Duality of Schramm-Loewner evolutions
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 42 (2009) no. 5, pp. 697-724.

In this note, we prove a version of the conjectured duality for Schramm-Loewner Evolutions, by establishing exact identities in distribution between some boundary arcs of chordal SLE κ , κ>4, and appropriate versions of SLE κ ^ , κ ^=16/κ.

On démontre dans cette note une version de la dualité conjecturée pour les évolutions de Schramm-Loewner, en établissant des identités en distribution exactes entre certains arcs de SLE κ chordal, κ>4, et des versions appropriées de SLE κ ^ , κ ^=16/κ.

DOI: 10.24033/asens.2107
Classification: 60G17,  60K35
Keywords: Schramm-Loewner evolution, duality, partition function
@article{ASENS_2009_4_42_5_697_0,
     author = {Dub\'edat, Julien},
     title = {Duality of {Schramm-Loewner} evolutions},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {697--724},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 42},
     number = {5},
     year = {2009},
     doi = {10.24033/asens.2107},
     zbl = {1205.60147},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.2107/}
}
TY  - JOUR
AU  - Dubédat, Julien
TI  - Duality of Schramm-Loewner evolutions
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2009
DA  - 2009///
SP  - 697
EP  - 724
VL  - Ser. 4, 42
IS  - 5
PB  - Société mathématique de France
UR  - http://archive.numdam.org/articles/10.24033/asens.2107/
UR  - https://zbmath.org/?q=an%3A1205.60147
UR  - https://doi.org/10.24033/asens.2107
DO  - 10.24033/asens.2107
LA  - en
ID  - ASENS_2009_4_42_5_697_0
ER  - 
%0 Journal Article
%A Dubédat, Julien
%T Duality of Schramm-Loewner evolutions
%J Annales scientifiques de l'École Normale Supérieure
%D 2009
%P 697-724
%V Ser. 4, 42
%N 5
%I Société mathématique de France
%U https://doi.org/10.24033/asens.2107
%R 10.24033/asens.2107
%G en
%F ASENS_2009_4_42_5_697_0
Dubédat, Julien. Duality of Schramm-Loewner evolutions. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 42 (2009) no. 5, pp. 697-724. doi : 10.24033/asens.2107. http://archive.numdam.org/articles/10.24033/asens.2107/

[1] J. Dubédat, SLE (κ,ρ) martingales and duality, Ann. Probab. 33 (2005), 223-243. | MR | Zbl

[2] J. Dubédat, Euler integrals for commuting SLEs, Journal Statist. Phys. 123 (2006), 1183-1218. | MR | Zbl

[3] J. Dubédat, Commutation relations for SLE, Comm. Pure Applied Math. 60 (2007), 1792-1847. | MR | Zbl

[4] J. Dubédat, SLE and the free field: Partition functions and couplings, J. Amer. Math. Soc. 22 (2009), 995-1054. | MR | Zbl

[5] M. J. Kozdron & G. F. Lawler, The configurational measure on mutually avoiding SLE paths, in Universality and renormalization, Fields Inst. Commun. 50, Amer. Math. Soc., 2007, 199-224. | MR | Zbl

[6] G. Lawler, O. Schramm & W. Werner, Conformal restriction: the chordal case, J. Amer. Math. Soc. 16 (2003), 917-955. | MR | Zbl

[7] G. F. Lawler, Conformally invariant processes in the plane, Mathematical Surveys and Monographs 114, Amer. Math. Soc., 2005. | MR | Zbl

[8] G. F. Lawler, O. Schramm & W. Werner, Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab. 32 (2004), 939-995. | MR | Zbl

[9] G. F. Lawler & W. Werner, The Brownian loop soup, Probab. Theory Related Fields 128 (2004), 565-588. | MR | Zbl

[10] C. Pommerenke, Boundary behaviour of conformal maps, Grund. Math. Wiss. 299, Springer, 1992. | MR | Zbl

[11] D. Revuz & M. Yor, Continuous martingales and Brownian motion, third éd., Grund. Math. Wiss. 293, Springer, 1999. | MR | Zbl

[12] S. Rohde & O. Schramm, Basic properties of SLE, Ann. of Math. 161 (2005), 883-924. | MR | Zbl

[13] O. Schramm & S. Sheffield, Contour lines of the two-dimensional discrete Gaussian free field, Acta Math. 202 (2009), 21-137. | MR | Zbl

[14] O. Schramm & D. B. Wilson, SLE coordinate changes, New York J. Math. 11 (2005), 659-669. | EuDML | MR | Zbl

[15] W. Werner, Girsanov’s transformation for SLE (κ,ρ) processes, intersection exponents and hiding exponents, Ann. Fac. Sci. Toulouse Math. 13 (2004), 121-147. | EuDML | Numdam | MR | Zbl

[16] W. Werner, Random planar curves and Schramm-Loewner evolutions, in Lectures on probability theory and statistics, Lecture Notes in Math. 1840, Springer, 2004, 107-195. | MR | Zbl

[17] D. Zhan, Duality of chordal SLE, Invent. Math. 174 (2008), 309-353. | MR | Zbl

[18] D. Zhan, Reversibility of chordal SLE, Ann. Probab. 36 (2008), 1472-1494. | MR | Zbl

Cited by Sources: