theorem on invariant tori using canonical transformations defined by the Lie method, Nuovo Cimento B 79 (1984), 201-223.

[2] N. Dencker, J. Sjöstrand & M. Zworski, Pseudospectra of semiclassical (pseudo-) differential operators, Comm. Pure Appl. Math. 57 (2004), 384-415. | Zbl 1054.35035

[3] M. Dimassi & J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Note Series 268, Cambridge University Press, 1999. | Zbl 0926.35002

[4] C. Gérard & J. Sjöstrand, Résonances en limite semi-classique et exposants de Lyapunov, Comm. Math. Phys. 116 (1988), 193-213. | Zbl 0698.35118

[5] I. C. Gohberg & M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monographs, vol. 18, Amer. Math. Soc., 1969. | Zbl 0181.13504

[6] V. Guillemin & M. Stenzel, Grauert tubes and the homogeneous Monge-Ampère equation, J. Differential Geom. 34 (1991), 561-570. | Zbl 0746.32005

[7] G. A. Hagedorn & S. L. Robinson, Bohr-Sommerfeld quantization rules in the semiclassical limit, J. Phys. A 31 (1998), 10113-10130. | Zbl 0930.34074

[8] B. Helffer & D. Robert, Asymptotique des niveaux d'énergie pour des hamiltoniens à un degré de liberté, Duke Math. J. 49 (1982), 853-868. | Zbl 0519.35063

[9] B. Helffer & J. Sjöstrand, Multiple wells in the semiclassical limit. I, Comm. Partial Differential Equations 9 (1984), 337-408. | Zbl 0546.35053

[10] F. Hérau, J. Sjöstrand & C. C. Stolk, Semiclassical analysis for the Kramers-Fokker-Planck equation, Comm. Partial Differential Equations 30 (2005), 689-760. | Zbl 1083.35149

[11] M. Hitrik, Eigenfrequencies for damped wave equations on Zoll manifolds, Asymptot. Anal. 31 (2002), 265-277. | MR 1937840 | Zbl 1032.58014

[12] M. Hitrik, Eigenfrequencies and expansions for damped wave equations, Methods Appl. Anal. 10 (2003), 543-564. | MR 2105039 | Zbl 1088.58510

[13] M. Hitrik & S. V. Ngọc, Perturbations of rational invariant tori and spectra for non-selfadjoint operators, in preparation.

[14] M. Hitrik & J. Sjöstrand, Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions. I, Ann. Henri Poincaré 5 (2004), 1-73. | Zbl 1059.47056

[15] M. Hitrik & J. Sjöstrand, Nonselfadjoint perturbations of selfadjoint operators in two dimensions. II. Vanishing averages, Comm. Partial Differential Equations 30 (2005), 1065-1106. | Zbl 1096.47053

[16] M. Hitrik & J. Sjöstrand, Non-selfadjoint perturbations of selfadjoint operators in two dimensions. IIIa. One branching point, Canad. J. Math. 60 (2008), 572-657. | Zbl 1147.31004

[17] M. Hitrik, J. Sjöstrand & S. V. Ngọc, Diophantine tori and spectral asymptotics for nonselfadjoint operators, Amer. J. Math. 129 (2007), 105-182. | Zbl 1172.35085

[18] L. Hörmander, The analysis of linear partial differential operators. I, Springer-Verlag, 2003. | Zbl 0712.35001

[19] G. Lebeau, Équation des ondes amorties, in Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), Math. Phys. Stud. 19, Kluwer Acad. Publ., 1996, 73-109. | MR 1385677 | Zbl 0863.58068

[20] A. J. Lichtenberg & M. A. Lieberman, Regular and chaotic dynamics, second éd., Applied Math. Sciences 38, Springer, 1992. | Zbl 0748.70001

[21] A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, Transl. Math. Monographs 71, Amer. Math. Soc., 1988. | MR 971506 | Zbl 0678.47005

[22] A. S. Markus & V. I. Matsaev, Comparison theorems for spectra of linear operators and spectral asymptotics, Trudy Moskov. Mat. Obshch. 45 (1982), 133-181. | Zbl 0532.47012

[23] A. Melin & J. Sjöstrand, Determinants of pseudodifferential operators and complex deformations of phase space, Methods Appl. Anal. 9 (2002), 177-237. | Zbl 1082.35176

[24] A. Melin & J. Sjöstrand, Bohr-Sommerfeld quantization condition for non-selfadjoint operators in dimension 2, Astérisque 284 (2003), 181-244. | Zbl 1061.35186

[25] S. V. Ngọc, Systèmes intégrables semi-classiques: du local au global, Panoramas et Synthèses 22, Soc. Math. de France, 2006. | Zbl 1118.37001

[26] J. Sjöstrand, Singularités analytiques microlocales, Astérisque 95 (1982), 1-166. | MR 699623 | Zbl 0524.35007

[27] J. Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems, Duke Math. J. 60 (1990), 1-57. | MR 1047116 | Zbl 0702.35188

[28] J. Sjöstrand, A trace formula and review of some estimates for resonances, in Microlocal analysis and spectral theory (Lucca, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 490, Kluwer Acad. Publ., 1997, 377-437. | MR 1451399 | Zbl 0877.35090

[29] J. Sjöstrand, Asymptotic distribution of eigenfrequencies for damped wave equations, Publ. Res. Inst. Math. Sci. 36 (2000), 573-611. | MR 1798488 | Zbl 0984.35121

[30] J. Sjöstrand, Resonances for bottles and trace formulae, Math. Nachr. 221 (2001), 95-149. | MR 1806367 | Zbl 0979.35109

[31] J. Sjöstrand, Perturbations of selfadjoint operators with periodic classical flow, in RIMS Kokyuroku 1315, “Wave phenomena and asymptotic analysis”, 1-23.

[32] J. Sjöstrand & M. Zworski, Asymptotic distribution of resonances for convex obstacles, Acta Math. 183 (1999), 191-253. | Zbl 0989.35099

[33] J. Sjöstrand & M. Zworski, Fractal upper bounds on the density of semiclassical resonances, Duke Math. J. 137 (2007), 381-459. | Zbl 1201.35189

[34] Y. Colin De Verdière, Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques, Comment. Math. Helv. 54 (1979), 508-522. | MR 543346 | Zbl 0459.58014

[35] A. Weinstein, Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J. 44 (1977), 883-892. | MR 482878 | Zbl 0385.58013