Fock, Vladimir V.; Goncharov, Alexander B.
Cluster ensembles, quantization and the dilogarithm  [ Ensembles amassés, quantification et dilogarithme ]
Annales scientifiques de l'École Normale Supérieure, Série 4 : Tome 42 (2009) no. 6 , p. 865-930
Zbl 1180.53081 | MR 2567745 | 1 citation dans Numdam
doi : 10.24033/asens.2112
URL stable : http://www.numdam.org/item?id=ASENS_2009_4_42_6_865_0

Classification:  14T05,  53D17,  53D05,  53D55,  53D30
Mots clés: variétés amassées, dilogarithm ?, quantification, structure de Poisson, structure symplectique
Un ensemble amassé est une paire (𝒳,𝒜) d’espaces positifs (i.e. de variétés munies d’un atlas positif) munis de l’action d’un groupe discret. L’espace 𝒜 est relié au spectre d’une algèbre amassée [12]. Les deux espaces sont liés par un morphisme p:𝒜𝒳. L’espace 𝒜 est muni d’une 2-forme fermée, éventuellement dégénérée, et l’espace 𝒳 est muni d’une structure de Poisson. L’application p est compatible avec ces structures. Le dilogarithme avec ses avatars motiviques et quantiques joue un rôle fondamental dans la structure d’un ensemble amassé. Nous définissons une déformation non-commutative de l’espace 𝒳. Nous montrons que, dans le cas où le paramètre de la déformation q est une racine de l’unité, l’algèbre déformée a un centre qui contient l’algèbre des fonctions sur l’espace 𝒳 originel. Notre exemple principal est celui de l’espace des modules associé dans [7] à une surface topologique S munie d’un nombre fini de points distingués sur le bord et à un groupe algébrique semi-simple G. C’est un avatar algébro-géométrique de la théorie de Teichmüller d’ordre supérieur sur la surface S à valeurs dans G. Nous évoquons l’existence d’une dualité entre les espaces 𝒜 et 𝒳. Une des manifestations de cette dualité est une conjecture de dualité affirmant que les points tropicaux d’un espace paramètrent une base dans l’espace d’une certaine classe de fonctions sur l’espace Langlands-dual. Nous démontrons cette conjecture dans un certain nombre d’exemples.
A cluster ensemble is a pair (𝒳,𝒜) of positive spaces (i.e. varieties equipped with positive atlases), coming with an action of a symmetry group Γ. The space 𝒜 is closely related to the spectrum of a cluster algebra [12]. The two spaces are related by a morphism p:𝒜𝒳. The space 𝒜 is equipped with a closed 2-form, possibly degenerate, and the space 𝒳 has a Poisson structure. The map p is compatible with these structures. The dilogarithm together with its motivic and quantum avatars plays a central role in the cluster ensemble structure. We define a non-commutative q-deformation of the 𝒳-space. When q is a root of unity the algebra of functions on the q-deformed 𝒳-space has a large center, which includes the algebra of functions on the original 𝒳-space. The main example is provided by the pair of moduli spaces assigned in [7] to a topological surface S with a finite set of points at the boundary and a split semisimple algebraic group G. It is an algebraic-geometric avatar of higher Teichmüller theory on S related to G. We suggest that there exists a duality between the 𝒜 and 𝒳 spaces. In particular, we conjecture that the tropical points of one of the spaces parametrise a basis in the space of functions on the Langlands dual space. We provide some evidence for the duality conjectures in the finite type case.

Bibliographie

[1] A. Berenstein, S. Fomin & A. Zelevinsky, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), 1-52. MR 2110627 | Zbl 1135.16013

[2] A. Berenstein & A. Zelevinsky, Quantum cluster algebras, Adv. Math. 195 (2005), 405-455. MR 2146350 | Zbl 1124.20028

[3] J. W. Cannon, W. J. Floyd & W. R. Parry, Introductory notes on Richard Thompson's groups, Enseign. Math. 42 (1996), 215-256. MR 1426438 | Zbl 0880.20027

[4] F. Chapoton, S. Fomin & A. Zelevinsky, Polytopal realizations of generalized associahedra, Canad. Math. Bull. 45 (2002), 537-566. MR 1941227 | Zbl 1018.52007

[5] V. V. Fock & A. B. Goncharov, Cluster 𝒳-varieties, amalgamation, and Poisson-Lie groups, in Algebraic geometry and number theory, Progr. Math. 253, Birkhäuser, 2006, 27-68. MR 2263192 | Zbl 1162.22014

[6] V. V. Fock & A. B. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1-211. Numdam | MR 2233852 | Zbl 1099.14025

[7] V. V. Fock & A. B. Goncharov, Dual Teichmüller and lamination spaces, in Handbook of Teichmüller theory. Vol. I, IRMA Lect. Math. Theor. Phys. 11, Eur. Math. Soc., Zürich, 2007, 647-684. MR 2349682 | Zbl 1162.32009

[8] V. V. Fock & A. B. Goncharov, Cluster ensembles, quantization and the dilogarithm II: The intertwiner, Progress in Math. 269 (2009), 513-524. MR 2641183 | Zbl 1225.53070

[9] V. V. Fock & A. B. Goncharov, The quantum dilogarithm and representations of quantum cluster varieties, Invent. Math. 175 (2009), 223-286. MR 2470108 | Zbl 1183.14037

[10] V. V. Fock & A. B. Goncharov, Completions of cluster varieties, to appear.

[11] V. V. Fok & L. O. Chekhov, Quantum Teichmüller spaces, Teoret. Mat. Fiz. 120 (1999), 511-528. MR 1737362 | Zbl 0986.32007

[12] S. Fomin & A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529 (electronic). MR 1887642 | Zbl 1021.16017

[13] S. Fomin & A. Zelevinsky, The Laurent phenomenon, Adv. in Appl. Math. 28 (2002), 119-144. MR 1888840 | Zbl 1012.05012

[14] S. Fomin & A. Zelevinsky, Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), 63-121. MR 2004457 | Zbl 1054.17024

[15] S. Fomin & A. Zelevinsky, Y-systems and generalized associahedra, Ann. of Math. 158 (2003), 977-1018. MR 2031858 | Zbl 1057.52003

[16] M. Gekhtman, M. Shapiro & A. Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J. 3 (2003), 899-934. MR 2078567 | Zbl 1057.53064

[17] M. Gekhtman, M. Shapiro & A. Vainshtein, Cluster algebras and Weil-Petersson forms, Duke Math. J. 127 (2005), 291-311. MR 2130414 | Zbl 1079.53124

[18] A. B. Goncharov, Explicit construction of characteristic classes, in I. M. Gel'fand Seminar, Adv. Soviet Math. 16, Amer. Math. Soc., 1993, 169-210. MR 1237830 | Zbl 0809.57016

[19] A. B. Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math. 114 (1995), 197-318. MR 1348706 | Zbl 0863.19004

[20] A. B. Goncharov, Pentagon relation for the quantum dilogarithm and quantized 0,5 cyc , in Geometry and dynamics of groups and spaces, Progr. Math. 265, Birkhäuser, 2008, 415-428. MR 2402412 | Zbl 1139.81055

[21] M. Imbert, Sur l'isomorphisme du groupe de Richard Thompson avec le groupe de Ptolémée, in Geometric Galois actions, 2, London Math. Soc. Lecture Note Ser. 243, Cambridge Univ. Press, 1997, 313-324. MR 1653017 | Zbl 0911.20031

[22] R. M. Kashaev, Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys. 43 (1998), 105-115. MR 1607296 | Zbl 0897.57014

[23] J. Milnor, Introduction to algebraic K-theory, Annals of Math. Studies 72, Princeton Univ. Press, 1971. MR 349811 | Zbl 0237.18005

[24] R. C. Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987), 299-339. MR 919235 | Zbl 0642.32012

[25] P. Sherman & A. Zelevinsky, Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J. 4 (2004), 947-974. MR 2124174 | Zbl 1103.16018

[26] A. A. Suslin, K 3 of a field and the Bloch group, Proc. Steklov Inst. Math. N4 (1991), 217-239. Zbl 0741.19005