Duality of Schramm-Loewner evolutions
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 42 (2009) no. 5, p. 697-724

In this note, we prove a version of the conjectured duality for Schramm-Loewner Evolutions, by establishing exact identities in distribution between some boundary arcs of chordal SLE κ , κ>4, and appropriate versions of SLE κ ^ , κ ^=16/κ.

On démontre dans cette note une version de la dualité conjecturée pour les évolutions de Schramm-Loewner, en établissant des identités en distribution exactes entre certains arcs de SLE κ chordal, κ>4, et des versions appropriées de SLE κ ^ , κ ^=16/κ.

DOI : https://doi.org/10.24033/asens.2107
Classification:  60G17,  60K35
Keywords: Schramm-Loewner evolution, duality, partition function
@article{ASENS_2009_4_42_5_697_0,
     author = {Dub\'edat, Julien},
     title = {Duality of Schramm-Loewner evolutions},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 42},
     number = {5},
     year = {2009},
     pages = {697-724},
     doi = {10.24033/asens.2107},
     zbl = {1205.60147},
     language = {en},
     url = {http://www.numdam.org/item/ASENS_2009_4_42_5_697_0}
}
Dubédat, Julien. Duality of Schramm-Loewner evolutions. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 42 (2009) no. 5, pp. 697-724. doi : 10.24033/asens.2107. http://www.numdam.org/item/ASENS_2009_4_42_5_697_0/

[1] J. Dubédat, SLE (κ,ρ) martingales and duality, Ann. Probab. 33 (2005), 223-243. | MR 2118865 | Zbl 1096.60037

[2] J. Dubédat, Euler integrals for commuting SLEs, Journal Statist. Phys. 123 (2006), 1183-1218. | MR 2253875 | Zbl 1113.82064

[3] J. Dubédat, Commutation relations for SLE, Comm. Pure Applied Math. 60 (2007), 1792-1847. | MR 2358649 | Zbl 1137.82009

[4] J. Dubédat, SLE and the free field: Partition functions and couplings, J. Amer. Math. Soc. 22 (2009), 995-1054. | MR 2525778 | Zbl 1204.60079

[5] M. J. Kozdron & G. F. Lawler, The configurational measure on mutually avoiding SLE paths, in Universality and renormalization, Fields Inst. Commun. 50, Amer. Math. Soc., 2007, 199-224. | MR 2310306 | Zbl 1133.60023

[6] G. Lawler, O. Schramm & W. Werner, Conformal restriction: the chordal case, J. Amer. Math. Soc. 16 (2003), 917-955. | MR 1992830 | Zbl 1030.60096

[7] G. F. Lawler, Conformally invariant processes in the plane, Mathematical Surveys and Monographs 114, Amer. Math. Soc., 2005. | MR 2129588 | Zbl 1074.60002

[8] G. F. Lawler, O. Schramm & W. Werner, Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab. 32 (2004), 939-995. | MR 2044671 | Zbl 1126.82011

[9] G. F. Lawler & W. Werner, The Brownian loop soup, Probab. Theory Related Fields 128 (2004), 565-588. | MR 2045953 | Zbl 1049.60072

[10] C. Pommerenke, Boundary behaviour of conformal maps, Grund. Math. Wiss. 299, Springer, 1992. | MR 1217706 | Zbl 0762.30001

[11] D. Revuz & M. Yor, Continuous martingales and Brownian motion, third éd., Grund. Math. Wiss. 293, Springer, 1999. | MR 1725357 | Zbl 0917.60006

[12] S. Rohde & O. Schramm, Basic properties of SLE, Ann. of Math. 161 (2005), 883-924. | MR 2153402 | Zbl 1081.60069

[13] O. Schramm & S. Sheffield, Contour lines of the two-dimensional discrete Gaussian free field, Acta Math. 202 (2009), 21-137. | MR 2486487 | Zbl 1210.60051

[14] O. Schramm & D. B. Wilson, SLE coordinate changes, New York J. Math. 11 (2005), 659-669. | MR 2188260 | Zbl 1094.82007

[15] W. Werner, Girsanov’s transformation for SLE (κ,ρ) processes, intersection exponents and hiding exponents, Ann. Fac. Sci. Toulouse Math. 13 (2004), 121-147. | Numdam | MR 2060031 | Zbl 1059.60099

[16] W. Werner, Random planar curves and Schramm-Loewner evolutions, in Lectures on probability theory and statistics, Lecture Notes in Math. 1840, Springer, 2004, 107-195. | MR 2079672 | Zbl 1057.60078

[17] D. Zhan, Duality of chordal SLE, Invent. Math. 174 (2008), 309-353. | MR 2439609 | Zbl 1158.60047

[18] D. Zhan, Reversibility of chordal SLE, Ann. Probab. 36 (2008), 1472-1494. | MR 2435856 | Zbl 1157.60051