Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation
[Mesures gaussiennes associées à une loi de conservation arbitraire de l'équation de Benjamin-Ono]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 46 (2013) no. 2, pp. 249-299.

Inspirés par le travail de Zhidkov sur l'équation KdV, nous construisons des mesures gaussiennes à poids associées à une loi de conservation arbitraire de l'équation de Benjamin-Ono. Les supports de ces mesures sont constitués de fonctions de régularité de Sobolev croissantes. On démontre aussi une propriété-clé des mesures qui nous conduit à conjecturer leur invariance par le flot de l'équation.

Inspired by the work of Zhidkov on the KdV equation, we perform a construction of weighted Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation. The resulting measures are supported by Sobolev spaces of increasing regularity. We also prove a property on the support of these measures leading to the conjecture that they are indeed invariant by the flow of the Benjamin-Ono equation.

DOI : 10.24033/asens.2189
Classification : 35Q35, 37L40, 28C20
Keywords: dispersive equations, Wiener chaos, invariant measures
Mot clés : Équations dispersives, chaos de Wiener, mesures invariantes
@article{ASENS_2013_4_46_2_249_0,
     author = {Tzvetkov, Nikolay and Visciglia, Nicola},
     title = {Gaussian measures associated to the higher order conservation laws of the {Benjamin-Ono} equation},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {249--299},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 46},
     number = {2},
     year = {2013},
     doi = {10.24033/asens.2189},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.2189/}
}
TY  - JOUR
AU  - Tzvetkov, Nikolay
AU  - Visciglia, Nicola
TI  - Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2013
SP  - 249
EP  - 299
VL  - 46
IS  - 2
PB  - Société mathématique de France
UR  - https://www.numdam.org/articles/10.24033/asens.2189/
DO  - 10.24033/asens.2189
LA  - en
ID  - ASENS_2013_4_46_2_249_0
ER  - 
%0 Journal Article
%A Tzvetkov, Nikolay
%A Visciglia, Nicola
%T Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation
%J Annales scientifiques de l'École Normale Supérieure
%D 2013
%P 249-299
%V 46
%N 2
%I Société mathématique de France
%U https://www.numdam.org/articles/10.24033/asens.2189/
%R 10.24033/asens.2189
%G en
%F ASENS_2013_4_46_2_249_0
Tzvetkov, Nikolay; Visciglia, Nicola. Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 46 (2013) no. 2, pp. 249-299. doi : 10.24033/asens.2189. https://www.numdam.org/articles/10.24033/asens.2189/

[1] L. Abdelouhab, J. L. Bona, M. Felland & J.-C. Saut, Nonlocal models for nonlinear, dispersive waves, Phys. D 40 (1989), 360-392. | MR

[2] J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys. 166 (1994), 1-26. | MR

[3] J. Bourgain, Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys. 176 (1996), 421-445. | MR

[4] D. C. Brydges & G. Slade, Statistical mechanics of the 2-dimensional focusing nonlinear Schrödinger equation, Comm. Math. Phys. 182 (1996), 485-504. | MR

[5] N. Burq & F. Planchon, On well-posedness for the Benjamin-Ono equation, Math. Ann. 340 (2008), 497-542. | MR

[6] N. Burq, L. Thomann & N. Tzvetkov, Long time dynamics for the one dimensional non linear Schrödinger equation, to appear in Ann. Inst. Fourier.

[7] A. D. Ionescu & C. E. Kenig, Global well-posedness of the Benjamin-Ono equation in low-regularity spaces, J. Amer. Math. Soc. 20 (2007), 753-798. | MR

[8] J. L. Lebowitz, H. A. Rose & E. R. Speer, Statistical mechanics of the nonlinear Schrödinger equation, J. Statist. Phys. 50 (1988), 657-687. | MR

[9] M. Ledoux & M. Talagrand, Probability in Banach spaces, Ergebn. Math. Grenzg. 23, Springer, 1991. | MR

[10] Y. Matsuno, Bilinear transformation method, Mathematics in Science and Engineering 174, Academic Press Inc., 1984. | MR

[11] L. Molinet, Global well-posedness in L2 for the periodic Benjamin-Ono equation, Amer. J. Math. 130 (2008), 635-683. | MR

[12] A. R. Nahmod, T. Oh, L. Rey-Bellet & G. Staffilani, Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS, J. Eur. Math. Soc. (JEMS) 14 (2012), 1275-1330. | MR

[13] T. Tao, Global well-posedness of the Benjamin-Ono equation in H1(𝐑), J. Hyperbolic Differ. Equ. 1 (2004), 27-49. | MR

[14] N. Tzvetkov, Construction of a Gibbs measure associated to the periodic Benjamin-Ono equation, Probab. Theory Related Fields 146 (2010), 481-514. | MR

[15] P. E. Zhidkov, Korteweg-de Vries and nonlinear Schrödinger equations: qualitative theory, Lecture Notes in Math. 1756, Springer, 2001. | MR

  • Knezevitch, Alexis Transport of low regularity Gaussian measures for the 1d quintic nonlinear Schrödinger equation, Nonlinear Differential Equations and Applications NoDEA, Volume 32 (2025) no. 3 | DOI:10.1007/s00030-025-01049-3
  • Li, Guopeng; Oh, Tadahiro; Zheng, Guangqu On the deep‐water and shallow‐water limits of the intermediate long wave equation from a statistical viewpoint, Transactions of the London Mathematical Society, Volume 12 (2025) no. 1 | DOI:10.1112/tlm3.70005
  • Tzvetkov, Nikolay New non degenerate invariant measures for the Benjamin–Ono equation, Comptes Rendus. Mathématique, Volume 362 (2024) no. G1, p. 77 | DOI:10.5802/crmath.536
  • Li, Guopeng Deep-water and shallow-water limits of the intermediate long wave equation, Nonlinearity, Volume 37 (2024) no. 7, p. 075001 | DOI:10.1088/1361-6544/ad4843
  • Genovese, Giuseppe; Lucà, Renato; Tzvetkov, Nikolay Transport of Gaussian measures with exponential cut-off for Hamiltonian PDEs, Journal d'Analyse Mathématique, Volume 150 (2023) no. 2, p. 737 | DOI:10.1007/s11854-023-0292-1
  • Genovese, Giuseppe; Lucà, Renato; Tzvetkov, Nikolay Quasi-invariance of low regularity Gaussian measures under the gauge map of the periodic derivative NLS, Journal of Functional Analysis, Volume 282 (2022) no. 1, p. 109263 | DOI:10.1016/j.jfa.2021.109263
  • Gassot, Louise Long time behavior of solutions for a damped Benjamin–Ono equation, Mathematische Zeitschrift, Volume 300 (2022) no. 2, p. 1939 | DOI:10.1007/s00209-021-02849-w
  • Holmer, Justin; Zhang, Katherine Zhiyuan Benjamin–Ono Soliton Dynamics in a Slowly Varying Potential Revisited, SIAM Journal on Mathematical Analysis, Volume 54 (2022) no. 2, p. 2634 | DOI:10.1137/21m1425177
  • Lin, Lin; Yan, Wei; Duan, Jinqiao Gibbs Measure for the Higher Order Modified Camassa-Holm Equation, Chinese Annals of Mathematics, Series B, Volume 42 (2021) no. 1, p. 105 | DOI:10.1007/s11401-021-0247-8
  • Lucà, Renato Invariant Measures for the DNLS Equation, Mathematics of Wave Phenomena (2020), p. 235 | DOI:10.1007/978-3-030-47174-3_14
  • Gérard, Patrick A nonlinear Fourier transform for the Benjamin–Ono equation on the torus and applications, Séminaire Laurent Schwartz — EDP et applications (2020), p. 1 | DOI:10.5802/slsedp.138
  • Genovese, Giuseppe; Lucà, Renato; Valeri, Daniele Invariant measures for the periodic derivative nonlinear Schrödinger equation, Mathematische Annalen, Volume 374 (2019) no. 3-4, p. 1075 | DOI:10.1007/s00208-018-1754-0
  • Saut, Jean-Claude Benjamin-Ono and Intermediate Long Wave Equations: Modeling, IST and PDE, Nonlinear Dispersive Partial Differential Equations and Inverse Scattering, Volume 83 (2019), p. 95 | DOI:10.1007/978-1-4939-9806-7_3
  • Sy, Mouhamadou Invariant measure and long time behavior of regular solutions of the Benjamin–Ono equation, Analysis PDE, Volume 11 (2018) no. 8, p. 1841 | DOI:10.2140/apde.2018.11.1841
  • Burq, Nicolas; Thomann, Laurent; Tzvetkov, Nikolay Remarks on the Gibbs measures for nonlinear dispersive equations, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 27 (2018) no. 3, p. 527 | DOI:10.5802/afst.1578
  • Genovese, Giuseppe; Lucà, Renato; Valeri, Daniele Gibbs measures associated to the integrals of motion of the periodic derivative nonlinear Schrödinger equation, Selecta Mathematica, Volume 22 (2016) no. 3, p. 1663 | DOI:10.1007/s00029-016-0225-2
  • Deng, Yu; Tzvetkov, Nikolay; Visciglia, Nicola Invariant Measures and Long Time Behaviour for the Benjamin-Ono Equation III, Communications in Mathematical Physics, Volume 339 (2015) no. 3, p. 815 | DOI:10.1007/s00220-015-2431-8
  • Tzvetkov, Nikolay; Visciglia, Nicola Invariant measures and long time behaviour for the Benjamin–Ono equation II, Journal de Mathématiques Pures et Appliquées, Volume 103 (2015) no. 1, p. 102 | DOI:10.1016/j.matpur.2014.03.009
  • Tzvetkov, Nikolay; Visciglia, Nicola Invariant Measures and Long-Time Behavior for the Benjamin–Ono Equation, International Mathematics Research Notices, Volume 2014 (2014) no. 17, p. 4679 | DOI:10.1093/imrn/rnt094
  • Deng, Yu; Tzvetkov, Nikolay; Visciglia, Nicola Invariant measures and long-time behavior for the Benjamin-Ono equation, Journées équations aux dérivées partielles (2014), p. 1 | DOI:10.5802/jedp.114

Cité par 20 documents. Sources : Crossref