Elementary embeddings in torsion-free hyperbolic groups  [ Plongements élémentaires dans des groupes hyperboliques sans torsion ]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 44 (2011) no. 4, p. 631-681
On obtient une description des plongements élémentaires (au sens de la logique du premier ordre) dans un groupe hyperbolique sans torsion, en termes de tours hyperboliques de Sela. Ainsi, si H est plongé élémentairement dans un groupe hyperbolique sans torsion Γ, on peut obtenir Γ en amalgamant successivement des groupes de surfaces à bord à un produit libre de H avec des groupes libres et des groupes de surfaces fermées. Ceci permet en corollaire de montrer qu’un sous-groupe plongé élémentairement dans un groupe libre de type fini est un facteur libre. On considère également le cas où Γ est le groupe fondamental d’une surface hyperbolique fermée. Les techniques utilisées pour obtenir cette description sont essentiellement géométriques : actions sur des arbres réels ou simpliciaux, décompositions JSJ. On s’appuie également sur des résultats d’existence d’ensembles de factorisation utilisés dans la construction de diagrammes de Makanin-Razborov pour un groupe hyperbolique sans torsion.
We describe first-order logic elementary embeddings in a torsion-free hyperbolic group in terms of Sela’s hyperbolic towers. Thus, if H embeds elementarily in a torsion free hyperbolic group Γ, we show that the group Γ can be obtained by successive amalgamations of groups of surfaces with boundary to a free product of H with some free group and groups of closed surfaces. This gives as a corollary that an elementary subgroup of a finitely generated free group is a free factor. We also consider the special case where Γ is the fundamental groups of a closed hyperbolic surface. The techniques used to obtain this description are mostly geometric, as for example actions on real or simplicial trees, or the existence of JSJ splittings. We also rely on the existence of factor sets, a result used in the construction of Makanin-Razborov diagrams for torsion-free hyperbolic groups.
DOI : https://doi.org/10.24033/asens.2152
Classification:  20E05,  20F67,  03C07
Mots clés: théorie géométrique des groupes, logique du premier ordre, arbres (théorie des graphes), groupes libres, problème de Tarski, tours hyperboliques de sela, sous-structures élémentaires
@article{ASENS_2011_4_44_4_631_0,
     author = {Perin, Chlo\'e},
     title = {Elementary embeddings in torsion-free hyperbolic groups},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 44},
     number = {4},
     year = {2011},
     pages = {631-681},
     doi = {10.24033/asens.2152},
     zbl = {1245.20052},
     language = {en},
     url = {http://www.numdam.org/item/ASENS_2011_4_44_4_631_0}
}
Perin, Chloé. Elementary embeddings in torsion-free hyperbolic groups. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 44 (2011) no. 4, pp. 631-681. doi : 10.24033/asens.2152. http://www.numdam.org/item/ASENS_2011_4_44_4_631_0/

[1] M. Bestvina, -trees in topology, geometry and group theory, preprint ftp://ftp.math.utah.edu/u/ma/bestvina/math/handbook.pdf, 2002. | MR 1886668 | Zbl 0998.57003

[2] M. Bestvina & M. Feighn, Outer limits, preprint http://andromeda.rutgers.edu/~feighn/papers/outer.pdf, 1994.

[3] M. Bestvina & M. Feighn, Stable actions of groups on real trees, Invent. Math. 121 (1995), 287-321. | MR 1346208 | Zbl 0837.20047

[4] B. H. Bowditch, Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998), 145-186. | MR 1638764 | Zbl 0911.57001

[5] C. C. Chang & H. J. Keisler, Model theory, third éd., Studies in Logic and the Foundations of Mathematics 73, North-Holland Publishing Co., 1990. | MR 1059055 | Zbl 0697.03022

[6] Z. Chatzidakis, Introduction to model theory, notes, http://www.logique.jussieu.fr/~zoe/papiers/MTluminy.pdf.

[7] M. J. Dunwoody & M. E. Sageev, JSJ-splittings for finitely presented groups over slender groups, Invent. Math. 135 (1999), 25-44. | MR 1664694 | Zbl 0939.20047

[8] M. Forester, Deformation and rigidity of simplicial group actions on trees, Geom. Topol. 6 (2002), 219-267. | MR 1914569 | Zbl 1118.20028

[9] K. Fujiwara & P. Papasoglu, JSJ-decompositions of finitely presented groups and complexes of groups, Geom. Funct. Anal. 16 (2006), 70-125. | MR 2221253 | Zbl 1097.20037

[10] D. Gabai, The simple loop conjecture, J. Differential Geom. 21 (1985), 143-149. | MR 806708 | Zbl 0556.57007

[11] V. Guirardel, Actions of finitely generated groups on -trees, Ann. Inst. Fourier (Grenoble) 58 (2008), 159-211. | Numdam | MR 2401220 | Zbl 1187.20020

[12] V. Guirardel & G. Levitt, JSJ decompositions: definitions, existence, uniqueness. I: The JSJ deformation space, preprint arXiv:0911.3173.

[13] V. Guirardel & G. Levitt, JSJ decompositions: definitions, existence, uniqueness. II: Compatibility and acylindricity, preprint arXiv:1002.4564.

[14] V. Guirardel & G. Levitt, Tree of cylinders and canonical splittings, preprint arXiv:0811.2383. | MR 2821568 | Zbl 1272.20026

[15] O. Kharlampovich & A. Myasnikov, Elementary theory of free non-abelian groups, J. Algebra 302 (2006), 451-552. | MR 2293770 | Zbl 1110.03020

[16] J. W. Morgan & P. B. Shalen, Valuations, trees, and degenerations of hyperbolic structures. I, Ann. of Math. 120 (1984), 401-476. | MR 769158 | Zbl 0583.57005

[17] F. Paulin, Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math. 94 (1988), 53-80. | MR 958589 | Zbl 0673.57034

[18] F. Paulin, The Gromov topology on 𝐑-trees, Topology Appl. 32 (1989), 197-221. | MR 1007101 | Zbl 0675.20033

[19] C. Perin, Elementary embeddings in torsion-free hyperbolic groups, Thèse de doctorat, Université de Caen Basse-Normandie, 2008. | Zbl 1245.20052

[20] E. Rips & Z. Sela, Structure and rigidity in hyperbolic groups. I, Geom. Funct. Anal. 4 (1994), 337-371. | MR 1274119 | Zbl 0818.20042

[21] E. Rips & Z. Sela, Cyclic splittings of finitely presented groups and the canonical JSJ decomposition, Ann. of Math. 146 (1997), 53-109. | MR 1469317 | Zbl 0910.57002

[22] P. Scott, Finitely generated 3-manifold groups are finitely presented, J. London Math. Soc. 6 (1973), 437-440. | MR 380763 | Zbl 0254.57003

[23] P. Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. 17 (1978), 555-565. | MR 494062 | Zbl 0412.57006

[24] Z. Sela, Acylindrical accessibility for groups, Invent. Math. 129 (1997), 527-565. | MR 1465334 | Zbl 0887.20017

[25] Z. Sela, Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups. II, Geom. Funct. Anal. 7 (1997), 561-593. | MR 1466338 | Zbl 0884.20025

[26] Z. Sela, Diophantine geometry over groups. I. Makanin-Razborov diagrams, Publ. Math. I.H.É.S. 93 (2001), 31-105. | Numdam | MR 1863735 | Zbl 1018.20034

[27] Z. Sela, Diophantine geometry over groups. II. Completions, closures and formal solutions, Israel J. Math. 134 (2003), 173-254. | MR 1972179 | Zbl 1028.20028

[28] Z. Sela, Diophantine geometry over groups. IV. An iterative procedure for validation of a sentence, Israel J. Math. 143 (2004), 1-130. | MR 2106978 | Zbl 1088.20017

[29] Z. Sela, Diophantine geometry over groups. III. Rigid and solid solutions, Israel J. Math. 147 (2005), 1-73. | MR 2166355 | Zbl 1133.20020

[30] Z. Sela, Diophantine geometry over groups 150 (2005), 1-197. | MR 2249582 | Zbl 1148.20022

[31] Z. Sela, Diophantine geometry over groups. VI. The elementary theory of a free group, Geom. Funct. Anal. 16 (2006), 707-730. | MR 2238945 | Zbl 1118.20035

[32] Z. Sela, private communication.

[33] Z. Sela, Diophantine geometry over groups VII: The elementary theory of a hyperbolic group, to appear in Proc. of the LMS. | MR 2520356 | Zbl 1241.20049

[34] J-P. Serre, Arbres, amalgames, SL 2 , Astérisque 46 (1983). | Zbl 0369.20013

[35] H. Wilton, Subgroup separability of limit groups, Thèse, Imperial College, London, 2006, http://www.math.utexas.edu/users/henry.wilton/thesis.pdf.