[Un théorème de Riemann-Roch arithmétique pour les courbes stables pointées]
Soient un anneau arithmétique de dimension de Krull au plus 1, et une courbe stable -pointée de genre . Posons . Le faisceau inversible hérite une structure hermitienne du dual de la métrique hyperbolique sur la surface de Riemann . Dans cet article nous prouvons un théorème de Riemann-Roch arithmétique qui calcule l’auto-intersection arithmétique de . Le théorème est appliqué aux courbes modulaires , ou , premier, prenant les cusps comme sections. Nous montrons , avec lorsque . Ici est la fonction zêta de Selberg de la courbe modulaire ouverte , sont des nombres rationnels, est un motif de Chow approprié et signifie égalité à unité près.
Let be an arithmetic ring of Krull dimension at most 1, and an -pointed stable curve of genus . Write . The invertible sheaf inherits a hermitian structure from the dual of the hyperbolic metric on the Riemann surface . In this article we prove an arithmetic Riemann-Roch type theorem that computes the arithmetic self-intersection of . The theorem is applied to modular curves , or , prime, with sections given by the cusps. We show , with when . Here is the Selberg zeta function of the open modular curve , are rational numbers, is a suitable Chow motive and means equality up to algebraic unit.
Keywords: arithmetic Riemann-Roch theorem, pointed stable curves, hyperbolic metric, Selberg zeta function
Mot clés : Riemann-Roch arithmétique, courbes stables pointées, métrique hyperbolique, fonction zêta de Selberg
@article{ASENS_2009_4_42_2_335_0, author = {Freixas Montplet, G\'erard}, title = {An arithmetic {Riemann-Roch} theorem for pointed stable curves}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {335--369}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 42}, number = {2}, year = {2009}, doi = {10.24033/asens.2098}, mrnumber = {2518081}, zbl = {1183.14038}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2098/} }
TY - JOUR AU - Freixas Montplet, Gérard TI - An arithmetic Riemann-Roch theorem for pointed stable curves JO - Annales scientifiques de l'École Normale Supérieure PY - 2009 SP - 335 EP - 369 VL - 42 IS - 2 PB - Société mathématique de France UR - http://archive.numdam.org/articles/10.24033/asens.2098/ DO - 10.24033/asens.2098 LA - en ID - ASENS_2009_4_42_2_335_0 ER -
%0 Journal Article %A Freixas Montplet, Gérard %T An arithmetic Riemann-Roch theorem for pointed stable curves %J Annales scientifiques de l'École Normale Supérieure %D 2009 %P 335-369 %V 42 %N 2 %I Société mathématique de France %U http://archive.numdam.org/articles/10.24033/asens.2098/ %R 10.24033/asens.2098 %G en %F ASENS_2009_4_42_2_335_0
Freixas Montplet, Gérard. An arithmetic Riemann-Roch theorem for pointed stable curves. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 42 (2009) no. 2, pp. 335-369. doi : 10.24033/asens.2098. http://archive.numdam.org/articles/10.24033/asens.2098/
[1] Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Publ. Math. I.H.É.S. 88 (1998), 97-127. | Numdam | MR | Zbl
& ,[2] Séminaire de Géométrie Algébrique du Bois Marie 1963/64, tome 3, Lect. Notes Math. 305 (1973). | Zbl
, & ,[3] The theory of the -function, Q. J. Math. 31 (1900), 264-314. | JFM
,[4] Fibrés déterminants, métriques de Quillen et dégénérescence des courbes, Acta Math. 165 (1990), 1-103. | MR | Zbl
& ,[5] Intersection theory on arithmetic surfaces and metrics, letter dated March, 1998.
,[6] Small eigenvalues of Riemann surfaces and graphs, Math. Z. 205 (1990), 395-420. | MR | Zbl
,[7] Arithmetic characteristic classes of automorphic vector bundles, Doc. Math. 10 (2005), 619-716. | MR | Zbl
, & ,[8] Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu 6 (2007), 1-172. | MR | Zbl
, & ,[9] Sur les représentations -adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. 19 (1986), 409-468. | Numdam | MR | Zbl
,[10] Fermat's last theorem, in Elliptic curves, modular forms & Fermat's last theorem (Hong Kong, 1993), Int. Press, Cambridge, MA, 1997. | MR | Zbl
, & ,[11] Formes modulaires et représentations -adiques, Sém. Bourbaki, exp. no 355, Lect. Notes in Math. 179 (1969), 139-172. | Numdam | MR | Zbl
,[12] Le déterminant de la cohomologie, in Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), Contemp. Math. 67, Amer. Math. Soc., 1987, 93-177. | MR | Zbl
,[13] The irreducibility of the space of curves of given genus, Publ. Math. I.H.É.S. 36 (1969), 75-109. | Numdam | MR | Zbl
& ,[14] Les schémas de modules de courbes elliptiques, in Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Math. 349, Springer, 1973, 143-316. | MR | Zbl
& ,[15] On determinants of Laplacians on Riemann surfaces, Comm. Math. Phys. 104 (1986), 537-545. | MR | Zbl
& ,[16] Equivariant analytic torsion on hyperbolic Riemann surfaces and the arithmetic Lefschetz trace of an Atkin-Lehner involution on a compact Shimura curve, Thèse, Heinrich-Heine Universität, Düsseldorf, 2006.
,[17] On Néron models, divisors and modular curves, J. Ramanujan Math. Soc. 13 (1998), 157-194. | MR | Zbl
,[18] Fibrés d'intersections et intégrales de classes de Chern, Ann. Sci. École Norm. Sup. 22 (1989), 195-226. | Numdam | MR | Zbl
,[19] G. Freixas i Montplet, Généralisations de la théorie de l'intersection arithmétique, Thèse, 2007, Université d'Orsay.
[20] G. Freixas i Montplet, Heights and metrics with logarithmic singularities, J. reine angew. Math. 627 (2009), 97-153. | MR | Zbl
[21] Analytic torsion and closed geodesics on hyperbolic manifolds, Invent. Math. 84 (1986), 523-540. | MR | Zbl
,[22] Arithmetic intersection theory, Publ. Math. I.H.É.S. 72 (1990), 93-174. | Numdam | MR | Zbl
& ,[23] Characteristic classes for algebraic vector bundles with Hermitian metric. I and II, Ann. of Math. 131 (1990), 163-203 and 205-238. | MR | Zbl
& ,[24] An arithmetic Riemann-Roch theorem, Invent. Math. 110 (1992), 473-543. | MR | Zbl
& ,[25] Thèse, Humboldt-Universität zu Berlin, in preparation.
,[26] Arithmetic expressions of Selberg's zeta functions for congruence subgroups, J. Number Theory 122 (2007), 324-335. | MR | Zbl
,[27] The Selberg trace formula for , vol. I, II, Lect. Notes in Math. 548 (1976), 1001 (1983). | MR | Zbl
,[28] Congruence of cusp forms and special values of their zeta functions, Invent. Math. 63 (1981), 225-261. | MR | Zbl
,[29] Spectral methods of automorphic forms, second éd., Graduate Studies in Mathematics 53, Amer. Math. Soc., 2002. | MR | Zbl
,[30] The asymptotic behavior of Green's functions for degenerating hyperbolic surfaces, Math. Z. 212 (1993), 375-394. | MR | Zbl
,[31] Continuity of relative hyperbolic spectral theory through metric degeneration, Duke Math. J. 84 (1996), 47-81. | MR | Zbl
& ,[32] A regularized heat trace for hyperbolic Riemann surfaces of finite volume, Comment. Math. Helv. 72 (1997), 636-659. | MR | Zbl
& ,[33] Arithmetic moduli of elliptic curves, Annals of Mathematics Studies 108, Princeton University Press, 1985. | MR | Zbl
& ,[34] Intersection theory of moduli space of stable -pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), 545-574. | MR | Zbl
,[35] The projectivity of the moduli space of stable curves. II, III, Math. Scand. 52 (1983), 161-212. | MR | Zbl
,[36] A fixed point formula of Lefschetz type in Arakelov geometry. I. Statement and proof, Invent. Math. 145 (2001), 333-396. | MR | Zbl
& ,[37] Generalized arithmetic intersection numbers, J. reine angew. Math. 534 (2001), 209-236. | MR | Zbl
,[38] Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 39, Springer, 2000. | MR | Zbl
& ,[39] Extension of the Weil-Petersson metric to the boundary of Teichmuller space, Duke Math. J. 43 (1976), 623-635. | MR | Zbl
,[40] Modular curves and the Eisenstein ideal, Publ. Math. I.H.É.S. 47 (1977), 33-186. | Numdam | MR | Zbl
,[41] La formule de Noether pour les surfaces arithmétiques, Invent. Math. 98 (1989), 491-498. | MR | Zbl
,[42] Stability of projective varieties, Enseignement Math. 23 (1977), 39-110. | MR | Zbl
,[43] Towards an enumerative geometry of the moduli space of curves, in Arithmetic and geometry, Vol. II, Progr. Math. 36, Birkhäuser, 1983, 271-328. | MR | Zbl
,[44] Analytic torsion for complex manifolds, Ann. of Math. 98 (1973), 154-177. | MR | Zbl
& ,[45] A modular version of Jensen's formula, Math. Proc. Cambridge Philos. Soc. 95 (1984), 15-20. | MR | Zbl
,[46] Class numbers of indefinite binary quadratic forms, J. Number Theory 15 (1982), 229-247. | MR | Zbl
,[47] Determinants of Laplacians, Comm. Math. Phys. 110 (1987), 113-120. | MR | Zbl
,[48] Geometric bounds on the low eigenvalues of a compact surface, in Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., 1980, 279-285. | MR | Zbl
, & ,[49] Motives for modular forms, Invent. Math. 100 (1990), 419-430. | MR | Zbl
,[50] On the resolvent of the Laplacian on functions for degenerating surfaces of finite geometry, J. Funct. Anal. 236 (2006), 120-160. | MR | Zbl
,[51] Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo, 1971. | MR | Zbl
,[52] On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. 31 (1975), 79-98. | MR | Zbl
,[53] Régulateurs, Séminaire Bourbaki, vol. 1984/85, exp. no 644, Astérisque 133-134 (1986), 237-253. | Numdam | Zbl
,[54] Special values of zeta functions, and Eisenstein series of half integral weight, Amer. J. Math. 102 (1980), 219-240. | MR | Zbl
,[55] The Selberg zeta function and a new Kähler metric on the moduli space of punctured Riemann surfaces, J. Geom. Phys. 5 (1988), 551-570. | MR | Zbl
& ,[56] A local index theorem for families of -operators on punctured Riemann surfaces and a new Kähler metric on their moduli spaces, Comm. Math. Phys. 137 (1991), 399-426. | MR | Zbl
& ,[57] Hauteur de Faltings de quotients de , discriminants d’algèbres de Hecke et congruences entre formes modulaires, Amer. J. Math. 122 (2000), 83-115. | MR | Zbl
,[58] Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés 10, Soc. Math. France, 2002. | MR | Zbl
,[59] Spectral functions, special functions and the Selberg zeta function, Comm. Math. Phys. 110 (1987), 439-465. | MR | Zbl
,[60] -admissible theory. II. Deligne pairings over moduli spaces of punctured Riemann surfaces, Math. Ann. 320 (2001), 239-283. | MR | Zbl
,[61] Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces, Comm. Math. Phys. 112 (1987), 283-315. | MR | Zbl
,[62] The hyperbolic metric and the geometry of the universal curve, J. Differential Geom. 31 (1990), 417-472. | MR | Zbl
,[63] Cusps and the family hyperbolic metric, Duke Math. J. 138 (2007), 423-443. | MR | Zbl
,Cité par Sources :