Représentations localement analytiques de GL 3 ( p )  [ Locally analytic representations of GL 3 ( p ) ]
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 44 (2011) no. 1, p. 43-145

We construct a complex of locally analytic representations of GL 3 ( p ), which is associated to some semi-stable 3-dimensional representations of the absolute Galois group of p . Then we show that we can retrieve the (ϕ,N)-filtered module of the Galois representation in the space of morphisms, in the derived category of D( GL 3 ( p ))-modules, of this complex in the de Rham-complex of the 2-dimensional Drinfel’d’s space. For the proof, we compute some spaces of locally analytic cohomology of unipotent subgroups with coefficients in some locally analytic principal series.

Nous construisons un complexe de représentations localement analytiques de GL 3 ( p ), associé à certaines représentations semi-stables de dimension 3 du groupe de Galois absolu de p . Nous montrons ensuite que l’on peut retrouver le (ϕ,N)-module filtré de la représentation galoisienne en considérant les morphismes, dans la catégorie dérivée des D( GL 3 ( p ))-modules, de ce complexe dans le complexe de de Rham de l’espace de Drinfel’d de dimension 2. La preuve requiert le calcul de certains espaces de cohomologie localement analytiques de sous-groupes unipotents à coefficients dans des séries principales localement analytiques.

DOI : https://doi.org/10.24033/asens.2140
Classification:  11F70,  11S20,  11S37,  11S80,  14G22,  22E50
Keywords: p-adic Langlands correspondence, Drinfel’d’s spaces, p-adic locally analytic representations
@article{ASENS_2011_4_44_1_43_0,
     author = {Schraen, Benjamin},
     title = {Repr\'esentations localement analytiques de $\mathrm {GL}\_3(\mathbb {Q}\_{p})$},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {4e s{\'e}rie, 44},
     number = {1},
     year = {2011},
     pages = {43-145},
     doi = {10.24033/asens.2140},
     zbl = {1235.11108},
     mrnumber = {2760195},
     language = {fr},
     url = {http://www.numdam.org/item/ASENS_2011_4_44_1_43_0}
}
Schraen, Benjamin. Représentations localement analytiques de $\mathrm {GL}_3(\mathbb {Q}_{p})$. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 44 (2011) no. 1, pp. 43-145. doi : 10.24033/asens.2140. http://www.numdam.org/item/ASENS_2011_4_44_1_43_0/

[1] I. N. Bernstein & A. V. Zelevinsky, Induced representations of reductive 𝔭-adic groups. I, Ann. Sci. École Norm. Sup. 10 (1977), 441-472. | Numdam | Zbl 0412.22015

[2] S. J. Bloch, Higher regulators, algebraic K-theory, and zeta functions of elliptic curves, CRM Monograph Series 11, Amer. Math. Soc., 2000. | Zbl 0958.19001

[3] A. Borel, Cohomologie de SL n et valeurs de fonctions zeta aux points entiers, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1977), 613-636. | Numdam | Zbl 0382.57027

[4] A. Borel & N. R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Math. Studies 94, Princeton Univ. Press, 1980. | Zbl 0443.22010

[5] N. Bourbaki, Topologie générale. Chapitre 9, Hermann, 1974.

[6] C. Breuil, Sur quelques représentations modulaires et p-adiques de GL 2 (𝐐 p ). II, J. Inst. Math. Jussieu 2 (2003), 23-58. | Zbl 1165.11319

[7] C. Breuil, Invariant et série spéciale p-adique, Ann. Sci. École Norm. Sup. 37 (2004), 559-610. | Zbl 1166.11331

[8] C. Breuil, Série spéciale p-adique et cohomologie étale complétée, Astérisque 331 (2010), 65-115. | Zbl 1246.11106

[9] C. Breuil & A. Mézard, Représentations semi-stables de GL 2 ( p ), demi-plan p-adique et réduction modulo p, Astérisque 331 (2010), 117-178. | Zbl 1271.11106

[10] C. Breuil & P. Schneider, First steps towards p-adic Langlands functoriality, J. reine angew. Math. 610 (2007), 149-180. | Zbl 1180.11036

[11] C. J. Bushnell & G. Henniart, The local Langlands conjecture for GL (2), Grund. Math. Wiss. 335, Springer, 2006. | Zbl 1100.11041

[12] W. Casselman & D. Wigner, Continuous cohomology and a conjecture of Serre's, Invent. Math. 25 (1974), 199-211. | Zbl 0297.20060

[13] R. F. Coleman, Dilogarithms, regulators and p-adic L-functions, Invent. Math. 69 (1982), 171-208. | Zbl 0516.12017

[14] R. F. Coleman & A. Iovita, Hidden structures on semistable curves, Astérisque 331 (2010), 179-254. | Zbl 1251.11047

[15] P. Colmez, Une correspondance de Langlands locale p-adique pour les représentations semi-stables de dimension 2, preprint, 2004.

[16] P. Colmez, La série principale unitaire de GL 2 (𝐐 p ), Astérisque 330 (2010), 213-262. | Zbl 1242.11095

[17] P. Colmez, Représentations de GL 2 (𝐐 p ) et (φ,Γ)-modules, Astérisque 330 (2010), 281-509. | Zbl 1218.11107

[18] P. Colmez & J.-M. Fontaine, Construction des représentations p-adiques semi-stables, Invent. Math. 140 (2000), 1-43. | MR 1779803 | Zbl 1010.14004

[19] J. F. Dat, Espaces symétriques de Drinfeld et correspondance de Langlands locale, Ann. Sci. École Norm. Sup. 39 (2006), 1-74. | Zbl 1141.22004

[20] J. Dixmier, Algèbres enveloppantes, Gauthier-Villars, 1974, Cahiers scientifiques, fasc. XXXVII. | Zbl 0308.17007

[21] M. Emerton, p-adic L-functions and unitary completions of representations of p-adic reductive groups, Duke Math. J. 130 (2005), 353-392. | MR 2181093 | Zbl 1092.11024

[22] M. Emerton, Jacquet modules of locally analytic representations of p-adic reductive groups II. The relation to parabolic induction, à paraître dans J. Inst. Math. de Jussieu.

[23] J.-M. Fontaine, Représentations p-adiques semi-stables, Astérisque 223 (1994), 113-184. | MR 1293972 | Zbl 0865.14009

[24] H. Frommer, The locally analytic principal series of split reductive groups, preprint SFB 478/265 http://wwwmath.uni-muenster.de/sfb/about/publ/heft265.ps, 2003.

[25] E. Grosse-Klönne, Frobenius and monodromy operators in rigid analysis, and Drinfelʼd's symmetric space, J. Algebraic Geom. 14 (2005), 391-437. | MR 2129006 | Zbl 1084.14021

[26] E. Grosse-Klönne, On the p-adic cohomology of some p-adically uniformized varieties, J. Algebraic Geom. (2010). | MR 2729278 | Zbl 1210.14022

[27] J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Math. 9, Springer, 1978. | MR 499562 | Zbl 0447.17001

[28] J. E. Humphreys, Representations of semisimple Lie algebras in the BGG category 𝒪, Graduate Studies in Math. 94, Amer. Math. Soc., 2008. | MR 2428237 | Zbl 1177.17001

[29] A. Iovita & M. Spiess, Logarithmic differential forms on p-adic symmetric spaces, Duke Math. J. 110 (2001), 253-278. | MR 1865241 | Zbl 1100.14505

[30] T. Ito, Weight-monodromy conjecture for p-adically uniformized varieties, Invent. Math. 159 (2005), 607-656. | MR 2125735 | Zbl 1154.14014

[31] B. Keller, Derived categories and their uses, in Handbook of algebra, Vol. 1, North-Holland, 1996, 671-701. | MR 1421815 | Zbl 0862.18001

[32] A. W. Knapp, Lie groups, Lie algebras, and cohomology, Mathematical Notes 34, Princeton Univ. Press, 1988. | MR 938524 | Zbl 0648.22010

[33] A. W. Knapp, Representation theory of semisimple groups, Princeton Landmarks in Mathematics, Princeton Univ. Press, 2001. | MR 1880691 | Zbl 0993.22001

[34] J. Kohlhaase, Invariant distributions on p-adic analytic groups, Duke Math. J. 137 (2007), 19-62. | MR 2309143 | Zbl 1133.11066

[35] J. Kohlhaase, The cohomology of locally analytic representations, preprint SFB 478/491 http://wwwmath.uni-muenster.de/sfb/about/publ/heft491.pdf, à paraître dans J. reine angew. Math. | MR 2774315 | Zbl 1226.22020

[36] J.-L. Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France 78 (1950), 65-127. | Numdam | MR 36511 | Zbl 0039.02901

[37] C. T. Féaux De Lacroix, Einige Resultate über die topologischen Darstellungen p-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem p-adischen Körper, Schriftenreihe Math. Inst. Univ. Münster 23 (1999), 1-111. | MR 1691735 | Zbl 0963.22009

[38] C. C. Moore, Group extensions and cohomology for locally compact groups. III, Trans. Amer. Math. Soc. 221 (1976), 1-33. | MR 414775 | Zbl 0366.22005

[39] S. Orlik, On extensions of generalized Steinberg representations, J. Algebra 293 (2005), 611-630. | MR 2173717 | Zbl 1080.22008

[40] S. Orlik, Equivariant vector bundles on Drinfeld's upper half space, Invent. Math. 172 (2008), 585-656. | MR 2393081 | Zbl 1136.22009

[41] S. Orlik & M. Strauch, On Jordan-Hölder Series of some Locally Analytic Representations, preprint arXiv :1001.0323.

[42] S. Orlik & M. Strauch, On the irreducibility of locally analytic principal series representations, preprint arXiv :math/0612809, à paraître dans Representation Theory. | MR 2738585 | Zbl 1247.22018

[43] D. Prasad, Locally algebraic representations of p-adic groups, Representation Theory 5 (2001), 111-128. | MR 1835001 | Zbl 1028.17007

[44] P. Schneider, The cohomology of local systems on p-adically uniformized varieties, Math. Ann. 293 (1992), 623-650. | MR 1176024 | Zbl 0774.14022

[45] P. Schneider, Nonarchimedean functional analysis, Springer Monographs in Math., Springer, 2002. | MR 1869547 | Zbl 0998.46044

[46] P. Schneider & U. Stuhler, The cohomology of p-adic symmetric spaces, Invent. Math. 105 (1991), 47-122. | MR 1109620 | Zbl 0751.14016

[47] P. Schneider & J. Teitelbaum, U(𝔤)-finite locally analytic representations, Represent. Theory 5 (2001), 111-128. | MR 1835001 | Zbl 1028.17007

[48] P. Schneider & J. Teitelbaum, Locally analytic distributions and p-adic representation theory, with applications to GL 2 , J. Amer. Math. Soc. 15 (2002), 443-468. | MR 1887640 | Zbl 1028.11071

[49] P. Schneider & J. Teitelbaum, p-adic boundary values, Astérisque 278 (2002), 51-125. | MR 1922824 | Zbl 1051.14024

[50] P. Schneider & J. Teitelbaum, Algebras of p-adic distributions and admissible representations, Invent. Math. 153 (2003), 145-196. | MR 1990669 | Zbl 1028.11070

[51] P. Schneider & J. Teitelbaum, Duality for admissible locally analytic representations, Represent. Theory 9 (2005), 297-326. | MR 2133762 | Zbl 1146.22301

[52] B. Schraen, Représentations p-adiques de GL 2 (L) et catégories dérivées, Israel J. Math. 176 (2010), 307-361. | MR 2653197 | Zbl 1210.11066

[53] E. De Shalit, The p-adic monodromy-weight conjecture for p-adically uniformized varieties, Compos. Math. 141 (2005), 101-120. | MR 2099771 | Zbl 1087.14019

[54] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Math. 38, Cambridge Univ. Press, 1994. | MR 1269324 | Zbl 0797.18001

[55] N. Yoneda, On Ext and exact sequences, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 507-576. | MR 225854 | Zbl 0163.26902