[Limites de seuils log canoniques]
Dans cet article, nous analysons les ensembles
Let
Keywords: log canonical threshold, multiplier ideals, ultrafilter, resolution of singularities
Mot clés : seuils log canoniques, idéaux multiples, ultra-filtres, résolution de singularités
@article{ASENS_2009_4_42_3_491_0, author = {de Fernex, Tommaso and Mustaț\u{a}, Mircea}, title = {Limits of log canonical thresholds}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {491--515}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 42}, number = {3}, year = {2009}, doi = {10.24033/asens.2100}, mrnumber = {2543330}, zbl = {1186.14007}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2100/} }
TY - JOUR AU - de Fernex, Tommaso AU - Mustață, Mircea TI - Limits of log canonical thresholds JO - Annales scientifiques de l'École Normale Supérieure PY - 2009 SP - 491 EP - 515 VL - 42 IS - 3 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2100/ DO - 10.24033/asens.2100 LA - en ID - ASENS_2009_4_42_3_491_0 ER -
%0 Journal Article %A de Fernex, Tommaso %A Mustață, Mircea %T Limits of log canonical thresholds %J Annales scientifiques de l'École Normale Supérieure %D 2009 %P 491-515 %V 42 %N 3 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2100/ %R 10.24033/asens.2100 %G en %F ASENS_2009_4_42_3_491_0
de Fernex, Tommaso; Mustață, Mircea. Limits of log canonical thresholds. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 42 (2009) no. 3, pp. 491-515. doi : 10.24033/asens.2100. https://www.numdam.org/articles/10.24033/asens.2100/
[1] Two two-dimensional terminations, Duke Math. J. 69 (1993), 527-545. | MR | Zbl
,[2] Stringy Hodge numbers of varieties with Gorenstein canonical singularities, in Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), World Sci. Publ., River Edge, NJ, 1998, 1-32. | MR | Zbl
,[3] Ascending chain condition for log canonical thresholds and termination of log flips, Duke Math. J. 136 (2007), 173-180. | MR | Zbl
,[4] Existence of minimal models for varieties of general type, preprint arXiv:math.AG/0610203. | Zbl
, , & ,
[5]
[6] Bounds in the theory of polynomial rings over fields. A nonstandard approach, Invent. Math. 76 (1984), 77-91. | EuDML | MR | Zbl
& ,[7] Contact loci in arc spaces, Compos. Math. 140 (2004), 1229-1244. | MR | Zbl
, & ,[8] Jumping coefficients of multiplier ideals, Duke Math. J. 123 (2004), 469-506. | MR | Zbl
, , & ,[9] Jet schemes and singularities, to appear in Proceedings of the 2005 AMS Summer Research Institute in Algebraic Geometry, available at arXiv:math.AG/0612862. | MR | Zbl
& ,[10] Lectures on the hyperreals. An introduction to nonstandard analysis, Graduate Texts in Math. 188, Springer, 1998. | MR | Zbl
,[11] Singularities of pairs, in Algebraic geometry - Santa Cruz 1995, Proc. Sympos. Pure Math. 62, Amer. Math. Soc., 1997, 221-287. | Zbl
,[12] Flips and abundance for algebraic threefolds. A summer seminar at the University of Utah (Salt Lake City, 1991), Astérisque 211 (1992), 1-258. | Numdam | Zbl
et al.,[13] Positivity in algebraic geometry. II, Ergebnisse Math. Grenzg. 49, Springer, 2004. | Zbl
,[14] Commutative ring theory, second éd., Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, 1989. | Zbl
,[15] Threefold thresholds, Manuscripta Math. 114 (2004), 281-304. | Zbl
& ,[16] Singularities of pairs via jet schemes, J. Amer. Math. Soc. 15 (2002), 599-615. | Zbl
,[17] Bounds in cohomology, Israel J. Math. 116 (2000), 125-169. | Zbl
,[18] Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), 105-203.
,[19] Desingularization of quasi-excellent schemes in characteristic zero, Adv. Math. 219 (2008), 488-522. | Zbl
,- Accumulation points on 3-fold canonical thresholds, Journal of the Mathematical Society of Japan, Volume -1 (2025) no. -1 | DOI:10.2969/jmsj/91509150
- Jet schemes over auto-arc spaces and deformations of locally complete intersection varieties, Journal of Algebra, Volume 659 (2024), p. 361 | DOI:10.1016/j.jalgebra.2024.06.029
- Trees, length spectra for rational maps via barycentric extensions, and Berkovich spaces, Duke Mathematical Journal, Volume 171 (2022) no. 14 | DOI:10.1215/00127094-2022-0056
- THE GAMMA CONSTRUCTION AND ASYMPTOTIC INVARIANTS OF LINE BUNDLES OVER ARBITRARY FIELDS, Nagoya Mathematical Journal, Volume 242 (2021), p. 165 | DOI:10.1017/nmj.2019.27
- Thresholds, valuations, and K-stability, Advances in Mathematics, Volume 365 (2020), p. 107062 | DOI:10.1016/j.aim.2020.107062
- On equivalent conjectures for minimal log discrepancies on smooth threefolds, Journal of Algebraic Geometry, Volume 30 (2020) no. 1, p. 97 | DOI:10.1090/jag/757
- Existence of valuations with smallest normalized volume, Compositio Mathematica, Volume 154 (2018) no. 4, p. 820 | DOI:10.1112/s0010437x17008016
- On minimal log discrepancies on varieties with fixed Gorenstein index, Michigan Mathematical Journal, Volume 65 (2016) no. 1 | DOI:10.1307/mmj/1457101816
- A connectedness theorem over the spectrum of a formal power series ring, International Journal of Mathematics, Volume 26 (2015) no. 11, p. 1550088 | DOI:10.1142/s0129167x15500883
- Discreteness of log discrepancies over log canonical triples on a fixed pair, Journal of Algebraic Geometry, Volume 23 (2014) no. 4, p. 765 | DOI:10.1090/s1056-3911-2014-00630-5
- Smooth three-dimensional canonical thresholds, Mathematical Notes, Volume 90 (2011) no. 1-2, p. 265 | DOI:10.1134/s0001434611070261
- Shokurov's ACC conjecture for log canonical thresholds on smooth varieties, Duke Mathematical Journal, Volume 152 (2010) no. 1 | DOI:10.1215/00127094-2010-008
Cité par 12 documents. Sources : Crossref