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EXISTENCE THEOREMS FOR ORDINARY PROBLEMS

OF THE CALCULUS OF VARIATIONS

(PART I)

by EDWARD JAMES MCSHANE (Göttingen).

The search for existence theorems for the parametric problem of the calculus 
of variations has resulted in the finding of theorems of a highly satisfactory

generality, y for which TONELLI and HAHN are chiefly to be thanked. However,
the analogous problem for the ordinary, or non-parametric problem has not been
advanced to a comparable state of completeness. TONELLI (1) has obtained existence
theorems for problems ~. ~~ ...... .

under the assumption that where and a &#x3E; I ; and
these theorems have been extended to space by GRAVES (2). But these theorems
fail to apply to many of the most interesting non-parametric problems, for example,
to the rather frequently occuring problem

Hence for space problems there is need of a considerable extension of known
results. For the plane problem there are existence theorems (3) for integrals not
satisfying the condition It seems that these theorems are

not all in reach of the method here developed. On the other hand, we here obtain
theorems not previously known, applying for example to the problem of the
brachistochrone.

In the present paper the properties of semi-continuity of ordinary integrals
and the existence theorems for ordinary problems are found by a detour through
the more complete theory of the parametric problem. Given an ordinary integral

(1) TONELLI : Fondamenti di Calcolo delle Variazioni, Vol. II, pp. 281-307.
(2) L. M. GRAVES: On the Existence of the Absolute Minimum, etc., Annals of Mathe-

matics, Vol. 28 (1927), pp. 153-170.
(3) TONELLI, loc. cit., Vol. II, p. 370. - TONELLI, Rendiconti della R. Acc. dei Lineei,

1° sem. 1932. - M. NAGUMO, Japanese Journal of Math., Vol. VI (1929), p. 173.
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we can find a parametric integral

which for all curves y=y(x), say with continuous derivatives, agrees with I[y].
This integral J[ C] is not a parametric integral of the usual type, for G is not
defined Nevertheless, the integral J[ C] can be handled by suitable
modifications of the methods used for parametric integrals. We study the inte-
gral J[C], not as a functional on the class K of curves y =-- y(x) with absolutely
continuous y(x), but on the larger class K of rectifiable curves x(s), y(s) with
x’(s) ? 0. On this class we establish the semi-continuity (under suitable hypo-
theses) of J[ C], and we find in K a minimizing curve for J[ C]. The problem
then reduces to that of finding hypotheses under which this minimizing curve
is actually a curve of K, with a representation y= y(x) in which y(x) is abso-

lutely continuous. Stated in this terminology, the method by which TONELLI
obtains most of his theorems (that of Vol. II, p. 370, being excepted) requires
proving that all the curves C of K for which J[ C]  M (lVl= eonstant) are also
curves y=y(x) of K, and are in fact equi-continuous. The present method requires
only that the minimizing curve in K belong to K, and for this purpose weaker
hypotheses suffice.

In the first part of the paper we develop the properties of the integral J[ C]
and its relation to the ordinary integral I[y]. Then a method is developed by
which the integrand G(x, y, x’, y’) can be approximated by functions possessing
the properties of the parametric integrands usually studied. This leads to theorems
on the semi-continuity of the functional J[ C]; these theorems imply corollaries
concerning the semi-continuity of I[y] which (for problems in space) are stronger
than any in the literature. In the second part of the paper (to be published
later) these theorems on the semi-continuity of J[ C] are utilized in establishing
the existence of a minimizing curve of J[ C] in the extended class .K. An imme-
diate consequence of this is a theorem on the existence of a solution of the

problem I[y]=min. which is more general than the theorem of TONELLI cited
in footnote 1, and also includes NAGUMO’S theorem (footnote 3). A theorem is

proved which permits the extension of the results to the case in which the field A

containing the class ~ of curves is unbounded; the hypotheses here are likewise
weaker than in corresponding theorems in the literature.

We then proceed to consider more restricted classe of curves K; jR" is no

longer a « complete class » in the sense of TONELLI, but is the class of all abso-

lutely continuous curves y=y(x) joining two given points or two given closed
point sets. Also the field A in which the curves lie is restricted to be a « cylin-
drical set »; for example, a rectangle in the plane or a parallelepiped in space.
On the other hand, the previous hypothesis G(x, y, x’, y’) - + 00 as z’- 0 is

replaced by the weaker hypothesis a, G(x, y, x’, y’)--&#x3E; oo- as z’ - 0. Proceedinggx
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further in this direction, an existence theorem is found which applies, in parti-
cular, to the problem

for continuous positive and also to the brachistochrone problem.
It is to be hoped that the study of the integral J[ C] presented in § 2 will

be useful to other students of this problem, as it has already been of use to
me in related questions (4).

§ 1. - Functions and Curves. 
°

Throughout this paper we shall be concerned with the study of a functional

All of our theorems and methods are equally valid in space of any number of
dimensions; but for simplicity of terminology we shall discuss only the case in
which there are two dependent variables (q= 2). The extension to the general
case is quite obvious.

The symbols y and y’ shall be used to denote the pairs y2) and (y1’, y2’)
respectively. Correspondingly, we shall often use the words « the function y(x) &#x3E;&#x3E;
to denote « the pair of functions yl(X), y2(X) ». We shall use a modification of
the tensor summation convention; the repetition of a Greek letter suffix in

any term shall denote the summation over all values of that suffix. Thus

the summation extending over all values of a but not’over n.
Since we shall attack the ordinary problem through the parametric problem,

it is useful to have an alternative notation in which no one axis is singled out.

Consequently the coordinate axes will be given two notations; first (x, ys, y2),
as already mentioned, and second Thus x=zo, We

shall feel free to substitute the symbol z or (z°, zi, z2) for the symbol (x, y)
or (x, y~, y2) wherever it is convenient.

As a result of this convention some suffixes will have the ranges (1, 2) and
others the range (0, 1, 2). In each case the letter bearing the suffix will indicate
the range. But as a safeguard against confusion we shall use the letters a, 
when the range is (1, 2) and A, p, j when the range is (0, 1, 2).

In dealing with parametric problems unit vectors z’ occur so frequently as
to deserve a special symbol. We shall connote that a vector is a unit vector by
attaching the subscript n; thus the symbol denotes a vector such that 

Being given two sets of continuous functions yi(x), bi, and Y2(X),

(4) The Du Bois-Reymond Relation in the Calculus of Variations, to be published in
Math. Annalen; Ilber die Unlösbarkeit eines einfachen Problems der Variationsrechnung,
to be published in Nachr. Ges. Wiss. Gbttingen.

Annali della Scuola Norm. Sup. - Pisa. 13
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a2 : x :! E-~: b2, we define the distance dist (y i, Y2) in the following way : First we

define for and Yi(x)=Yi(bi) for and likewise we de-

fine Y2 (X) = y2(a2) for x  a2 and Y2(X) =Y2(b2) for x &#x3E; b2. The distance dist (Yi’ Y2)
is then defined to be the greatest of the three numbers :

30) the maximum distance between the points (x, yi(x)) and (x, Y2(X»
for - ~ x  + ~

If the functions yo(x), y1(x),..., are continuous, we define lim 
to mean lim dist (yo, yn)=0. 

n-co

’n-00

For curves in parametric form we use the following definition of distance:
Let the curves Ci and C2 be defined by the respective equations C1: z=--zi(t),

and C2 : z=z2(z), where zi(t), are triples of conti-
’ 

nuous functions. The distance dist (Cà, Cz) is defined to be the number d with

the following properties:
1°) for every E &#x3E; 0 there exists a topological mapping of (at, b1) on (a2, b2)

with preservation of sense (that is, a continuous monotonic function 2(t) such
that r(as)=a2, for which all corresponding points z!(t) and z2(z(t))
have distance less than d + E ;

20) there exists no such correspondence for which all corresponding points
have distance less than d. Correspondingly, we say that a sequence of curves 
approaches a curve Co as limit if lim dist (Co, 

We readily find that 
’n-00

We also recognize that dist if and only if yà is identically equal
to Y2. The equation dist (Ci, C2) =0 we accept as the definition of the identity
of the curves Ci and C2.

The following interrelation of these definitions will be needed later: If the

continuous functions tend to the continuous function yo(x),
then the curves Cn : x= t, y = yn(t), tend to the curve Co :

X=--T, For the curves Cn, Co we use the alternative

notation respectively. Let us extend the range of definition

of the functions by defining (5) zo(z)=(z, zl(ao), Z2 (ao)) for «ao and

zo(r)=(t:, zo2(bo)) for i &#x3E; bo. Then the functions are uniformly conti-
nuous for all z; that is, the inequality implies dist 
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where approaches 0 with 3. Let be a linear mapping of the inter-
val (an, bn) on (ao, bo); it is readily seen that Then

As n - 00 the right member of this inequality approaches 0, proving our statement.

§ 2. - The Integrand and the Associated Parametric Functional.

We shall assume throughout that the integrand satisfies the following conditions:

is continuous, together with all its partial derivatives of first and second
order, for all points (x, y) of a closed set A in (q+ 1)-dimensional space
and for all finite values of yi ,...., y~.

The frequently occurring partial derivatives with respect to yl’, y2’ will be

denoted by Fi, F2, respectively ; likewise the second partial derivative of F with
respect to yi’ and yh’ will be denoted by Fih (i, h == 1, 2).

In accordance with the usual terminology we shall say that the functional

J

is positive quasi-regular if the Weierstrass E function (6)

is non-negative for all (x, y) on A and all y’ and y’.
It is well known that I[y] is quasi-regular on A if and only if the inequa-

lity y’) ~ 0 holds for all (x, y) on A and all y’ and y’. ’

We shall say that I[y] is positive quasi-regular semi-normal on A if it

is positive quasi-regular on A, and if moreover to each point (x, y) of A there
corresponds a vector yo’ such that E(x, y, yo’, y’) &#x3E; 0 for all vectors In

~he plane case (q=1), this is equivalent to TONELLI’S definition.
Our method of procedure will be to study the integral I[y] indirectly, by

means of the associated parametric functional

In this functional the integrand G (the associated parametric integrand) is

defined for by the equation

(6), a here ranges over the numbers 1, 2.
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It is evident that for x’ &#x3E; 0 the function G is positively homogeneous of degree 1
in (x’, y’), and that G is continuous together with all its first and second partial
derivatives for (x, y) on A and all (x’, y’). On introducing the symbols

we find immediately

Also if we define as usual (1)

we find with little calculation that

Thus if I[y] is quasi-regular, 6(z, z’, z’) is non-negative for all z=(x, y) on A,
all y’ and y’, and all positive values of x’ and We prefer not to speak of G
as quasi-regular; we shall instead say as usual that an integral

.’ 
, , I

is positive quasi-regular if G* satisfies the usual conditions of continuity and
homogeneity for all z’ and if further its 6-function, 6*(z, z’, 3’), is non-negative
for all z in A, and all ~=~=(0,0~0).

In case 1[y] is quasi-regular, we can extend the definition of G(z, z’) to

For then
j I I -.I,,

, , , , l

for x’ &#x3E; 0, Hence the function G(x, y, x’, y’), regarded as a function of x’ alone
for fixed x, y, y’, is convex, and as x’ approaches zero G(x, y, x’, y’) must approach
a finite limit or + 00. This limit, finite or infinite, we accept as the definition

of G(x, y, 0, y’).
The function G(z, z’) thus defined may fail to be continuous for zO’ =0; but

we can prove
Lemma 2.1. - If I[y] is positive quasi-regular on A, the associated para-

metric integrand G(z, z’), defined for all z on A and all z’ with zO’~-- 0, is
a lower semi-continuous function of its six arguments.

For arguments (z, z’) with z°’&#x3E;0 the function G(z, z’) is continuous, and a
fortiori lower semi-continuous. It remains only to show that if for every

here has the range 0, 1, 2.
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sequence (zn, z’n) of arguments tending to (zo, zo’) and having Zn in ..4 and 
the inequality

holds. We give the proof for the case G(zo, zo’) finite; the proof for G(zo, zo’) = + 00-
requires only trivial modifications.

Since z’n) tends to (zo, zo’), there exists an M such that I zlz’ ~ l~l and
for all n. For the arguments

the function G° is continuous, hence bounded, By (2.5), Go is a mono-
tonic increasing function of z°’, hence the inequality

holds for all arguments such that
Let now E be any positive number. By the definition of G(zo, zo’) we can find

a positive v less than 812N such that

For all (z, zt’, z2’) in a neighborhood of (zo, zo’, the inequality

holds, for since v is positive G is continuous. Hence by (2.7) we have

valid for all z, in a neighbourhood- of zo, zl’ z2’ and all z°’ v. These con-
ditions being satisfied for all but a finite number of the (zn, z’n), we have

and this holding for every c &#x3E; 0, inequality (2.6) is established.

By an exactly similar proof we can establish
Lemma 2.2. - If I[y] is positive quasi-regular on A and G(z, z’) is its

associated parametric integrand, then Go(z, z’) is an upper semi-continuous
function of its six arguments.

In the proof, inequality (2.7) is replaced by (2.5).
As a corollary of lemma 2.1, we have
Lemma 2.3. - If A is bounded and closed and I[y] is positive quasi-

regular on A, then G(z, z’u) is bounded below for all z on A and all uniti

vectors z’u with z °’ ? 0.
For a lower semi-continuous function assumes its least value on a bounded

closed set, and the values of G are all finite or + 00.

In order to have the right to pass back and forth between the functional I[y]
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and the associated parametric functional J[ C], we need to be able to recognize
when a curve z=z(t), zO"(t);~-~!0, can be represented in ordinary form by equa-
tions y=y(x), where the y(x) are absolutely continuous; and we also need to
know that for curves C represented by equations y=y(x), where the y(x) are
absolutely continuous, the two functionals are identical: J[C]=I[y]. For this
purpose we establish a sequence of lemmas.

Lemma 2.4. - Let C be a rectifiable curve z= z(s), 
where s is the length of arc. In order that C can be represented in the
form y=y(x), with absolutely continuous functions y(x), it is necessary and
sufficient that x’(s)=z°’(s) &#x3E; 0 except at most on a set of s of measure 0.

For if C has such a representation, then

is absolutely continuous. But the absolutely continuous monotic function x=x(s)
has an absolutely continuous inverse if and only if x’(s) &#x3E; 0 almost everywhere (8).

Conversely, if x’(s) &#x3E; 0 almost everywhere, s(x) is absolutely continuous, by
the theorem just cited. But each yi(s) is Lipschitzian; hence (9) 
is absolutely continuous.

Lemma 2.5. - If

a) the functions y(x), are absolutely continuous and lie in A;
b) the equations z=C(s), 0 ~ s ~ L, are the parametric representations

of the curve C: y==y(x), a ~ x ~ b, with the length of arc s as parameter ;
then if either one of the integrals (iO)

J.

0

exists so does the other, and the two have the same value.

(8) CARATHÉODORY: Vorlesungen fiber Reelle Funktionen, p. 584. This book will hence-
forth be referred to as « Caratheodory ».

(9) CARATHEODORY, p. 555.
(10) It will be noticed that the integrand may fail to be defined for a set of measure 0.

Here and henceforward we adopt the convention: If a function f(x) is defined at all points
of a set E except those belonging to a set N of measure 0, we define

provided that the latter integral exists.



191

Let us define

This function is absolutely continuous, and x(s) is absolutely continuous and
monotic increasing; hence F*(x(s)) is an absolutely continuous function of x.
This implies (12) that y’(1°(s))) . · ~’°‘(s) is summable, and

But by the absolute continuity of yi(x), the derivatives ~’(x) exist except at a

set of x of measure 0, which corresponds to a set of s of measure 0. Also, for
almost all s the derivative of ~°(s) exists and is positive. Hence almost everywhere

Therefore by the homogeneity of G we have

Conversely, if J[ C] exists, we define

Since s(x) is monotonic and absolutely continuous, G*(s(x)) is absolutely conti-
nuous, and by the theorem cited we conclude that the integral

exists and has the value J[ C]. 
It is worthy of notice that we have not needed to suppose that J[ C] is quasi-

regular, almost everywhere, and for the remaining values of s we
can for example set G=0.

Lenlma 2.6. - If I[y] is positive quasi-regular on A, for every set of abso-
lutely continuous functions of A either I [y] exists finitely

CARATHÉODORY, p. 556.
~1~~ CARATHPODORY, p. 563.
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or I[y] = +00. Likewise for all rectifiable curves C: z=z(t), in A
either J[ C] exists finitely or J[C]= + 00.

The function y, y’) is continuous for all (x, y) on the curves y=y(x) and
all finite y’; hence (13 ) is measurable. If we write

we notice that the expression on the right is summable, so that the integral
from a to b of F is finite or + 00.

Likewise for the arguments [z on C; z’ such that the function G(z, z’)
is lower semi-continuous, hence (14 ) G(z(t), z’(t)) is measurable. Since G is bounded
below for unit vectors z’, say the integrand G(z(t), z’(t)) is at least

-M[z~’z~’]~, and its integral is finite or + 00.

Lemma 2.7. - If .

a) I[y] is positive quasi-regular on A;
b) the functions y(x), are absolutely continuous and lie in A;
c) the equations z = z(t), t  t1, form a representation of the

curve C: y=y(x), and the functions z(t) are absolutely continuous;
then the integrals b

and

have the same value, finite or infinite.
We compare I[y] and J[C] with the integral

where z=~(s) is the representation of C with length of arc as parameter. We
first suppose that (2.10) is finite, and define

to the integrand we assign the value 0 on the set of measure 0 on which it is
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undefined. Since the functions z(t) are absolutely continuous, the length of arc s
is a monotonic absolutely continuous function of t,

Hence ~’**(s(t)) is absolutely continuous (15),
Consequently (1s), is summable, and

Since are bounded we have

for almost all t ; hence, making use of the homogeneity of G,

By lemma 2.5, this implies

We now digress from our proof to make a remark which is not without inte-
rest. As yet we have made no use of the hypothesis of quasi-regularity. If for

ds
almost all t the inequality - &#x3E; 0 holds, so that the function s = s(t) has an

dt

absolutely continuous inverse t= t(s), we can repeat the above argument with
interchange of z and ~ to prove that whenever J[C] exists, so does the inte-

gral (2.10), and the two are equal. Hence using lemma 2.5, we see that if ds &#x3E; 0dt
for almost all t, then if either one of the integrals I [y], J[ C] exists, so does
other, and the two are equal. This is true whether or not the integral is quasi-
regular.

We return to the proof of the lemma. By lemma 2.6, the only case remaining
to be considered is that in which the integral (2.10) has the value +00. Sup-
pose then that this is so.

For all unit vectors zn with zu’ ? 0 we define

(is) CARATHÉODORY, p. 556.
("’) CARATHPODORY, p. 563.
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and we extend the definition of GN to all vectors z’ with z°’ ? 0 by homogeneity.
The previous proof then applies (17) to show that

io u

Letting the integral on the right tends to x, hence so does the integral
on the left. But for every N this last integral is less than J[ C], hence J[ C] == + 00.
Since by lemmas 2.5 and 2.6 we have I[y] -= + 00, equation (2.12) holds in this
case also, and the proof of the lemma is complete.

As a final remark, whenever we speak of a rectifiable curve C: z=z(t),
b, it will always be understood without further mention that the func-

tions z(t) are absolutely continuous. Under this assumption the statements « z°(t) is
monotonic non-decreasing » and « z°’(t) ~ 0 wherever it is defined » are equivalent.
The latter statement we shall abbreviate to « z°’(t) ? 0 ».

§ 3. - The Figuratrix.

Let us suppose that G(z, z’) is a parametric integrand, continuous together
with its derivatives Gj for all z on A and all z’-+ (0, 0, 0) and positively homo-
geneous of degree 1 in z’, and that for a fixed point z the inequality G(z, z’) &#x3E; 0

holds for all z’# (0, 0, 0). The equation w:t-- G(z, z’) then represents in four

dimensional space a conical surface with vertex at the origin, while the inequa-
lity w ? G(z, z’) represents the interior of this cone. We shall be particularly
interested in the intersection of the cone with the hyperplane w=1. This is

easily obtained in terms of the function G. For let z’u be any unit vector, and
let w. =-- G(z, z’u). Since by hypothesis w,, &#x3E; 0, from the homogeneity of G it

follows that

Therefore if we proceed in the direction of the unit vector z’u we find that at
1 

a distance 1 from the origin we reach a point for which cone and plane
wz4 Wu

intersect. 
Wi. Wi;

Thus the intersection of cone and plane can be specified in polar coordi-
nates ~r, z’u) by saying that in the direction of the unit vector z’u the radius
vector is

The figure defined by the equation we shall call the figuratrix (18) of G(z, z’)
at the place z.

(~~) We recall that G(z, z’u) is alreadly known to be bounded below (Lemn1a 2.3).

(18) This is not the same as the figuratrix of TONEr.LI, which is the cone itself.
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The utility of the figuratrix lies in the fact that the figuratrix is a convex
surface if and only if G(z, z’) is quasi-regular at the point z. For suppose
that G is quasi-regular at z. At an arbitrary point z’ the tangent hyperplane to
the cone w= G(z, z’) is given by the equation

where the z’ are the running coordinates. Then at any point z’ we have

so that the cone w ? G(z, z’) lies entirely within the above

the tangent hyperplane. Considering now the intersection of these figures with
the hyperplane w =1, we find that the intersection of the cone with the hyper-
plane 2a=1 - that is, the figuratrix - lies entirely to one side of the intersection
of the tangent hyperplane with the hyperplane w=1 - that is, the plane tangent
to the figuratrix. But this tangent plane space can be chosen to be any arbi-

trary tangent plane. Hence the figuratrix lies entirely to one side of any one of
its tangent planes, and is therefore convex.

Conversely, suppose that the figuratrix is convex. Choosing an arbitrary
tangent hyperplane to the cone w= G(x, y, x’, y’), say z’), the inter-
section of this hyperplane with w=1 is a plane tangent to the figuratrix. The
figuratrix lies entirely to one side of this tangent space, hence the cone lies

entirely to one side of the tangent plane, and

never changes sign. Since this sign is sometimes positive (namely, where the z’
are such that the sum of the last terms is 0), it is non-negative, and 6(z’, z’, z’) ? 0
for all Z’=F (0, o, 0) and all z’.

With only trivial modifications the above discussion applies to integrands
G(z, z’), 0, which are associated with integrands y’) in ordinary form.
We adopt the convention that 1: G(z, z’) =0 if G(z, z’) _ + 00. As before, we find
that the figuratrix is convex if and only if E(x, y, y’, y’) ? 0 for all y’ and 1/’.

~ 4. - Semi-continuity of Parametric Integrals.

These preliminaries being set forth, we proceed to the proof of the theorem
on semi-continuity of parametric integrals from which we shall later deduce the
corresponding theorem for integrands in ordinary form. The theorem is based

on two lemmas.

Lemma 4.1. - Let G(z, z’) be continuous with its partial derivatives Gj
for all z on a closed set A and all z’~ (o, o, o). Let the curves Cp: z=zp(t),
~~~~~, p=0,l,2,...., lie in A and satisfy the conditions
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a) lim zn(t) =zo(t) uniformly for a ~ t ~ b ;
b) all the ficnction zo(t), satisfy a Lipschitz condition with the same

constant M.

Let Zo’(t) be a triple of measurable functions, nowhere equal to (0, 0, 0),
which is equal to zo’(t) wherever the derivatives zo’(t) are all defined and
not all (19) 0. Then ’ 

bb

We can assume without loss of generality that A is bounded as well as closed;
for by a) all the curves Co, Cn lie within a sufficiently large sphere about the
origin, and we can restrict our attention to the portion of A lying in that sphere.
The equation

holds everywhere except on the set of measure 0 on which the zo’(t) are not
all defined. For either the zo’(t) are not all 0, in which case Zo’ = zo’ and the

equation is a consequence of the homogeneity of G; or else the zo’ are all 0,
and both sides of the equation reduce to 0. Hence we have

J.

On the set of points [z in the function G is uniformly conti-

nuous, hence the integrand in the first term on the right tends uniformly to 0.
The function G,(z,, Zo’) is measurable and bounded, for it is homogeneous of
degree 0 in Zo’, and for every interval (h, k) in (a, b) we have

Hence (2°)

«

A similar argument applies to the other terms on the right, and the lemma is
established. 

~ 

(19) For example, we can set Zo’ (t) = (1, 0, 0) wherever zo’(t) is undefined or is (0, 0, 0).
(2°) HoBSON : Theory of Functions of a Real Variable, Vol. II, § 279.
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Lemma 4.2. - Let sequence of curves all of length ~ M and
approaching a curve Co as limit. Then for Co and for a subsequence 
there exist representations satisfying the hypotheses of lemma 4.1.

For the curve Cn, of length Ln, we choose as parameter t= L , where s isn

the length of arc. We thus have a representation z=zn(t), 0  t  1, in which
the functions zn(t) satisfy a Lipschitz condition of constant By ASCOLI’S
theorem it is possible to choose from the sequence ~ a subsequence --- which
we continue to call Cn ~ - for which the functions zn(t) converge uniformly to
a limit function and this limit function satisfies a Lipschitz condition of
constant M. From this subsequence we choose again a subsequence - which we
again call ~ - for which the functions converge uniformly to a limit
function zo(t). The relation continues of course to hold. Repeating
the process, we arrive at a subsequence - which we still call ~ C~2 ~ - such that
the function z 2(t) tend uniformly to the respective limits ( j = o,1, 2). Hence
the curve z=zo(t) is a limit curve of the sequence But has the

unique limit Co. Hence z=zo(t) forms a representation of Co, and the lemma
is proved.

We are now able to prove
THEOREM 4.1. - If J[C] is positive quasi-regular on a closed set A,

then for every lower semi-continuous on the class of all curves

lying in A and having length less than M.
Suppose the contrary ; there then exists a sequence of curves all of

length less than M, tending to a limit curve Co, and

From these we select a subsequence of curves, which we again call such that

According to lemma 4.2, for Co and for a subsequence of ~ -- which we again
call - there exist a representation satisfying the hypothesis of lemma 4.1.
Then by lemma 4.1

b

where Zo’=zo’ if zo’ is defined and not (0, 0, 0) and otherwise Zo’=(1, 0, 0). It

follows that 
,

This contradicts inequality (4.1) and establishes the theorem.
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~ 5. - Proof of a Basic Lemma.

A natural analogue to theorem 4.1 would be a proof that under proper hypo-
theses, the functional Ify) is lower semi-continuous on the class of all absolutely
continuous functions y(x) lying in A. But this class of functions is not closed

under the limiting processes which we shall later apply, and we have need of
a somewhat more general theorem. Let us denote by I~a the class of all curves

9 == y(x), a  x:iE-:~-~ b, lying in A, for which the functions y(x) are absolutely conti-
nuous. This is included in the class Ka of all rectifiable curves’z=z(t), y=y(t),
to ~ t ~ ti, lying in A and such that x’(t) ? o. By use of theorem 4.1 we shall
prove that under suitable hypotheses on the integrand F(x, y, y’) the associated
parametric functional J[C] is lower semi-continuous 6n which implies as a
corollary that 1[y] is lower semi-continuous on But the associated parametric
integrand does not possess the properties needed for the direct application of
Theorem 4.1, and we must therefore first prove :

Lemma 5.1. - Hypotheses: 
° 

.

1°) y, y’) satisfies the conditions of continuity (2.1) on a bounded
closed set A ; 

2°) 1[y] F(x, y, y’)dx is positive quasi-regular on A ;
3°) k is a positive number.

Conclusion :

For every h &#x3E; 0 it is possible to define a function z’) with the
following properties :

1°) G(h) is positively homogeneous of degree 1 in z’ and is continuous
together with its partial derivatives (j=O, 1, 2) for all z on A and

all z’* (0, 0, 0);
2°) for all (z, z’) such that z~’ ? 0 the inequality

holds, G(z, z’) being the parametric integrand associated with F(x, y, y’) ;
3o) there is- a constant b such that the inequality G(h)(Z, z’24) ? b holds

for all h, all z on A and all unit vectors z’u ; 
-

4°) the equation holds for all (z, z’)
such that z°’?0; 

n-V

5°) the integral J(h)[ 0] = r G(h)(Z, z’)ds is quasi-regular.
6

.Remark. - Added in Proof : It is worth noticing that neither here nor in

Theorem 6.1 is any essential use made of the derivatives Fi. It is in fact enough
to assume that F(x, y, y’) is continuous and that it is a convex function of y’
for each (x, y) in A.
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Let us first define

The last inequality implies that for every unit vector z’ u the inequality G(z, z’u) ? k

holds. It is thus possible to form the figuratrix 7’==7’(;====201320132013, , _ 1 
of G for every point z of A, and the inequality holds for all z and all z’ u
for which zO,’~-~’- 0. By the conti-
nuity of G there is a number m

such that 2 &#x3E; G-(z, 1, 0, 0) ~
for all z in A. Consequently the

2
point with coordinates m

is interior to the fi-

guratrix r=r(z’u; z), no matter
which point z of A we may choose.

Henceforward we shall as-

sume that we are dealing with
7c

values of h!----=- and shall de-
. mi

fine for such values. We

can then define G(4)= for
k

all values of h greater than 2013;m’
such values are however of no

particular interest, since we shall
use G(h) in a limiting process
in which h -0.

Our next step is to cut out

those points in or on the figu-
ratrix for which z°’=0, and at
which the continuity properties
of r(z’u ; z) as a function of z

are undetermined. We do this

by restricting our attention to Fig. 1.

the convex body Cz defined by
the inequalities 0 ~ r s r(z’u ; z), The body Cz is actually convex, being
the intersection of the figuratrix and its interior (~!) with the 

(2i) When we speak of the interior of the figuratrix we consider that it is closed by
adding to it the necessary portion of the plane z°’=0. Analytically, the interior of the

figuratrix is the set of points (r, z’~) such that z~° , ] 0 and 0  r  r(z’,,; z).
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Interpreting the figuratrix r=r(z’u; z) as a surface in three-dimensional

space, we state that for every point P interior to or on this figuratrix there is
a point Q of the body Cz whose distance from D is less than 2mh . If P is

k2

itself in Cz, this is trivial. If not, we consider the plane determined by the origin,
the point P and the point R with rectangular coordinates 2 , 0, 0 (or polar(M

coordinates z’u=(1, 0, 0), r= 2/m) .m
We join P to R by a line segment,
and choose Q to be the point of this

line for which (cf. Fig. 1).
The point Q belongs to Cz. For
first the whole line segment PR
is interior (except perhaps for P)
to the figuratrix, by convexity, and
a fortiori Q is interior to the figu-
ratrix. Second, Q has the direction

cosine z’ = z &#x3E; h : 1 = h . ° Thecosine Zu pQ - ic k =. e

. 

distance PQ satisfies the inequality

and since ~’R  2 this ields

as was to be proved.
The number 2013~ will occur so

frequently that we denote it by g,

Fig. 2.

From the body Cz we now

proceed to form another convex

body l7z consisting of all points
whose distance from the body Cz is equal to or less than gh. (A cross

seetion of the resulting figure is shown in Fig. 2). That I’z is convex is

easily seen. Moreover, from the preceding paragraph we know that hz contains
the entire figuratrix r=r(z’u ; z) in its interior. Also, since Cz contained the

origin, .rz contains the entire sphere The boundary l7z of the body l7z
can thus be represented in polar coordinates by an equation z), where z’u
ranges over the class of adl unit vectors, and not merely those for 
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From the fact that l7z contains the figuratrix we see that for all (z, z’u) such
that z 0’==’- 0 the inequality

holds. 
_

We now proceed to use the convex surface rz to define the function H(x, y, x’ y’)
of which it is the figuratrix. To do this we have only to set

and extend the definition of H to all vectors z’ by the usual condition of posi-
tive homogeneity. From the convexity of 1’z we know that

(5.4) the 6-function of H is everywhere ~0;

and from the inequality (5.3) we see that

for all z and for all z’ such that zO’:~., 0. 
’

Moreover, for all points z of A and all z’ such the equation

holds. For let P be a point with polar coordinates z’u, r, where r- &#x3E; r(z-’.; z).
The point P lies outside of the body r ~ r(z’u; z), hence it has a positive dis-
tance 6 from that body. A fortiori, it has a distance ? 8 from the body Cz, no
matter what value h has. If now h be small enough so that gh  ~, then P also
lies outside of and -r &#x3E; C)(z’.; z), so that

But r can be chosen as close as we wish to r(z’u ; z). Hence

and taking the reciprocals

Comparing this with (5.5) we see that

Since this equation holds for all unit vector z’u with i.0’~:-, 0, it extends by the

homogeneity of H and G to all vectors z’ with z°’&#x3E; 0, and equation (5.6) is

established.

Annali della Scuola Sup. - Pisa. 14
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We now take up the somewhat tedious proof that H and its first partial deriva-
tives ~ are continuous. To begin with we already know that the sphere ~~~(~)~
is contained in Lz for all z. This implies that e(z’ u; z) satisfies a Lipschitz condi-

2
tion of constant (The value of this constant is unimportant; it is onlymh

important that it is independent of z). For let P, P* be any two points of the

boundary rz, and let be the angle between them. The points P,x

P* and the origin determine an ordinary plane, and in this plane we have the
situation shown in Fig. 2 (which also contains details irrelevant to the present
purpose). The figure will suggest the further steps needed to prove our statement.

Next, for each fixed z’u the function o(z’.; z) varies continuously with z. For
let us consider the point P with polar coordinates z’u, E + O(z’u; z). This point
lies outside of rz, hence the nearest point of Cz lies at a greater distance than gh
from P - say at a distance But the function r(z’u; z) is uni-

formly continuous in z’u and z, since for these values we have (22)

and is bounded. Hence for all points z* at a sufficiently small distance
from z we have r(z’u; z*)  r(z’,,; z) + 6, valid for all z’u with zuO’:~=1 h. Therefore
the distance from P to the point with polar coordinates (z’u, r(z’u; z*)) is greater
than gh+6-6, and P also lies outside of the body Fz.; that is,

A similar proof shows that

for all points z* near enough to z. Hence for fixed z’. the function z) is

continuous in z.

From the two properties, that 0 is continuous in z for fixed z’u and that for

all z it satisfies a Lipschitz condition of constant 2 with respect to z’u, it followsmh

that e is a continuous function of all the variables z, z’u. And since O ? gh &#x3E; o,
its reciprocal H(z, z’u) is also a continuous function of all variables; from which,
by means of the homogeneity of H, we see that H(z, z’) is continuous for all z

on A and all z’.

In order to prove that the partial derivatives fl are continuous we first
notice that for each point P on the boundary .hz of Tz there is exactly one
nearest point N(P) on the boundary Cz of Cz, as follows immediately from the
convexity of Cz ; and the distance between P and N(P) is gh. Let now be

(22) The notation is clear; (x, y) =:--- z 
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any sequence of points of A tending to a limit point z and let i be any
sequence of unit vectors tending to a unit vector z’u ; we must show that

n --&#x3E; oo

We define Pn to be the point with polar coordinates (z’ u, n, and

likewise define P to be the point with coordinates (z’u, e(z’ u; z)). By the recently
established continuity of O we know that Pn approaches P as n- --,0. The behavior
of the points N(Pn) needs to be studied. Each point N(Pn) lies on the boun-

dary Cz and thus has coordinates z’u, r satisfying one of the two conditions z0u’ &#x3E; h,
r=r(z’u; zn) or z?t =h, zn). By the uniform continuity of r(z’u; z) for

such arguments we see that every limit point of the N(Pn) lies on the boun-

dary Cw. Moreover, every limit point of the is at distance gh from P. But
there is only one point satisfying the two requirements, and that is N(P). Hence
as n-oo the two relationships Pn-P and N(Pyz)-N(P) both hold, so that the
vector joining N(P) to P varies continuously ivith z and z’..

The usefulness of this lies in the fact that the vector joining P to N(P) is
the normal vector to the boundary rz, as is seen without difficulty. We have
thus proved that the direction cosines of the normal to the surface r=o(z’u; z)
are continuous functions of z’u and z. It follows that if we write in normal form
the equation of the plane tangent to that surface at the point z’u, the coefficients
will be continuous functions of z and Z-’.. Let the equation of this tangent plane
be a~(z, z’u)z~~-~--~ro(z, z’~~)=o. 

_

Recollecting now that the figuratrix Tz is the intersection of the cone w=H(z, z’)
with the hyperplane w=1, we write the equation of the hyperplane through the

origin

whose intersection with w=1 is the above found plane tangent to the figuratrix.
This hyperplane is tangent to the cone w = H(x, y, x’, y’) along the element zj~ = 
a &#x3E; 0. But for this tangent hyperplane we have the equation

or

Comparing the coefficients, we find

so that l!j(z, z’u) is a continuous function of z and z’u. From this, by the homo-

geneity of Ig, it follows that z’) is continuous for all z on A and all 0, 0).
All that remains is to define G(h)(Z, z’) by the equation ,
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and to collect the above results. The homogeneity and continuity of G(h) and the

continuity of the derivatives G5h) follow from (5.7) and the corresponding pro-
perties of H and Hj as just established. From (5.1), (5.5) and (5.7) we have
the inequality

for all z and all z’ such Since H&#x3E; 0 and the derivatives Gj(z, 1, 0, 0)
are bounded below uniformly for all z on A, it follows from (5.7) that there
exists a constant b such that 

°

for all h, all z on A and all unit vectors z’u. From equations (5.6), (5.1) and (5.7)
we establish the equation

for all z’ such that z°’? 0. And finally, from statement (5.4) and the observation
that G(4) and H differ only by a linear function and thus have the same 6-function,

I

we find that f G(I.)(z, z’)ds is quasi-regular. The lemma is thus established.

~ 6. - Semi-continuity of Integrals in Ordinary Form.

The somewhat boresome proof of lemma 5.1 now bears fruit in the form of
several theorems on the semi-continuity of integrals in ordinary form. The first
of these theorems follows with almost no additional effort.

THEOREM 6.1. - Let the integral I[y] = (F(x, y, y’)dx satisfy the continuity
conditions (2.1) and also be positive quast*-regular on a closed set A. Then
on the class of all rectifiable curves C: x=x(t), y=y(t), x’(t):~-l-0, a:- t ~ b,
lying in A and having lengths ~M (lVl a constant) the parametric functional

associated with I[y] is lower semi-continuous. 

’

Suppose the contrary; there then exists a curve Co in A and a sequence of

curves in A tending to Co, all having lengths ~M, and satisfying the
inequality 

°

We first take up the case in which case



205

From the sequence i we can select a subsequence (which we continue to

call ( Cn )) such that

where we have set For this value of k we form the integrands G(4)(z, z’3M
of lemma 5.1; the assumption there made that A is bounded causes no trouble,
since we can here restrict our attention to the part of A lying in a (closed) sphere
large enough to contain Co and all the Cn. By conclusion 2°) of that lemma we
have for all h and all n the inequality

since the integral of the last term is the length of Gi, which does not exceed M.
On the other hand, if the parameter s be the length of arc on Co the deri-

vatives zo’(s) form a unit vector for almost all s, and by conclusions 2°), 3°)
and 4°) of lemma 5.1 we have 

’

Let us choose an h small enough so that

Comparing (6.3), (6.4) and (6.6), we have

so that the functional

fails to be lower semi-continuous at Co on the class of all curves of length -_ M.
But this functional satisfies all the hypotheses of theorem 4.1, and hence must
be lower semi-continuous on that class. This contradiction establishes our theorem

for the case J[ Co]  00.

For the case J[ Co] = oc the same proof holds with only minor modifications.

Equation (6.2) is replaced by
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equation (6.3) by
"I w

with inequality (6.4) by

inequality (6.5) by
(6.11)

We choose h small enough so that

On comparing (6.9), (6.10) and (6.12) we have

and this inequality expresses the contradiction which establishes our theorem.

A direct corollary of theorem 6.1 is

THEOREM 6.2 - If I[y] is positive quasi-regular on a closed set A, it

is lower semi-continuous on the class of all absolutely continuous func-
tions y(x), a ~ x ~ b, lying in A and having total variation less than M

a constant).
We need only to compare Theorem 6.1 and lemma 2.4. Theorem 6.1 is ade-

quate for the later needs of this paper, for in each case the sets of curves on
which semi-continuity is needed will turn out to have uniformly bounded lengths.
Nevertheless, the semi-continuity of integrals is in itself a matter of sufficient

interest to justify the proving of a theorem in which the restriction as to lengths
is removed. In preparation for this theorem we establish .

Lemma 6.1. - If 1[y] =-- y, y’)dx is positive quasi-regular semi-

normal (2:~) on A, to each point -Z =-- (-X, y) of A there correspond constants vO,
vi, v2 such that for the parametric integrand associated with F the ine-
quality

holds for all unit vectors z’u with z.O’g:::-’~- 0 and for all points z of A lying
in a neighborhood of z.

(23) Defined 2.
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We first observe that the effect of adding a linear sum aaya~ + b to F is to
add a linear sum to G, and vice versa. By the definition of semi-normality, y
there exists a pair y’ such that

for all 

Now let Q be any number greater than and also greater than 1. For

all vectors Y’ such that Q we have 0(-X, y-, Y’) &#x3E; 0; hence by the con-
tinuity properties of 0 we find that 4$(§, fi, 1") ~--- 3,u &#x3E; o. Again using the con-
tinuity of ø, there exists a neighborhood U of (3i, y) such that for every (x, y)
of U the inequalities , . _

hold. Letting y’ be any pair such that we consider the argu-
ments y’ + t(y’ -y’). The function = Ø(x, y, y’ + t(y’ -y’)) has for its second

derivative the expression

This can not be negative, for 0 and F have the same E-function and I [y] is

positive quasi-regular. Therefore cp(t) is a convex function. For a value to be-
tween 0 and 1 the argument has absolute value Q and is one of
the Y’, hence for this value we have ? 2,u. Also Ø(x, y, y’) f~~,u. Hence

To estimate to, a figure will be convenient. We denote the origin (y1’=y2’=o)
by 0, and the points for t=o, to, 1 by P(o), P(to), P(1) respec-
tively. Then

With this estimate for to, we find from (6.14) that

Now we form the parametric integrand I’(z, z’) = y, x’, y’) associated with 4Y.

For all unit vectors x’u, x’u ] o, such that

the inequality (6.15) yields
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From (6.16) follows by a simple calculation that and

so that (6.17) implies that

for all unit vectors (x’u, y’u), x’,, &#x3E; 0, satisfying (6.16). Letting x’ u-+O, (6.18) con-
tinues to hold if Finally, for the remaining unit vectors (x’2~, y’u), x’. &#x3E; 0,
which do not satisfy (6.16), we have

so that

~6.19)

For all unit vectors satisfying (6.19) and for all (x, y) on U the function
T(x, y, x’u, y’u) is bounded below, so that for such vectors there exists a con-

stant c &#x3E; 0 such that 
’

By (6.18) this inequality holds also for all vectors which satisfy (6.16); in other

words, (6.20) holds for all (x, y) on U and all unit vectors with 

But 17+ cz’u differs from G(x, y, x’u, y’u) only by a linear sum + baya
where a, b1, b2 are constants, and the lemma is thus proved.

We here digress to indicate a contrast between the parametric and the non-
parametric problems. For the parametric problem it has already been shown (24)
that if at a point z we have 6(z, z’, z’) ? 0 for all z’ and z’, and 6(z, z’, z’) is not
identically 0, then there exists a set of constants vj such that G(z, z’) + 0

for all z’ (G being the integrand for which 6 is formed). From this it further

follows that there exists a zo’ such that 6 (z, zo’, z’) &#x3E; 0 for all z’ not of the

form (czr, czo’, We need only to choose zo’ as that unit vector for

which G(z, z’u) is a minimum. The conclusion can then be reached as in the note
cited, or even more simply as follows. At zo’ the function r=r(z’u; z) defining
the figuratrix has its maximum value, say ~O. The figuratrix then lies in the

sphere r=(!. The tangent plane at (z’u, r(z’u; z)) is also tangent to the sphere,
hence can have no other point in common with the figuratrix. This at once implies
that f (z, zo’, z’) &#x3E; 0 for (c ~ 0).

(24) E. J. MCSHANE : A Remark concerning Mr. Graves’ Paper, etc., Monatshefte fur

Math. und Physik, Vol. 39, p. 105.



209

On the other hand, in proving lemma 6.1 we have had to assume that there
exists a yo’ such that E(x, y, yo’, y‘) &#x3E; 0 for all fi’ # yo’. In contrast with the para-
metric problem, it is not sufficient to assume that E(x, y, y’, y’) ~ 0 for all y’, y’
and is not identically zero, as is shown by the example F(x, y, z, y’, z’) = [1 + y’2 ]i.
For this we have

By the inequality of Schwarz, this is non-negative, and is zero only if Y’=--y’.
The associated parametric integrand is G(x, y, z, x’, y’, z’) _ [x’2 + y’z]~. If to this

we add any linear combination and then consider the two sets

of arguments x’=y’=O, z’=1 and x’=y’=Ü, z’= -1, we see that it is impos-
sible that any expression of the form C2Y’ + C3Z’ can be positive for
all x’, y’, z’ with z’&#x3E; 0.

We now take up the proof of
THEOREM 6.3. - If I[y] is positive quasi-regular semi-normal on A, the

associated parametric functional J[ C] = G(z, z’)dt is lower semi-continuous
on the class of all rectifiable curves z=z(t), z°’(t) ~ 0, lying in A.

Suppose the contrary; there then exists a curve 00: z=z°(t) of A and a
sequence of curves Cn : z=zn(t) of A such that

By lemma 6.1, to each point ~ on the curve Co there corresponds a set of

coefficients and a neighborhood U(~) such that the inequality

holds for all z in U(~) and all unit vectors z’u A finite number of

the neighborhoods U(~) cover the curve Co. Hence we can subdivide Co into a
finite number of arcs Cor (r=1, 2,...., m), each lying in a neighborhood Ur which
is one of the set U(~). Corresponding to this subdivision of Co, we can subdi-
vide each curve Cn into arcs C~’ such that

But

and
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hence inequality (6.21) implies that for at least one value of r we have

We now show that inequality (6.24) can not be valid.
From the curves Cn we select a subsequence (we continue to call it 

for which lim J[ C~ ] exists, and

The curves Cn can not have uniformly bounded lengths, for then (6.25) would
stand in contradiction with Theorem 6.1. Hence we can select a subsequence
(which we again call ( C§)) such that

where L[ C] denotes the length of C.

Without loss of generality we suppose that the curves Cp (~ro =o,1, 2,....) have
representations Cp : z=zp(t), 0-_ t~ 1. By inequality (6.22) the inequality

holds for all z in UT and all z’ such 0 ; the vj are here the constants 

belonging to the neighborhood Ur, and k &#x3E; 0 is the corresponding k(~). The
curve Co’ lies in and by (6.23) so do all the Cya from a certain n on. Hence
for all sufficiently large n we have

Integrating from 0 to 1, this yields

The last term on the right tends, by (6.23), to the limit -zo(o)]. Conse-
quently by (6.26) we have

- .. 

which contradicts (6.24) and establishes our theorem.
A direct corollary of Theorem 6.3 is

THEOREM 6.4. - If the integral I[y] is positive quasi-regular semi-normal
on A, it is lower semi-continuous on the class of all absolutely continuous
functions y = y (x) lying in A.

We need only to compare Theorem 6.3 with lemma 2.4.
For integrals in the plane TONELLI has shown (25) that lower semi-continuity

(25) L. TONELLI, Ope cit. (i), Vol. I, p. 397.
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is a consequence of quasi-regularity. This theorem does not hold for integrals
in three-space, as is shown by the example

UI

where we use the symbols (x, y, z) instead of (x, yi, y2). This integrand is quasi-
regular, and except at the origin is semi-normal, and in fact regular; yet it is

not lower semi-continuous. For corresponding to the functions y = 0, z = 0,
0 ~ x c 1, we find

Now construct the sequence of absolutely continuous functions

Splitting the integral I into the sum of two integrals, ve have

Hence for the functions Yn(x), the integral has a value In such that

and so

proving that the integral is not lower semi-continuous.


