Limits of log canonical thresholds
[Limites de seuils log canoniques]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 42 (2009) no. 3, pp. 491-515.

Dans cet article, nous analysons les ensembles 𝒯n de seuils log canoniques de paires (X,Y), où X est une variété lisse de dimension n, et Y est un sous-schéma fermé non-vide de X. En employant des méthodes non-standard, nous montrons que chaque limite d’une suite strictement décroissante de 𝒯n appartient à l’ensemble 𝒯n-1 (ce résultat a été conjecturé par J. Kollár dans ses travaux sur le sujet). Nous montrons également que l’ensemble 𝒯n est fermé dans 𝐑, et en déduisons que les valeurs adhérentes de l’ensemble des seuils log canoniques des pairs (X,Y) sont rationnelles, si la dimension de X est majorée. Une autre conséquence de nos résultats concerne la conjecture ACC de Shokurov pour les 𝒯n. En effet, nous montrons qu’elle est une conséquence de l’énoncé suivant  : pour tout n, la valeur 1 ne peut pas être obtenue comme limite d’une suite strictement croissante de nombres contenus dans 𝒯n. Dans une autre perspective, nous interprétons la conjecture ACC comme une propriété de semi-continuité de seuils log canoniqes des séries formelles.

Let 𝒯n denote the set of log canonical thresholds of pairs (X,Y), with X a nonsingular variety of dimension n, and Y a nonempty closed subscheme of X. Using non-standard methods, we show that every limit of a decreasing sequence in 𝒯n lies in 𝒯n-1, proving in this setting a conjecture of Kollár. We also show that 𝒯n is closed in 𝐑; in particular, every limit of log canonical thresholds on smooth varieties of fixed dimension is a rational number. As a consequence of this property, we see that in order to check Shokurov’s ACC Conjecture for all 𝒯n, it is enough to show that 1 is not a point of accumulation from below of any 𝒯n. In a different direction, we interpret the ACC Conjecture as a semi-continuity property for log canonical thresholds of formal power series.

DOI : 10.24033/asens.2100
Classification : 14B05, 03H05, 14E30
Keywords: log canonical threshold, multiplier ideals, ultrafilter, resolution of singularities
Mot clés : seuils log canoniques, idéaux multiples, ultra-filtres, résolution de singularités
@article{ASENS_2009_4_42_3_491_0,
     author = {de Fernex, Tommaso and Mustaț\u{a}, Mircea},
     title = {Limits of log canonical thresholds},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {491--515},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 42},
     number = {3},
     year = {2009},
     doi = {10.24033/asens.2100},
     mrnumber = {2543330},
     zbl = {1186.14007},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.2100/}
}
TY  - JOUR
AU  - de Fernex, Tommaso
AU  - Mustață, Mircea
TI  - Limits of log canonical thresholds
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2009
SP  - 491
EP  - 515
VL  - 42
IS  - 3
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/asens.2100/
DO  - 10.24033/asens.2100
LA  - en
ID  - ASENS_2009_4_42_3_491_0
ER  - 
%0 Journal Article
%A de Fernex, Tommaso
%A Mustață, Mircea
%T Limits of log canonical thresholds
%J Annales scientifiques de l'École Normale Supérieure
%D 2009
%P 491-515
%V 42
%N 3
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/asens.2100/
%R 10.24033/asens.2100
%G en
%F ASENS_2009_4_42_3_491_0
de Fernex, Tommaso; Mustață, Mircea. Limits of log canonical thresholds. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 42 (2009) no. 3, pp. 491-515. doi : 10.24033/asens.2100. https://www.numdam.org/articles/10.24033/asens.2100/

[1] V. Alexeev, Two two-dimensional terminations, Duke Math. J. 69 (1993), 527-545. | MR | Zbl

[2] V. V. Batyrev, Stringy Hodge numbers of varieties with Gorenstein canonical singularities, in Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), World Sci. Publ., River Edge, NJ, 1998, 1-32. | MR | Zbl

[3] C. Birkar, Ascending chain condition for log canonical thresholds and termination of log flips, Duke Math. J. 136 (2007), 173-180. | MR | Zbl

[4] C. Birkar, P. Cascini, C. D. Hacon & J. Mckernan, Existence of minimal models for varieties of general type, preprint arXiv:math.AG/0610203. | Zbl

[5] M. Blickle, M. Mustață & K. E. Smith, F-thresholds of hypersurfaces, to appear in Trans. Amer. Math. Soc., available at arXiv:math/0705.1210. | MR | Zbl

[6] L. Van Den Dries & K. Schmidt, Bounds in the theory of polynomial rings over fields. A nonstandard approach, Invent. Math. 76 (1984), 77-91. | EuDML | MR | Zbl

[7] L. Ein, R. Lazarsfeld & M. Mustațǎ, Contact loci in arc spaces, Compos. Math. 140 (2004), 1229-1244. | MR | Zbl

[8] L. Ein, R. Lazarsfeld, K. E. Smith & D. Varolin, Jumping coefficients of multiplier ideals, Duke Math. J. 123 (2004), 469-506. | MR | Zbl

[9] L. Ein & M. Mustaţă, Jet schemes and singularities, to appear in Proceedings of the 2005 AMS Summer Research Institute in Algebraic Geometry, available at arXiv:math.AG/0612862. | MR | Zbl

[10] R. Goldblatt, Lectures on the hyperreals. An introduction to nonstandard analysis, Graduate Texts in Math. 188, Springer, 1998. | MR | Zbl

[11] J. Kollár, Singularities of pairs, in Algebraic geometry - Santa Cruz 1995, Proc. Sympos. Pure Math. 62, Amer. Math. Soc., 1997, 221-287. | Zbl

[12] J. Kollár et al., Flips and abundance for algebraic threefolds. A summer seminar at the University of Utah (Salt Lake City, 1991), Astérisque 211 (1992), 1-258. | Numdam | Zbl

[13] R. Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse Math. Grenzg. 49, Springer, 2004. | Zbl

[14] H. Matsumura, Commutative ring theory, second éd., Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, 1989. | Zbl

[15] J. Mckernan & Y. Prokhorov, Threefold thresholds, Manuscripta Math. 114 (2004), 281-304. | Zbl

[16] M. Mustaţǎ, Singularities of pairs via jet schemes, J. Amer. Math. Soc. 15 (2002), 599-615. | Zbl

[17] H. Schoutens, Bounds in cohomology, Israel J. Math. 116 (2000), 125-169. | Zbl

[18] V. V. Shokurov, Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), 105-203.

[19] M. Temkin, Desingularization of quasi-excellent schemes in characteristic zero, Adv. Math. 219 (2008), 488-522. | Zbl

  • CHEN, Jheng-Jie Accumulation points on 3-fold canonical thresholds, Journal of the Mathematical Society of Japan, Volume -1 (2025) no. -1 | DOI:10.2969/jmsj/91509150
  • Stout, Andrew R. Jet schemes over auto-arc spaces and deformations of locally complete intersection varieties, Journal of Algebra, Volume 659 (2024), p. 361 | DOI:10.1016/j.jalgebra.2024.06.029
  • Luo, Yusheng Trees, length spectra for rational maps via barycentric extensions, and Berkovich spaces, Duke Mathematical Journal, Volume 171 (2022) no. 14 | DOI:10.1215/00127094-2022-0056
  • MURAYAMA, TAKUMI THE GAMMA CONSTRUCTION AND ASYMPTOTIC INVARIANTS OF LINE BUNDLES OVER ARBITRARY FIELDS, Nagoya Mathematical Journal, Volume 242 (2021), p. 165 | DOI:10.1017/nmj.2019.27
  • Blum, Harold; Jonsson, Mattias Thresholds, valuations, and K-stability, Advances in Mathematics, Volume 365 (2020), p. 107062 | DOI:10.1016/j.aim.2020.107062
  • Kawakita, Masayuki On equivalent conjectures for minimal log discrepancies on smooth threefolds, Journal of Algebraic Geometry, Volume 30 (2020) no. 1, p. 97 | DOI:10.1090/jag/757
  • Blum, Harold Existence of valuations with smallest normalized volume, Compositio Mathematica, Volume 154 (2018) no. 4, p. 820 | DOI:10.1112/s0010437x17008016
  • Nakamura, Yusuke On minimal log discrepancies on varieties with fixed Gorenstein index, Michigan Mathematical Journal, Volume 65 (2016) no. 1 | DOI:10.1307/mmj/1457101816
  • Kawakita, Masayuki A connectedness theorem over the spectrum of a formal power series ring, International Journal of Mathematics, Volume 26 (2015) no. 11, p. 1550088 | DOI:10.1142/s0129167x15500883
  • Kawakita, Masayuki Discreteness of log discrepancies over log canonical triples on a fixed pair, Journal of Algebraic Geometry, Volume 23 (2014) no. 4, p. 765 | DOI:10.1090/s1056-3911-2014-00630-5
  • Stepanov, D. A. Smooth three-dimensional canonical thresholds, Mathematical Notes, Volume 90 (2011) no. 1-2, p. 265 | DOI:10.1134/s0001434611070261
  • De Fernex, Tommaso; Ein, Lawrence; Mustaţă, Mircea Shokurov's ACC conjecture for log canonical thresholds on smooth varieties, Duke Mathematical Journal, Volume 152 (2010) no. 1 | DOI:10.1215/00127094-2010-008

Cité par 12 documents. Sources : Crossref