[Mesures gaussiennes associées à une loi de conservation arbitraire de l'équation de Benjamin-Ono]
Inspirés par le travail de Zhidkov sur l'équation KdV, nous construisons des mesures gaussiennes à poids associées à une loi de conservation arbitraire de l'équation de Benjamin-Ono. Les supports de ces mesures sont constitués de fonctions de régularité de Sobolev croissantes. On démontre aussi une propriété-clé des mesures qui nous conduit à conjecturer leur invariance par le flot de l'équation.
Inspired by the work of Zhidkov on the KdV equation, we perform a construction of weighted Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation. The resulting measures are supported by Sobolev spaces of increasing regularity. We also prove a property on the support of these measures leading to the conjecture that they are indeed invariant by the flow of the Benjamin-Ono equation.
Keywords: dispersive equations, Wiener chaos, invariant measures
Mot clés : Équations dispersives, chaos de Wiener, mesures invariantes
@article{ASENS_2013_4_46_2_249_0, author = {Tzvetkov, Nikolay and Visciglia, Nicola}, title = {Gaussian measures associated to the higher order conservation laws of the {Benjamin-Ono} equation}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {249--299}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 46}, number = {2}, year = {2013}, doi = {10.24033/asens.2189}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2189/} }
TY - JOUR AU - Tzvetkov, Nikolay AU - Visciglia, Nicola TI - Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation JO - Annales scientifiques de l'École Normale Supérieure PY - 2013 SP - 249 EP - 299 VL - 46 IS - 2 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2189/ DO - 10.24033/asens.2189 LA - en ID - ASENS_2013_4_46_2_249_0 ER -
%0 Journal Article %A Tzvetkov, Nikolay %A Visciglia, Nicola %T Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation %J Annales scientifiques de l'École Normale Supérieure %D 2013 %P 249-299 %V 46 %N 2 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2189/ %R 10.24033/asens.2189 %G en %F ASENS_2013_4_46_2_249_0
Tzvetkov, Nikolay; Visciglia, Nicola. Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 46 (2013) no. 2, pp. 249-299. doi : 10.24033/asens.2189. https://www.numdam.org/articles/10.24033/asens.2189/
[1] Nonlocal models for nonlinear, dispersive waves, Phys. D 40 (1989), 360-392. | MR
, , & ,[2] Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys. 166 (1994), 1-26. | MR
,
[3] Invariant measures for the
[4] Statistical mechanics of the
[5] On well-posedness for the Benjamin-Ono equation, Math. Ann. 340 (2008), 497-542. | MR
& ,[6] Long time dynamics for the one dimensional non linear Schrödinger equation, to appear in Ann. Inst. Fourier.
, & ,[7] Global well-posedness of the Benjamin-Ono equation in low-regularity spaces, J. Amer. Math. Soc. 20 (2007), 753-798. | MR
& ,[8] Statistical mechanics of the nonlinear Schrödinger equation, J. Statist. Phys. 50 (1988), 657-687. | MR
, & ,[9] Probability in Banach spaces, Ergebn. Math. Grenzg. 23, Springer, 1991. | MR
& ,[10] Bilinear transformation method, Mathematics in Science and Engineering 174, Academic Press Inc., 1984. | MR
,
[11] Global well-posedness in
[12] Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS, J. Eur. Math. Soc. (JEMS) 14 (2012), 1275-1330. | MR
, , & ,
[13] Global well-posedness of the Benjamin-Ono equation in
[14] Construction of a Gibbs measure associated to the periodic Benjamin-Ono equation, Probab. Theory Related Fields 146 (2010), 481-514. | MR
,[15] Korteweg-de Vries and nonlinear Schrödinger equations: qualitative theory, Lecture Notes in Math. 1756, Springer, 2001. | MR
,- Transport of low regularity Gaussian measures for the 1d quintic nonlinear Schrödinger equation, Nonlinear Differential Equations and Applications NoDEA, Volume 32 (2025) no. 3 | DOI:10.1007/s00030-025-01049-3
- On the deep‐water and shallow‐water limits of the intermediate long wave equation from a statistical viewpoint, Transactions of the London Mathematical Society, Volume 12 (2025) no. 1 | DOI:10.1112/tlm3.70005
- New non degenerate invariant measures for the Benjamin–Ono equation, Comptes Rendus. Mathématique, Volume 362 (2024) no. G1, p. 77 | DOI:10.5802/crmath.536
- Deep-water and shallow-water limits of the intermediate long wave equation, Nonlinearity, Volume 37 (2024) no. 7, p. 075001 | DOI:10.1088/1361-6544/ad4843
- Transport of Gaussian measures with exponential cut-off for Hamiltonian PDEs, Journal d'Analyse Mathématique, Volume 150 (2023) no. 2, p. 737 | DOI:10.1007/s11854-023-0292-1
- Quasi-invariance of low regularity Gaussian measures under the gauge map of the periodic derivative NLS, Journal of Functional Analysis, Volume 282 (2022) no. 1, p. 109263 | DOI:10.1016/j.jfa.2021.109263
- Long time behavior of solutions for a damped Benjamin–Ono equation, Mathematische Zeitschrift, Volume 300 (2022) no. 2, p. 1939 | DOI:10.1007/s00209-021-02849-w
- Benjamin–Ono Soliton Dynamics in a Slowly Varying Potential Revisited, SIAM Journal on Mathematical Analysis, Volume 54 (2022) no. 2, p. 2634 | DOI:10.1137/21m1425177
- Gibbs Measure for the Higher Order Modified Camassa-Holm Equation, Chinese Annals of Mathematics, Series B, Volume 42 (2021) no. 1, p. 105 | DOI:10.1007/s11401-021-0247-8
- Invariant Measures for the DNLS Equation, Mathematics of Wave Phenomena (2020), p. 235 | DOI:10.1007/978-3-030-47174-3_14
- A nonlinear Fourier transform for the Benjamin–Ono equation on the torus and applications, Séminaire Laurent Schwartz — EDP et applications (2020), p. 1 | DOI:10.5802/slsedp.138
- Invariant measures for the periodic derivative nonlinear Schrödinger equation, Mathematische Annalen, Volume 374 (2019) no. 3-4, p. 1075 | DOI:10.1007/s00208-018-1754-0
- Benjamin-Ono and Intermediate Long Wave Equations: Modeling, IST and PDE, Nonlinear Dispersive Partial Differential Equations and Inverse Scattering, Volume 83 (2019), p. 95 | DOI:10.1007/978-1-4939-9806-7_3
- Invariant measure and long time behavior of regular solutions of the Benjamin–Ono equation, Analysis PDE, Volume 11 (2018) no. 8, p. 1841 | DOI:10.2140/apde.2018.11.1841
- Remarks on the Gibbs measures for nonlinear dispersive equations, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 27 (2018) no. 3, p. 527 | DOI:10.5802/afst.1578
- Gibbs measures associated to the integrals of motion of the periodic derivative nonlinear Schrödinger equation, Selecta Mathematica, Volume 22 (2016) no. 3, p. 1663 | DOI:10.1007/s00029-016-0225-2
- Invariant Measures and Long Time Behaviour for the Benjamin-Ono Equation III, Communications in Mathematical Physics, Volume 339 (2015) no. 3, p. 815 | DOI:10.1007/s00220-015-2431-8
- Invariant measures and long time behaviour for the Benjamin–Ono equation II, Journal de Mathématiques Pures et Appliquées, Volume 103 (2015) no. 1, p. 102 | DOI:10.1016/j.matpur.2014.03.009
- Invariant Measures and Long-Time Behavior for the Benjamin–Ono Equation, International Mathematics Research Notices, Volume 2014 (2014) no. 17, p. 4679 | DOI:10.1093/imrn/rnt094
- Invariant measures and long-time behavior for the Benjamin-Ono equation, Journées équations aux dérivées partielles (2014), p. 1 | DOI:10.5802/jedp.114
Cité par 20 documents. Sources : Crossref