Local energy decay for several evolution equations on asymptotically euclidean manifolds
[Décroissance de l'énergie locale pour un certain nombre d'équations d'évolution sur des variétés asymptotiquement euclidiennes]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 45 (2012) no. 2, pp. 311-335.

Soit P une perturbation métrique à longue portée du laplacien euclidien sur d , d2. On montre la décroissance de l’énergie locale des solutions des équations des ondes, de Klein-Gordon et de Schrödinger associées à P. Le problème est décomposé en une analyse basses et hautes fréquences. Afin de traiter les hautes fréquences, on fait une hypothèse de non capture. Pour les basses (resp. hautes) fréquences, on obtient un résultat général sur la décroissance de l’énergie locale pour le groupe e itf(P) f a un comportement prescrit en zéro (resp. à l’infini).

Let P be a long range metric perturbation of the Euclidean Laplacian on  d , d2. We prove local energy decay for the solutions of the wave, Klein-Gordon and Schrödinger equations associated to P. The problem is decomposed in a low and high frequency analysis. For the high energy part, we assume a non trapping condition. For low (resp. high) frequencies we obtain a general result about the local energy decay for the group e itf(P) where f has a suitable development at zero (resp. infinity).

DOI : 10.24033/asens.2166
Classification : 35L05, 35J10, 35P25, 58J45, 81U30
Keywords: local energy decay, low frequencies, asymptotically euclidean manifolds, Mourre theory
Mot clés : décroissance de l'énergie locale, basses fréquences, variétés asymptotiquement euclidiennes, théorie de Mourre
@article{ASENS_2012_4_45_2_311_0,
     author = {Bony, Jean-Fran\c{c}ois and H\"afner, Dietrich},
     title = {Local energy decay for several evolution equations on asymptotically euclidean manifolds},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {311--335},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 45},
     number = {2},
     year = {2012},
     doi = {10.24033/asens.2166},
     mrnumber = {2977621},
     zbl = {1263.58008},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.2166/}
}
TY  - JOUR
AU  - Bony, Jean-François
AU  - Häfner, Dietrich
TI  - Local energy decay for several evolution equations on asymptotically euclidean manifolds
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2012
SP  - 311
EP  - 335
VL  - 45
IS  - 2
PB  - Société mathématique de France
UR  - http://archive.numdam.org/articles/10.24033/asens.2166/
DO  - 10.24033/asens.2166
LA  - en
ID  - ASENS_2012_4_45_2_311_0
ER  - 
%0 Journal Article
%A Bony, Jean-François
%A Häfner, Dietrich
%T Local energy decay for several evolution equations on asymptotically euclidean manifolds
%J Annales scientifiques de l'École Normale Supérieure
%D 2012
%P 311-335
%V 45
%N 2
%I Société mathématique de France
%U http://archive.numdam.org/articles/10.24033/asens.2166/
%R 10.24033/asens.2166
%G en
%F ASENS_2012_4_45_2_311_0
Bony, Jean-François; Häfner, Dietrich. Local energy decay for several evolution equations on asymptotically euclidean manifolds. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 45 (2012) no. 2, pp. 311-335. doi : 10.24033/asens.2166. http://archive.numdam.org/articles/10.24033/asens.2166/

[1] W. O. Amrein, A. Boutet De Monvel & V. Georgescu, C 0 -groups, commutator methods and spectral theory of N-body Hamiltonians, Progress in Math. 135, Birkhäuser, 1996. | MR | Zbl

[2] L. Andersson & P. Blue, Hidden symmetries and decay for the wave equation on the Kerr spacetime, preprint arXiv:0908.2265.

[3] M. Balabane, On a regularizing effect of Schrödinger type groups, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), 1-14. | Numdam | MR | Zbl

[4] M. Ben-Artzi, H. Koch & J.-C. Saut, Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), 87-92. | MR | Zbl

[5] J.-F. Bony & D. Häfner, Low frequency resolvent estimates for long range perturbations of the Euclidean Laplacian, Math. Res. Lett. 17 (2010), 301-306. | MR | Zbl

[6] J.-F. Bony & D. Häfner, The semilinear wave equation on asymptotically Euclidean manifolds, Comm. Partial Differential Equations 35 (2010), 23-67. | MR | Zbl

[7] J.-F. Bony & D. Häfner, Improved local energy decay for the wave equation on asymptotically Euclidean odd dimensional manifolds in the short range case, preprint arXiv:1107.5251. | Zbl

[8] J.-M. Bouclet, Low frequency estimates and local energy decay for asymptotically Euclidean Laplacians, Comm. Partial Differential Equations 36 (2011), 1239-1286. | MR | Zbl

[9] J.-M. Bouclet, Low frequency estimates for long range perturbations in divergence form, Canad. J. Math. 63 (2011), 961-991. | MR | Zbl

[10] N. Burq, Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, Acta Math. 180 (1998), 1-29. | MR | Zbl

[11] H. Christianson, Applications of cutoff resolvent estimates to the wave equation, Math. Res. Lett. 16 (2009), 577-590. | MR | Zbl

[12] M. Dafermos & I. Rodnianski, Lectures on black holes and linear waves, preprint arXiv:0811.0354. | MR

[13] K. Datchev & A. Vasy, Gluing semiclassical resolvent estimates, or the importance of being microlocal, Int. Math. Res. Notices (2012), doi:10.1093/imrn/rnr255.

[14] M. Dimassi & J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series 268, Cambridge Univ. Press, 1999. | MR | Zbl

[15] H. Donnelly, Exhaustion functions and the spectrum of Riemannian manifolds, Indiana Univ. Math. J. 46 (1997), 505-527. | MR | Zbl

[16] R. Donninger, W. Schlag & A. Soffer, On pointwise decay of linear waves on a Schwarzschild black hole background, Comm. Math. Phys. 309 (2012), 51-86. | MR | Zbl

[17] F. Finster, N. Kamran, J. Smoller & S.-T. Yau, Decay of solutions of the wave equation in the Kerr geometry, Comm. Math. Phys. 264 (2006), 465-503. | MR | Zbl

[18] C. Gérard & A. Martinez, Principe d'absorption limite pour des opérateurs de Schrödinger à longue portée, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 121-123. | MR | Zbl

[19] C. Guillarmou & A. Hassell, Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. I, Math. Ann. 341 (2008), 859-896. | MR | Zbl

[20] C. Guillarmou & A. Hassell, Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II, Ann. Inst. Fourier 59 (2009), 1553-1610. | Numdam | MR | Zbl

[21] W. Hunziker, I. M. Sigal & A. Soffer, Minimal escape velocities, Comm. Partial Differential Equations 24 (1999), 2279-2295. | MR | Zbl

[22] A. Jensen & T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J. 46 (1979), 583-611. | MR | Zbl

[23] A. Jensen, É. Mourre & P. Perry, Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. H. Poincaré Phys. Théor. 41 (1984), 207-225. | Numdam | MR | Zbl

[24] P. D. Lax, C. S. Morawetz & R. S. Phillips, Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle, Comm. Pure Appl. Math. 16 (1963), 477-486. | MR | Zbl

[25] P. D. Lax & R. S. Phillips, Scattering theory, second éd., Pure and Applied Mathematics 26, Academic Press Inc., 1989. | MR | Zbl

[26] R. B. Melrose & J. Sjöstrand, Singularities of boundary value problems. I, Comm. Pure Appl. Math. 31 (1978), 593-617. | MR | Zbl

[27] S. Nonnenmacher & M. Zworski, Quantum decay rates in chaotic scattering, Acta Math. 203 (2009), 149-233. | MR | Zbl

[28] V. Petkov & L. Stoyanov, Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function, Anal. PDE 3 (2010), 427-489. | MR | Zbl

[29] J. V. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math. 22 (1969), 807-823. | MR | Zbl

[30] J. Rauch, Local decay of scattering solutions to Schrödinger's equation, Comm. Math. Phys. 61 (1978), 149-168. | MR | Zbl

[31] M. Reed & B. Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press Inc., 1978. | MR | Zbl

[32] W. Schlag, A. Soffer & W. Staubach, Decay for the wave and Schrödinger evolutions on manifolds with conical ends. I, Trans. Amer. Math. Soc. 362 (2010), 19-52. | MR | Zbl

[33] W. Schlag, A. Soffer & W. Staubach, Decay for the wave and Schrödinger evolutions on manifolds with conical ends. II, Trans. Amer. Math. Soc. 362 (2010), 289-318. | MR | Zbl

[34] S.-H. Tang & M. Zworski, Resonance expansions of scattered waves, Comm. Pure Appl. Math. 53 (2000), 1305-1334. | MR | Zbl

[35] D. Tataru, Local decay of waves on asymptotically flat stationary space-times, preprint arXiv:0910.5290. | MR | Zbl

[36] D. Tataru & M. Tohaneanu, A local energy estimate on Kerr black hole backgrounds, Int. Math. Res. Not. 2011 (2011), 248-292. | MR | Zbl

[37] M. E. Taylor, Partial differential equations. I, Applied Mathematical Sciences 115, Springer, 1996. | MR | Zbl

[38] B. R. Vaĭnberg, Asymptotic methods in equations of mathematical physics, Gordon & Breach Science Publishers, 1989. | Zbl

[39] A. Vasy & J. Wunsch, Positive commutators at the bottom of the spectrum, J. Funct. Anal. 259 (2010), 503-523. | MR | Zbl

[40] X. P. Wang, Time-decay of scattering solutions and classical trajectories, Ann. Inst. H. Poincaré Phys. Théor. 47 (1987), 25-37. | EuDML | Numdam | MR | Zbl

[41] X. P. Wang, Asymptotic expansion in time of the Schrödinger group on conical manifolds, Ann. Inst. Fourier 56 (2006), 1903-1945. | EuDML | Numdam | MR | Zbl

[42] J. Wunsch & M. Zworski, Resolvent estimates for normally hyperbolic trapped sets, Ann. Henri Poincaré 12 (2011), 1349-1385. | MR | Zbl

Cité par Sources :