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INVERSE PROCESSES IN INVARIANTS,
WITH APPLICATIONS TO THREE PROBLEMS IN MECHANICS

by OLIVER E. GLENN (Lansdowne, Pennsylvania).
(Jubilee memoir. Fortieth anniversary of the author’s Philosophical Doctorate).

After a mathematical subject has been developed from various points of

view, by different writers, there may have arisen a problem in criticism. One

may be able to work synthetically with these viewpoints, to assert the predom-
inance of one of them, perhaps, and to advance the subject, consequently, in

a new direction. Criticism then becomes a phase of origination and more than
a mere review of shortcomings in published work.

In a century and one third, invariant theory has been developed from many
points of view. Without reciting its history we may say that, within the last

quarter of this time, the bases of the subject have been materially broadened,
by the introduction of novel groups of transformations, by the use of invariantive
concepts in the field of analysis and by the introduction of the method of

invariants into mechanics. Among the leading algorithms of invariant theory
is that which makes the subject a branch of the theory of linear, partial
differential equations and by extending this algorithm farther than others have
done, we have unified some diverse viewpoints and originated a theory of inverse
processes. An inverse problem, in general, is one in which the ground-quantics
and the transformations are the unknowns, to be determined when the invariant
is given.

I. - Introduction.

If a function of two sets,

is homogeneous in each set, that is, if

-

m a positive integer, and if a second function of the sets of degree g in the a1,
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is invariant when the xi are transformed by a scheme Q, f can be derived

from D by a linear operator under certain conditions. Assuming that the ~i in,

are cogredient to the ai, under the transformations 8 which Q induces upon
the a2, (~=o, 1,..., g), is invariant if different from zero. End for end

symmetry in the variables X2 is postulated for 4. With a= g -1, 
being linear in the ai must be the ground-form f of the invariant problem, but
not uniquely, because the cogredient set $, is not unique in general and D is

only one of many invariants, here one of a fundamental system [1].
Assuming Q linear,

we may state the problem more inclusively by allowing f and therefore D to

involve the parameters of the transformation, assumed at first to be arbitrary
variables.

The essential fact about is that it is invariant and linear in ao,..., ae.

With m left arbitrary, (also 0) will contain as factors powers of

universal covariants of Q. There may be involved in these factors a case of

the covariant [2],

whose roots are the poles of Q and from which Q can be determined, and
there may be among the factors, covariants properly universal. These will involve

essentially only the variables ; will be covariantive for all admitted values of

the parameters Åi, ,u2, whatever group or set Q represents. The latter universally
covariant factors serve to determine Q.

This will seem to be, at first, mostly a binary theory. It is true that an

invariant operator like d can be constructed on the basis of the determinant

(invariant under linear transformations Q’) [3],

This operator will be of the form,

where are the actual coefficients of a ternary quantic a~ or any set of

parameters which could be considered as such coefficients. However, repeated
operations 4’ upon any mixed form, such as,
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often leads to a vanishing result before it leads to a form of the first degree
in aijk- We shall show that the problem in three variables is, however, often
solvable in important special forms.

II. - The transformation as unknown.

Thus, in we look to the factor linear in ao,..., ae for a form of the

ground-function, and to the other factors for a means of determining Q. Consider
the expression Di, assumed invariant,

If the four ai in the order of their subscripts are regarded as cogredient to

the coefficients of x1, in the covariant,

an invariant operator is,

We find,

Hence the ground-form f1 is the arbitrary cubic, and the transformation is the

cyclic Qi (or Q2),

The expression is also a cyclic invariant of f, but

the ground-form corresponding is

Since the group is cyclic, Y2 can be interchanged.
It is usually implied, when Y2) is cogredient to (Xi I X2), that y1, Y2 are

replaceable by Xi, X2, respectively, but for cogredience, it is not necessary
that yi, Y2 should be linear in Xi’ x2 .

Suppose that we wish to pass from yi to xi by the substitutions,

and that e=2. If the function assumed invariant is,



42

A’ being the operator,

we get,

The latter form, as a universal covariant, determines the transformation,

The problem fails 
The choice of the functions YI(X), cogredient to Xi, x2, is in fact

arbitrary, but unless these (i. e. ~i) and the expression D, assumed invariant,
are fortunately chosen within the bounds of some essential invariant problem,
the final function 4gD (~ 0) will prove to be invariant only with respect to

the identical transformation.

Formal groups in less than n2 parameters.

Under the ternary transformation with arbitrary (1) coefficients,

which we write more simply in the form,

the determinant,

may be assumed invariant, the relation of cogredience,

being also assumed, but a result of these hypotheses is a particularization of Si
to a four-parameter sub-group of the general, algebraic, homogeneous group.

This is proved as follows. Since

(i) An invariant is algebraic if the group is Q, or 8!. A ground-quantic is any covariant
of degree unity in ao,..., ae . An algebraic process is an analytic process which can be

carried out rationally.
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the differences (y1-y2), (y2 - y3) are contragredient to (Xi’ x2 , X3),
under Si. Hence we have the identities,

These lead to the relations,

whence S1 takes the form,

THEOREM. - The transformations of the type S form a group, represented
by (S).

In proof, assume that the determinant 6 of ,S is not zero,

Then is non-singular and its inverse is easily shown to be of the same type
as S. Let T be an independent transformation of this types

then, if we combine 8 and T, we find,

in which,

Hence the product of two transformations of the set (8) is within the set (S ) ;
also the identical transformation, (q=r---s=0, t=1), is within (S), q. e. d.

If we substitute yi==xi in d, the resulting covariant dx,
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is linearly factorable,

w being an imaginary cube root of -1. The forms di, d2 are left invariant

individually by the typical transformation of (S), (taken as S’). The invariant

relations are,

There is a third (real) covariant of order one, viz.,

It is a covariant of a subset of (8), (vary t). The vertices of the covariant

triangle di d2d3 are the poles of S’, one being real.
If we substitute from the inverse of T’,

for x1, y x2 , x3 , in the arbitrary ternary quantic,

the result is an expansion of f m in the arguments di, d2, d3,

coefficients are invariants of degree one in the ask2
and appertain to a domain which includes w, q, r, s. They are thus invariants
of the subset of (S ) and, with di, d2, d3 , are called invariant elements. In 03A9

the invariant elements are a fundamental system of invariants and covariants.

This is evident since the inverse of T’ and the inverse of

serve to express any concomitant of f m under the subset, as a rational, integral
function, in Q, of di, d2 , d3 , Aijk. The (=0) are invariant hyperplanes
expressed in the as variables.

Concomitants of fm under (S) and therefore of a domain Di free from w,
q, r, s, are polynomials in the invariant elements of structure such that an

algebraic simplification from S~ to Qi is always possible. Such a system of

polynomials is a HILBERT system within which there exists a set which forms

a finite basis. The basis theory will be considered further in a later section.

A fundamental system for under the ternary algebraic group of nine

parameters, e. g. the system of a cubic (GORDAN) and that of a quartic (E.
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NOETHER), is involved with advanced formalism, but in any mixed form or

contravariant of such a system, Uni, uz , u3 can be replaced by 
X2 - X3 respectively. The result will be a covariant of fm under (8). The method
furnishes, as far as proved, only parts of complete systems under ~S ) but it

gives new life to the algebra and geometry by reduction of the formal complication
and an increase in the number of covariant configurations.

Formulae for the conic-form, 
;

are added. The invariant elements are di , d2, d3, y and the following expressions,
in 

The line-equation contravariant (abu)2 now becomes a covariant conic-form

expressible as,
I - I

The coefficients of d~ are cogredient to those of f2, hence there exists an

invariant operator 0, 
’



46

If D is the discriminant of f2, the following concomitants exist, (Cf. C2 C above);

In the twenty known concomitants of the simultaneous system of f2 and a second

arbitrary conic-form g2 under Si , both ground-quantics have the standing of

covariants, but if we make g2 the same as dx, g2 loses this property unless,
at the same time, we particularize the group to (8). When this is done, the

twenty quantics, (i. e. those of them that do not vanish), become concomitants
of f2 under (S), wherein also ~c1, u2 , u3, become, respectively, 
x2-x3.

***

If we proceed from the bi-quaternary form,

and follow the method we have used in the case of d, there is obtained a

six-parameter quaternary group (U), where,

The transformation U leaves invariant the conicoid,

There is, probably, a corresponding group for any number, n, of variables xi
but the difficulties increase with n.

We can now readily write LJ- operators and algorithms to correspond with

§ I for quantics ax (ternary) or bx (quaternary) under the respective groups (S )
and (U).

III. - Instances of determination of ground - quantics.

Consider the class of expansions obtained when the arbitrary quantic f M of
order, 

-- I H ¿ - 

is developed in the homogeneous form,
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fi, f2 being arbitrary forms of order n,

The expansion has a symbolic basis, by which is meant that it can be expressed
also in the form, 

wherein,

and therefore in the form of a symbolic power,

The point is that the symbolism makes sense, for we have not only,

but also a symbolical equivalent for p,

Suppose there is given a product P,

wherein the number of symbols E, E ’,... is g, the degree of P in 99on-i i

... 99mn-i, y and that the sum of all the exponents which affect a chosen symbol
~ of P is m. Assume P to be invariant under a transformation of for

which there exist the following cogrediencies, 
°

Then an operator L1 of § I can be chosen in the form,

Then,

Hence 4P is free from the symbols El, 32; 42P is free 
while. 

°
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l~ being a numerical constant. The ground-quantic is thus determined uniquely
by as

The covariant (f(x), f(y))E shows that P is a combinant [4] of fi, f2 and its
factor (xy)E shows that the variables XI I X2 are subject to the general linear

algebraic transformation Q of (1).

IV. - Modular instances and theory.

When the equalities dealt with in the above sections are changed to identical

congruences with respect to a prime modulus p, much of the formulary remains
intact. The group G (or G(p)) being the homogeneous total group (mod. p),
two independent universal covariants exist from which cogrediencies may be
obtained. These are due to DICKSON, as follows [5]

The determinant (xy), with (yi, y2) Co. (XI, X2), and yi arbitrary, is the all-

inclusive form of universal covariant when the group is the general linear

algebraic Q (cf. (1)), in which case yi i may be considered an arbitrary function
of XI, x2 . If the group is special, e. g. in an invariant (xy), will be
a particular function of XI, x2.

For construction of 4 all cogrediencies are obtainable from universal covariants.
From L, Co. xi, whence is obtained,

Other operators may be obtained by writing N in the

form (xy). It may be written in either of two forms,

in which,

The cogrediency under G(p),
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leads to the operator 4j invariant with respect to the quantic,

There is no simple formula analogous to P which would represent definitively
all concomitants of f under G( p), but particular cases raise important questions.
Consider the formal invariant, (p=3, e=2), first brought to light by DICKSON,

We find,

The quantities in brackets will be covariants of the whole group G(3) after

transformation by but the group of x~ +x~ is the orthogonal q

where ,u, v are integral residues (mod. 3).
The bracketed covariant in 4§R is reducible if I=0, and if it is the

ground-form,

and different from f2 = a OX2 + 2aixix2 + a2 X2 . Note that

Operators 4yo analogous to (3) in § 2 exist for arbitrary quantics fe whose
orders can be composed from the orders of L and N,

(y, b integers),

for example,

The above theory in which special situations are emphasized, prepares for

the following,
PROPOSITION. - For the case of a typical, special group of transformations,

viz. G(p), to base a new theory of fundamental systems upon the total set
of ground-quantics.

Annali delta Scuola Norm. Sup. - Pasa. 4
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The quantic fe will be as employed above, ao,..., ae being arbitrary variables,
and the term concomitant, where not otherwise defined, will mean an invariant
or covariant, modulo p, in ao,..., aei Xi’ X2. Equalities, except where further

explained, will be congruences, modulo p, existing identically in the ai, x~.

Occasionally, as a reminder, the modulus will be indicated. The Proposition is
solved by means of a series of lemmas.

LEMMA 1. - Every covariant f, (mod. p), of degree unity in the coefficients
ai of f, can be derived from one of degree &#x3E; 1 in the ai by a succession
of operations by a A of the modular type.

Let the coefficients of f be (30 ,..., (3c. They are linear in the Ui. Form any
definite algebraic concomitant R of f of degree g &#x3E; 1 in the Then R is also

a concomitant of fe under G(p). By § 3, (n=1), there exists a and

The constant J is of non-essential type and may always be discarded but no

essential numerical factor o in R can be discarded. If G --_ 0 (mod. p), R vanishes
and a concomitant of f different from R must be chosen. The operator 41 is

of the form,
A /.B x 

however,

The derivatives api are numerical. They are not all zero, else A, as an

algebraic operator would be illusory, which it never is. Substituting the values
of the A, becomes an operator 4 in the a/aai for which, both algebraically
and modulo p. 

-

q. e. d.

Note that, if the algebraic concomitant chosen as R is of the functional form,

it should be replaced, in this theory, by

This is possible, since, under the induced group,

LEMMA 2. - Every concomitant D, modulo p of the formal type, of Ie,
is a simultaneous algebraic concomitant of the set consisting of L, N, and
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the totality of linearly independent formal modular concomitants, li, t2,...,
of the first degree in ao,..., ae.

The proof results from the succession of algorithms (a), (b),..., (f). Let D

be of degree g in ao ,..., ae ..

(a) We are to prove first the converse of Lemma 1, that D of Lemma 2

can be differentiated to an t2 + 0 by successive operations by a L1 operator of

one of two types, the first being,

where yi(z) is an arbitrary function of zi , Z2 particularizable only in such ways
as will make the cogrediency,

in any case, one which represents the total group, G( p) (mod. p), as distinguished
from a subgroup. If it is because this polynomial in xi, X2 vanishes

identically [6]. If with t any chosen integer &#x3E; 0, and if Cj is
any coefficient of the covariant D, (y= D if D is an invariant), then,

vanishes identically. Hence Cj is free from all ai, (or contains all of its ai in

the form Cf. (b)), except possibly the a; for which ) is divisible by p.
Thus the hypothesis, A(z)D==O is untenable with Y2 as assumed, except
possibly in certain special cases. In the special case, choose 41(z) instead of

,A(z), L1 i (z) being the result of substituting alaao, alaal,..., for xl, X2,...,

respectively, in the covariant,

No coefficient of a term of tp contains the modulus. Hence in the special cases

being considered, 41(z) C; = 0 reduces 41 (z)D =0 to an absurdity (Cf. (b) however).
Let 0, for some Yi, Y2 considered. Then (2),

Continuing we reach,

being a symbolical product equal to a form of degree one in ao,..., ae,

(2) The is found most easily by operating the formal square of upon D.

The expression Ki is constant or (if r = s = 0) an invariant of degree unity in ao ,..., ae .
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and A(z, x) a universal covariant which becomes a polynomial in L, N when
Zk=Xk, the possibility A(x, x) =0 not being excluded if A(z, x) contains the

factor (zx). We have a§§ Inversely ar z bl x is formally a term of the

r-th polar of li, but, since is a covariant, it is the whole polar of lz .

(b) There is one and only one class of exceptions to (a), viz. when D has

the functional form, like

of a formal modular concomitant of fe taken simultaneously with a quantic,

Represent the process of algebraic transvection between two quantics A, B, by
Then, using only known elementary lemmas in number theory, such as

we find,

Since Lt is reducible in terms of L and N, fte is in the algebraic system of

the set (L, N, li, 12,...). There is a like formula for Ftc, Fc being any covariant
of order c. It is known also that N is an algebraic covariant of L, being given
by the formula,

Our series of differential equations which ended with X) + 0 will
now end before any di(z, x) linear in ao,..., ae is reached, but not before we

reach a form D’ which is a concomitant of fte alone. Replace, in J, a/aai by
(~==0~ e) and call the new operator It will reduce D’ to a

covariant linear in c~...y aft t and the latter will be an algebraic transvectant of
one of the li. Integrating back to D’ the latter is seen to be an algebraic
concomitant of the set (L, N, li, L2,...). Using again we can integrate
from D’ to D, but the nature of the integration processes is to be described

in (d). There is an obvious extension of this algorithm to the case where D

is a simultaneous concomitant of any number of forms fte including fe.

(c) The maximum order X2 of an irreducible formal modular concom-

itant D is pl - 1. In the writer’s paper in the Annals of Mathematics volume 19,
this theorem was not stated in its full gpnerality, but in an earlier paper, a more

general view-point had been discussed. In relation (1) of the Annals article, if

so there is an excess in the number of coefficients of g~2 over the
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number in f, the excess number of coefficients can be arbitrarily assigned if

the congruences afterward available are left consistent. Solution of the congruences
determine qJ2 in terms of which m &#x3E; p2 -1, is reduced. Also D is reduced
if its order is &#x3E; ~ 2 -1. For,

Hence (xs , x2) being an integral root of L. But if is thus

modular and homogeneous in xs and X2 it is a formal covariant.

(d) Let be as originally chosen in (a). Then the partial differential

equation in ao,..., ue,

can be solved for dg_2 as the dependent variable. The solution is known to

exist and to be a concomitant. The process of solution can be regarded as unique,
is analytic, and in effect algebraic (Cf. § V). The equalities are equations, the

modulus not being applied either in forming equations (7) or in integrating
them. Then we can integrate the equation,

Continuing we can solve for D from,

The argument where D’ is involved has already been stated. The main point
is that D is thus obtained by algebraic processes based originally upon an l2
taken with L and N, (Cf. (f )).

(e) Some details concerning integration processes may be mentioned. We

have always LAGRANGE’S method, but it need not be used. If the formal modular
concomitant D of fe, with which we start is also an algebraic concomitant of

fe, D is a linear combination of symbolic monomials of the type of T,

Now,

and inversely if the right hand quantic kTi is given and T is unknown in this

relation, we can solve for T. It is a term of the transvectant (3),

(3) The letters k, fl, y, 8 represent constants.
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T(l) being what Ti becomes when (xy)q is deleted and changed to ~~ 0==!~ 2).
Hence by a known theorem, T is a linear expression in algebraic transvectants,

(hi numerical),

the forms being obtained from the leading one, by convolution. If d1,
in our equation is a sum; D is a sum 

This formulary is applicable to all equations (7) if D is algebraic.
Let D in A(z)D=--d, be formal modular without being regarded, at first, as

algebraic. Some expressions based on modular cogrediencies will occur in the

analysis which we were able to dispense with in the discussion just given. Among
these are the polars, ,

m being the order of F, but the transvectant is in the algebraic system of the
set (L, N, li, L2,...) if ~’ is, (m =1= 0 (mod. p)). In the work of calculating any
{ A, the last step is to change Yj into X,i. By means of the change Yj equal
to ( j =1, 2), we obtain a modular transvectant fl = i A, B ~~ t , but the writer
has proved that any It is a linear expression in modular polars of algebraic
transvectants, the domain of the expression to include L and N [7].

The cogrediencies following (and certain contragrediencies),

under the induced linear group, are represented simply by certain pure invariants
due to W. L. G. WILLIAMS [9]. The induced group is special but, for it, we can

copy the invariants designated by WILLIAMS as the fundamental invariants of

the arbitrary linear form in variables under the total linear group
whose coefficients are marks of the In the present case n=1, and his

system becomes, for us, any q invariants whose leading terms are respectively,

The invariants meant are now evidently simultaneous invariants, for certain

indicated values of t, of forms fte which we have constructed by algebraic
transvection between fe and L and N.

Transvection, as is well known, is the definitive process for construction of

complete systems of algebraic concomitants of any set of binary quantics.

(f) The analytic integration of equations (7) described in (d), is, in effect,
algebraic and is a master (4) process which includes implicitly all of the

(4) MACMAHON : Combinatory Analysis, Cb. II.
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formularies which we have described in (e). At first D seems to be derivable

algebraically only from It, L2,..., taken with the universal covariants (5) of the

two cogredient sets zi , xi . However the variables are ao,..., ae, in LI; Zi, z2 ,

x1, X2 figuring as constants. The final integral D is free from zi, Z2 and is

unaffected by any admissible (6) particularization, as v an arbitrary
integer. Hence, in fact, D is an algebraic concomitant of the set (L, li, ~2~...).
Since D is derivable algebraically from this set, D had the algebraic (1) character

ab initio and was a simultaneous algebraic concomitant of this ground-set
(L, l2,...), q. e. d.

LEMMA 3. - The number of linearly independent concomitants, modulo p,
of fe, of degree unity in ao,..., ae, is finite. Consequently the system of all
formal modular concomitants of fe is finite.

It is known that the algebraic system of any finite set (L, N, 1,, ~2 ~...) is

finite. Hence we need to prove only the first part of the Lemma 3.
If h,

is the arbitrary transformation from the total group G(p), its poles are the

roots of the congruence,

The ri are integral residues for some transformations V and Galoisian imaginaries
for other J1; according to the current integral values of ao, 61, y2. With

this understanding ri, r2, may be treated as parameters. The forms L 0 1, LO 2 are

covariants under V ;

and the relations exist,

Transformed by W, fe becomes a polynomial in e ~ 3 concomitants known as

invariant elements, viz., O1, Q2 and e+1 invariants linear in ao,..., ae, (the
coefficients of fe’), Io ,..., Ie.

If I is a typical first degree covariant described in Lemma 3, 1 is isobaric

(mod. p - 1), and its covariant relation under W exhibits it as a rational integral

(5) KRATHWOHL : Amer. Journal of Math., vol. 36 (1914), p. 449.
(6) A value zi is admissible if zi Co. xi and zi contains an arbitrary parameter.
(7) Paragraph (f) (clarified by e) advances the argument mainly by the truism that a

concomitant derived by integration of (7) is derived by an algebraic process.
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polynomial in (2i, e2, Io ,..., Ie. As such it will simplify back to its primary form
as a concomitant in ao,..., ae, with the aid of FERMAT’S congruence (gene-
ralized),

This as a structural law defines a system of polynomials in in the

sense of HILBERT’S basis theorem [8] Among all polynomials I built according
to this law, there exists a finite basis-set (4 ,..., Lv) such that the typical I of degree
unity can be written,

wherein the Pi are also polynomials in the invariant elements but do not, unless
by additional proof, simplify as aforesaid to concomitants in zi, X2, ao,..., ae.

But, since all I are linear in ao,..., ae, no Pi involves ao,..., ae. When (8) is

given its expression in Ql, (.02, Ij, the Pi will be term-wise invariant expressions
in C)i, Ps alone. Since

a relation exists,

But the ai can now be given particular values without affecting the Pi. Hence,
from (8), we can have v linear equations to determine the Pi in forms free

from ri, r2. From their expressions in (2i, 02 or from (9) they are covariants.
Hence they are universal covariants and, if not constant, are polynomials in L
and N, q. e. d.

We have proved therefore that a formal modular fundamental system of fe
is an algebraic simultaneous system of a terminating ground-set of quantics,
(L, N, ls, L2,...). The algebraic system is got by transvection (8) and the

ARONHOLD symbolism, with algorithm I, § IV, Lemma 2, (e), suffices if we write

L=~,xl~...~,~x’+1~, ... certain combinations of symbols A(i), A(i), and

also of v (k), v2k~, being zero. If e&#x3E; p2, 

whence it is seen that the li include the forms r¡e, x,..., w. There are also various

types of first degree covariants in case e  p2.
In § 6 we show that some covariants, at least, among the qe, x,..., w, are

algebraic covariants of the set (L, N, fe). On the question, whether the latter

(8) The converse statement forces the conclusion that any transvectant which does not

turn out to be a formal modular concomitant has p as an essential factor, because, to

make L a ground-quantic is to limit the group to G( p).
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set would always suffice as a ground-set, we say that we obtain a typical
of (7) by changing zj into x~, ~ j=1, 2). The result is B=ax b~, and,

E(z, x) being a universal covariant in the two cogredient sets Z2), X2),
and E(x, x) a polynomial in L and N. With E(z, x) expressed as a polynomial
in fundamental universal covariants, the integral B of the equation is determined
algebraically from these covariants and fe alone. Since the variables in the equation
are ao,..., ae; B is unaffected by any admissible expression of zi in terms of xi.
Hence B is a simultaneous algebraic concomitant of the set (fe, L), and is

obtainable by transvection between fe and L.

Finally every formal modular concomitant (mod. p) of fe is a simultaneous

algebraic concomitant of fe and L.

V. - Polynomial solutions in general of linear, partial differential equations.
Almost invariantive functions.

The usual general methods of solving a linear, partial differential equation
of the first order often leads to a solution in such transcendental form as is

not easy to convert into a rational, integral polynomial even when it is known

that a solution exists in polynomial form. We prove however that if the

variables may be restricted, each to a segment of variation, any solution may
be approximately expressed by a polynomial. If the latter is then a covariant,
it is an almost-covariant (c - covariant) of a determinate ground-function. The idea
of an s - covariant can be illustrated simply if we add infinitesimal increments

to the coefficients of fe = ao x1 + ... , replacing ai by (i = 0,..., e).
A covariant I of fe then receives an increment, and I itself will be an

c - covariant of,

Let,

be a function which is expansible into a power series absolutely convergent in
a region e of r - values.

be a given covariant of f subject to a transformation q. This problem exists :
To determine f and q with r restricted to e. We reduce this question, relating
to functions, also to a problem on polynomials.
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If f(r, a,,..., ae) be expanded into a power series by ordinary methods, the

history of the aj may be largely lost but the requirement of convergency
restricts to some region the variation of each ai. We first prove the following,

THEOREM. - Any e-parameter manifold (for example the solution of
a differential equation),

r being restricted to g and each ai properly restricted, can be expressed
rationally in e parameters, approximately, and the Limits of error of the
approximation will be bounded and controllable.

A preliminary discussion of postulates is given.
Regions, fields, and frontiers. In the polar plane, two fixed angles (0)

and the two corresponding finite radii (r) delimit a region eo shaped like a

keystone. Let C be a continuous segment which

passes from the lower to the upper bounding arc,
(ei , e2), without intersecting the bounding radii.
Assume C to be single valued with respect to 0,
each 0 between the radii being a coordinate of one
and only one point of C. The radial width of eo
will be taken to be e, the range of variation of r.
We say then that C is properly contained in eo .

A set of curves Ci ,..., Ct, (t&#x3E; 1), properly contained (p. c.) in the go of minimum

angular width, and radial width e, is to be called a field z.

Proof of the theorem. If a curve 0=F(r) has a continuous branch p. c.

in Oo, n determinations (points) in go, viz., di : (0i, ri), (i=1,..., n), are

necessary and sufficient to determine F(r) in the approximate form, (r on O),

The exactness of the approximation depends upon the number and law of

distribution of the di on the branch. The law may be described by a symbol
Lo = (~1,..., 2,,), the 2j being the respective apothems from 0 when perpendiculars
are drawn from the di to the polar axis. The inaccuracy of the representation
of by (11) depends upon our choice of the points or, as we may say,

is bounded, and the frontier is the point-set (di,..., dn).
Let Ti be a one-parameter system (field) of curves, as), all p. c.

in eo. The curve-set obtained by assigning q values to ai, (r on ~O), may be

represented by
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Assume that the aii, (j = 1,..., .q), are the determinations of a function ~i 

for assigned values ,u =,u ~1~,... , I (,u ~~&#x3E; ~ ,u ~h~ ). With none but obvious

restrictions these values of a may be chosen arbitrarily, for, whatever set 
is chosen, the parameters 03B6ij are given by CRAMER’S rule. Hence the

one-parameter system,

with y continuous from the smallest to the largest is in approximate
coincidence with Ti or with a sub-field of Ti. The inaccuracy (limits of error)
of the coincidence depends upon the law L1 of distribution of the curve-set (12)
upon 7B, the curve-set being therefore the frontier of the bounded inaccuracy.

Before we generalize (13), by induction, we consider certain details of the

generalization from ai) to the two-parameter case e=F2(r, a,, a2).
Assume a oo which p. c. odz curves e=F2, and assign a well-spaced set of q2
values a2~~,..., in succession to a2. Represent each single parameter family
obtained, in a form (13). We can use (13) itself after attaching the superscript k
to each ’i1i2, k to take the integral values 1,..., q2. Referring to continuous

variation of a real parameter from an abscissa a to an abscissa b as a segment
(a, b), we have seen that the set may be chosen from any segment
consistent with convergency. Hence when,

are represented rationally as stated, the sets like u(g), corresponding to the

respective azl),..., may all be chosen from the same segment. Hence one

and the same parameter a, (viz., pi) can be used in all q2 rational representations,
which then become

We can now generalize to the case of e parameters. Let the curves of the

manifold,

be all p. c. in a oo . Assign to ae, qe particular values ae~~,..., thus obtaining
qe determinations in e-1 parameters, of The hypothesis of induction
is that each determination, in eo7 has a rational representation. The determ-

inations are,
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and the respective rational representations are,

equation (17) being (13) when l= 1, e=2. The abbreviation of (17) is,

The qe determined numbers may be regarded as qe
determinations of a function

for the respective assignments u,7=p(i), ... ) chosen from a segment
independent of the segments preempted by previous ,u2, (i  e). Replacing in

we get,

Allowing 03BCe in (18) to vary continuously over its segment from the least to the

greatest numbers of the set we obtain not merely the qe particular equations

(17), but the whole manifold,

as defined in within an inaccuracy (limits of error) which depends upon
the law Le of the frontier manifold-set (16), q, e. d.

If is a general solution of a partial differential equation like (7),
0=ge is an almost accurate determination of the solution in polynomial form,
with r, fli ,.,. , fle restricted to segments.

If I’e is a covariant, as originally described, 99, is an E - covariant. If 99,
is made homogeneous in the flj by the adjunction of one ,u, as flo, has the

form of a covariant of a binary quantic. Assuming that, under q,

and that g is the degree of ge in ~uo,..., fle, it follows that, except for 8 -term,

if not zero, is one of a set of admissible ground-functions f(r, po ,..., ,ue), possibly
multiplied by a universal covariant of q, while A999e (if ~ 0) is such a universal

covariant, from which q may be determined.
We can also generalize (17) so the number of r-variables, (1.0’ r4,..., rn), is

n + 1 instead of two.
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VI. - A formal modular system algebraically interpreted.

An important recent problem on complete systems has been the direct one
of determining the fundamental covariants of various orders of quantics,

with arbitrary coefficients, under the total linear group G(p), p prime, of order,

When ~ro ~ 2 the group, of order 6, may be represented as follows;

and its independent universal covariants are,

As a construction process the method given in § IV, where such a system
is seen to be an algebraic simultaneous system of (L, L2,..., lv), is hardly
satisfactory because some of the li are of high order in xs, X2 and moreover a
purely algebraic method neglects useful number-theoretic facts, (9) but, after

we have determined the simultaneous system (mod. 2) of (fi, f2, f3), we shall
express the fundamental covariants in terms of algebraic transvectants and

thus bring to light specifically the unity between the invariant theory of quantics
under the algebraic group (1), and that under a modular group. It becomes

clear that contributions to the modular theory have greatly advanced general
invariant theory. ,

The algebra here is a type of algebra of the odd numbers. Nature makes

the separation into even and odd in various ways. Some species of simple
flowers have nearly always an even number of petals, others an odd number.

Method for seminvariant systems.

A fundamental system of seminvariants of (f1, f2, f3) is found as the

culmination of an inductive process based on the simultaneous system of

universal covariants (mod. 2), of the three transformations 8i, S2, S3, 7

(9) DICKSON elaborated a Theory of Classes in invariant theory which is primarily
number-theoretic. He brought it to a high degree of generality Cf. [5].
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The system of (S1, S2) had been previously determined and consists of [5],

The writer has shown previously that the following trilinear is irreducible,

THEOREM. - A fundamental system of universal covariants, (mod. 2), of
(S,, ~’3) is composed of,

The proof is as follows. A covariant may be assumed homogeneous in the
three pairs of variables, and of the form,

(ajki=O or 1). The transformed of F by ,52, S3) is

(1=0,..., l-i; ¡.,t=0,..., m-j; v == 0,..., n-k).- The expression for F’-F may
be obtained by deletion of the zero value of each letter 2, fl, ’)1, from F’.

Since F’-F== 0 (mod. 2), identically in the variables, we obtain, as the

necessary and sufficient conditions for the covariancy of F’, a set of linear

congruences in the These congruences do not determine the coefficients

uniquely.
The coefficient of in F’ - F is,

hence aooo == 0 (mod. 2) except possibly when I is even. Likewise aooo --_ 0

except possibly when L, m, n are all even.

Let n be even, n=2a. Then F can be written as,

g being a covariant of (Si, S2) and a polynomial in the quantics (19) alone.
Therefore,
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and "11 + x, (= 41), is a covariant of (Si , Sz , SI) of the next lower order n -1

in z2 ; (All equalities are congruences mod. 2).
To obtain the analogous reduction formula for the case of an odd n,

(=2a+1) we note that, since aooo is then zero, ~ contains no term without

one of the variables x2 , y2 as a factor. Hence,

and ~3 are covariants. Therefore F is of the form,

in which d2 is a covariant of order n-1 in If the same schemes of

reduction are applied to the residuals, Ai , L12, successively, the orders in zi, z,
are ultimately reduced to zero, so that ~’ is reduced completely to a rational

integral polynomial in the covariants (20), q. e. d.

By the same methods of reduction, or by direct verification, the following
syzygies may be established.

It follows that no reduced covariant of S2, S3) need involve any properly
simultaneous fundamental covariant to a higher power than the first.

The seminvariants of 9 già f2).

Consider the set,

The seminvariants of any one of these quantics are its invariants under the .

transformation Si. The three induced transformations under Si, are

Writing co=0 temporarily, we note that ai , G2, 63 , respectively, are identical

in structure with Si’ S2 , S3 . Therefore if
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is the general seminvariant of the set (fin, gi, f2) we have,

wherein,

The quantic is integral in its arguments. The quantics P, D’, D, W’ are

not seminvariants of the induced transformations 6i, but they are, respectively,
residues (mod. co), of the following seminvariants,

Hence there exists a relation of the following type,

and evidently Pi is a seminvariant of order, in co, c2, one less than the

order of F in co, Ci, C2.

We can apply this reduction to 1Fi and its successors P2, P3,u. until a

vanishing Yyi is reached, or as long as a Qk contains co, and as long as the
last 4S, being considered contains one or more of P, D’, D, W’. If this Oi
contains none of these four expressions, (even though it may contain the

invariant ci), the process of reduction can no longer be used to reduce the
order in co, but then the last is a seminvariant which involves only
ao, ai, bo, bi, ci, and is reducible in terms of bo , el, Pi, P2, Di. Therefore

F is reduced, that is, we have proved;
THEOREM. - A fundamental system of seminvariants of (f,, g i, f2) is

composed of the eleven quantics,

The seminvariants of f2, g2).

Assume,

The transformations induced by Si are,
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With bo =0, are, except for notation, identical in structure with

°i, (J3, respectively ; therefore if

is the arbitrary seminvariant of (fi, f2, g2), we have,

wherein abbreviations have the following meanings,

The latter seven quantics are respectively residual, (mod. bo), to the following
seminvariants of (f, , f2 , g2),

Hence,

and Gt is a seminvariant of degree in bo one less than the degree of G in bo.
Reducing Gi and the other succeeding residuals by the same process, we reach
a residual seminvariant Gn which is of degree 0 in bo Therefore, except when

(~~==0, Gn does not contain pz, di, d3, or z, that is, a repetition of the

argument with which the preceding section closes gives the following,
THEOREM. - A fundamental system of seminvariants of (fi, f2, g2) is

composed of,

The seminvariants of f2 , f3). ,

We now consider the ground-quantics of the main Problem,

The transformations induced by Si are,

Annali della Scuola Norm. Sup. - Pisa.
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If ti, t2, t3 are identical with si , s2 , s3 , respectively, except for notation
in the case of t3. If F(co) is the arbitrary seminvariant of (f1, f2, f3),

wherein e is the invariant and

These quantics respectively are residual (mod. co) to the seven seminvariants

Of (fi, f2, f3),

The letter Ci is exceptional in ø, and, for this reason, we write 4Y explicitly
as far as c, is concerned and obtain,

All G, H functions are like

In the latter value of we next make the replacements,

also cli, (j = 0, 1,...), is replaced being the seminvariant
The grand result is,

where I’ and J are seminvariants reduced in terms of,

We transform the congruence (23) by (ti, t2, t3) and obtain,

whence that is, the seminvariant J is the increment of a polynomial K
in the nine coefficients of fi, f2, f3, under (tl, t2, t3). The terms of such an

increment can be grouped so each group contains, as a factor, one of the

following expressions; Hence,
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wherein Ji, J2, J3 are reduced seminvariants. Consider next the new seminvariants,
(new except d),

Since ,

All letters on the right are now reduced seminvariants excepting Li. Though
Li is not reduced it, also, is a seminvariant. Its order in Co,..., c3 is one less

than the order of F(co). We apply an analogous reduction to Li, L2 ,... in

succession. If a vanishing Ln is reached before the order in ° co is reduced to

zero, F(co) is reduced in terms of fundamental seminvariants. If we reach an

Lk ~ 0 free from co, and Lk+1 + 0, will not contain J, ~, 7~ E, q3, e2, e3
or a, otherwise would be of or’der -1 in co, which is absurd. Hence

Mk+i is a polynomial in e whose coefficients are seminvariants of fi, f2, whence
F(co) is reduced. Therefore,
THEOREM. - A fundamental system of seminvariants of (f1, f2, f3) is

composed of the quantics,

Syzygies.

The first five of the following syzygetic relations were given in previous
papers by the author. Of the rest, the last is the most complicated. Its

derivation was based upon the last relation (22), supplemented by some

empiricism.

where gi is an invariant,

j3 are invariants,
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For the quantics f1, gi, f2 there exists the syzygy,

and for fi, f2, g2, the syzygy,

For fi, f2 , f3 there exsists the syzygy,

The arbitrary seminvariant of the set (fi, f2, f3) can be reduced, by means
of these syzygies, to a finite, rational and integral polynomial f which is linear
in each fundamental seminvariant a, 2, r, E, quadratic in ao, bo , co, and free
from qi, q2, q3, y ei, e2, e3. The coefficients of f are arbitrary polynomials in
the invariants (26). It is not claimed that this set is a fundamental system of
invariants.

Technique of covariant reduction.

Any formal covariant modulo 2, of a set f m, fn,...,

gives rise to a scale of concomitants,

These exist for all orders s;

and if s is odd, (s=2a+ 1), the scale contains also a cubic,

(10) « Bull. Amer. Math. Soc. », vol. 30 (1924), p. 135. Also, C, Trans. Amer. M. S. ~,
vol. 17 (1916). The models of the copied forms ~ Ks ~ are tabulated on p. 550.
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(I, ~ Cii +... + Ci , I2 -- +... + Cz2a’’ If S is a seminvariant and Sf is its

conjugate under the substitution on the coefficients of fi, f2, f3 ,

a necessary and sufficient condition that S should have the property that it

can lead a covariant is, that should be an invariant, where Si’ is the

increment of Si under (t1, t2, t3). In fact, if S leads a it leads,

T being the scale invariant The relation which expresses the covariancy of

R(S) gives With S given we can construct .R(S) uniquely.
If S and T are seminvariants which lead covariants Ks and A

respectively, A being cubic, and if H is a cubic led by ST, H is reducible
in any set which contains A, { A }, op, [K,,], L and invariants. The

reduction formula is,

~~ being an invariant.
If S and T are seminvariants which lead respective quadratic covariants,

viz.,

and G is a quadratic led by ST, G is reducible in any set which

contains { C}, {D}, [C], [D], cp, x, and Q. The formula is,

Some of the syzygetic relations among leading seminvariants, implied by
congruences of the latter type, are consequences of a class of secondary syzygies ’ 

*

among the universal covariants of (Si , S2, S3), (Cf. (20)). The following are
such syzygies,

In the known expansion, s &#x3E; 3),
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1]8 is always quadratic if s is even. If s is odd, r~,= { I~S ~ , and is cubic. We

find (11),

We have proved is always a simultaneous algebraic covariant of

the set (L, N, but the problem of generalization of the transvectant

formulary is formidable. We have also,

The following are among the algebraic formulae of interest when the

modulus is p,

In view of the special form of L, if Cp+S-2T+i is known and Ks is unknown,
this equation can be solved for T~8 by the methods of ~. IV, Lemma 2, (e).
We have also,

E being of especial note when its order is divisible by ~ro -1; s= a(p -1).

Covariants led by prime seminvariants.

A seminvariant with no invariant factor, which is not a product of two

seminvariants may be said to be prime. We construct covariants modulo 2

led by each prime case of the typical term of f. Such a case is a, and (cf.
the syzygies),

(11) The transvectant is always defined as having been freed from the numerical g. c. d.
of its terms as given by the transvectant operator.
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exists as a covariant. Here at is the conjugate of a under t, and ~1 is the

scale invariant,

The covariants [X4], Q[X4] , (where X4 is R(a)), are led by a+ A. If a

cubic M, led by A, exists, M+ Q[X4] will be a cubic led by a.

LEMMA. - There exists a cubic covariant which has A as its leading
coefficient. 

In outline the proof is as follows. If a function primed represents the

function’s increment with respect to (ti, t2, t3), so that and if

is a covariant, the relation expressing covariancy gives because

and A’=0. To construct lVl we partition ~1 into its two parts
1i, Â2 conjugate with respect to t and try 1i for Ai and A2 for but it is

found that li’=--A2’ =F A. The Al’, Â.2’ have six terms in common with ~1 and

four other terms. The problem then is to choose by inspection a sum Z of

terms such that ~~’ + ~’ _ ~2’ + ~’ _ ~1, for then, ~2 + ~= ~ 2 .
Then a tedious process of inspection gave the self-conjugate ~,

~= aoboco + aiboC3 + aob2C3 + atb2c2 + aobiC3 + aob2CO -~- aiboco -f - aoboci + aibico + asb2c3 .

Hence .NI is a covariant, q. e. d., with

Let then as an algebraic covariant is,

In view of (28) the formulae (30), (31) below are expressed algebraically.
If 7y is an arbitrary integral polynomial in the invariants of the set (26), now
to be augmented by A, the typical term of the f considered above can be

written as,
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By the two main reduction algorithms described above, a non-linear, (as toy

X2), covariant led by is reducible in terms of covariants led by prime
cases of but this principle will be amplified further later. We now give
tables of fundamental covariants. Each covariant is led by the prime seminvariant
above it.

TABLE I : Fundamental covariants of (’1’ f2, f3) under G6.

Covariants led by invariants.

All quantics of order &#x3E;3 are reducible modulo 2. There exists a cubic

covariant led by e, viz., Hence we have cubics led by E, and by
1 +.1. Each of the tabulated linear covariants is led by a binomial, a seminvariant

plus an invariant, the latter being zero in two cases. If we change any factor
of r. into such a binomial, without really altering f, we merely rearrange the

terms of f, but, if it is done to express f in terms of leaders of linear covariants
of table III (below), it may bring unidentified scale invariants into the absolute
term of f. The latter invariants are centrals of covariants like,

But the absolute term, in our linear covariant, must vanish identically or we
would have a linear covariant led by an invariant, an impossibility. The principle
involved is involved more explicitly in the following discussion.

To lead a covariant cubic, an invariant must not contain any term which
is left unaltered by the substitution t. In general f is a nonhomogeneous
polynomial in ao, bo, co, a, 2, T, E. It has an absolute term ro free from these
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seminvariants being therefore an arbitrary polynomial in forms of the set (26)
augmented by A.

Now, and W is the part whose terms contain as factors, one

or more invariants of the set, A, k, L’, K. In Table II are given.
cubic covariants led by these respective invariants. Multiply these cubics by
arbitrary polynomials in the fourteen invariants and add, and we have a cubic g
whose first term is Wxl. The part G is a polynomial in 4, q, I, bi , Q’ exclusively!
Each of these invariants has a term which is left unaltered by t and these

respective terms are different. Hence if ro leads a cubic h, G=0, and,

The covariant { f3, f3 ~9, in Table II is a Hessian (with no numerical factor
excepting unity), and 4z is the irreducible covariant,

d2 = ((bo + b2)xi + (b, -I- bs)x2)((bs + b2)xi + (bo + b2)x2).

The last term of the formula opposite gi is itself a covariant led by , A, and
therefore reducible. Note that h Q is a quadratic led by h.

TABLE II. - Covariants led by invariants.

Cubic order

A fundamental system of covariants of (fin, f2 , f,), (mod. 2).

A fundamental system is a set of irreducibles which suffice for the reduction

of all orders of arbitrary covariants, that is, in the present theory, y for the

reduction of all covariants of orders 1, 2, 3 whose leading coefficients are in

the form f of which rj of (29) is a typical term. If a covariant ~ is led by f,
we can construct a covariant of like order for each term of f (led by the term).
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The sum ~ of the latter covariants is a covariant and, has the

factor X2,

and ~ is reduced. The principle is due to DICKSON. The case of the term 7*0

of f was treated above. The complete story of the reduction of a covariant of

order 2 or 3 led by a composite rj (j =t= 0) involves two steps. First, construct
a covariant of the given order led by It will be multiplied by I later.
Formula (30) shows the method of construction of a quadratic of led by rj llj
or one of its factors. If we require a cubic, the formula will be of the type,

(31) 

Second, factor rj /g into two factors S, T and construct a covariant of the order
led by each factor. The covariant whese leader is is then reducible by the
first two algorithms (italicized) in our Paragraph on reduction techniques. Repeat
the process for the covariants led by S, T. Continue until the two factors required
each time become prime seminvariants. The covariant whose leader is rj will

then have been reduced in terms of covariants of Tables I, II, universal covariants,
invariants, and covariants of the first order.

Consider the fundamental covariants of order unity in x2 . Every quantic
of Table III below is irreducible in view of the Paragraph on syzygies and all
such are contained in the Table. If we should adjoin to the seminvariant system
(25) a complete system of invariants [9], some new syzygies probably would
result which would reduce some forms of Table III.

The aggregate of irreducibles from the finite number of covariants given
in Tables I, II, III, (with L, N, A, and invariants (26)), is a fundamental

system of formal covariants (mod. 2) of the set (fl, f2, f3).
TABLE III. - Fundamental covariants of order unity. - With R(Â.)=Xi,

R(E) =X3 , R(a) =X4, the irreducible covariants of the first order
in X2 are those given by the formula,

where i, j, k assume the values 0, 1, or 2, repetitions being permitted, and 6
runs through the set : I

A method for fundamental invariants, not limited to those of (26), can be

based upon the theorem stated in the last line of § IV.
Among the generalizations which are possible, beyond the more special

situations which we have described in this paper, is a theorem that the invariant
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theory of a set of polynomials in any number of variables which are subject to
linear transformations, is a correlation between two sets of invariant hyperplanes.
On the algebraic side, Hilbert’s basis theorem is the leading principle of the

correlation. (Cf. § II).
The principles of § IV can be made to apply to the concomitants of any

special linear group, used in place of G(p), and these methods are the only
ones of this generality that have been found.

VII. - Special processes (i, ii, iii).

~i) - Erosion of a solid afloat in a stream.

A suggestion for special inverse invariant processes may be obtainable from
some geometrical configuration of a structure definitely described by analytic
properties. Some segment, for example, may be given by a formula and when
the segment is assumed invariant under alterations of the configuration, some
other geometric element may become the dependent variable in a type of equation.
Solution of the equation will determine a function from its invariant.

Fig. 2.

Accordingly, consider a liquid in the form of a freely-flowing canal-stream
A in which there is a solid B of such density that its floating level is at a

depth 6. Since the upper part of a stream moves faster than the lower part,
the stream A will exert a shear upon the solid B.

PROBLEM. - To find the equation of the solid’s surface considered to be
the natural erosion product of the action.
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HYPOTHESIS. - The solid B has a vertical plane of symmetry (the XZ
plane), whose horizontal elements are stream-lines of the flow of the liquid.
The plane sections of the figure, (as P), are perpendicular to the Y-axis, (00’).

If stream and solid were at rest the condition for equilibrium is that any

pressure vector through the center of mass (taken as 0) is counterbalanced by
an equal and opposite vector through 0. The shearing pressure on B may
be described as follows. The pressure R at e, against a small square area of
an interposed vertical plane parallel to YOZ, exerted by the cube C of the

liquid, of which the square is one face, is poportional to C’s momentum. Both

mass M and velocity v, of C, are functions of a depth variable 8 (==~0~);
M=--g(O), v==f(O), and we consider 8 only between definite limits 61  9  92 .
Hence,

The effective pressure on B at e is the projection T=eu, of the vector R, upon
the normal to the surface. Thus T is expressed in terms of R and the angle
cp between R and eu. Taking eu as the diagonal of a parallelopiped of forces,
we resolve T into components, viz., ek along R produced in P ; ei in P along
the normal to the curve of section eq ; ej along the radial line ,Oe. The line

Oe is r in the polar equation of the surface and 0’e is r in the polar equation
of eq.

We resolve similarly at m, the point of B symmetrical to e, the parallel
vector S= R. Then the resultant of the pair of components through 0 is a

single vector V which reaches forward in plane XZ, and the resultant of all

vectors Y, for all pairs (e, m) of B, allowed by 6’s limits, is a single vector

[ V] which pulls B forward without rotation. At e there remain the normal

component ei, -and the component ek parallel to OX. Both of these vectors

have a shearing effect and the total shear due to R is their resultant in P.

With P, (that is, 00’), fixed, and the angle q, the vector R,
and therefore ek, are single-valued functions of 6. Hence, to any degree of
accuracy, depending upon s,

where a,..., l are numerical.

INVARIANT PROPERTY. - We assume (what is in accordance with fact) that,
as 8 varies, the segment dk, parallel to the vector ei, remains invariant.

We can then determine a differential equation of the curve eq, which involves

G(9) among its coefficients. From the shape of eq for different distances 00’,
the shape of the surface can be determined. With 0’ as origin we have,

tan 1p=rdBjdr, dk= y (constant).
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Hence,

Here G(O) may figure as an arbitrary function and y as an arbitrary constant.
The variables are not separable but a solution r=F(8) exists, and F(O) is an

instance of a function determined from one of its invariants.

---- 

Fig. 3.

GLACIERS. - Our statement of the present problem describes the flow of a deep

glacier because the bottom layer of a glacier is under such pressure that its

composition is that of semi-crystalized water [10], [11] and is capable of

flowing slowly. A boulder afloat within the bottom layer, assumed to contain

sand which aids erosion, will be ground to a form which is represented in

cross-section by the solution of equation (32). Since the writer has seen a

number of such boulders from moraines of the great glacier in Maine, we were

able to use their cross-sections as a solution r=F(8) of (32), whence we

determine G(8). These boulders, which are of granite, are true ellipsoids with

equation,
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The photographs show side view and edge view of one, of dimensions a~7

in., b=6 in., c=4.4 in. approximately (12) After G(e) had been determined as
above, we generalized it and reversed the equation (32), solving for a generalized
form of r=F(8).

Thus the curve eq was identified as an ellipse experimentally. We can

readily show that the flow of a stream will hold some principal plane of such
an ellipsoid in coincidence with the plane XZ, it being a question of chance
as to which principal plane it is. Hence we can choose the least axis (c) on
0’ Y, whence eq is,

(I constant).

Substituting this F(8) in (32) we get,

Now, the essential symmetries, special cases, and property of being an increasing
function of 0, of this 6~(0), will be preserved if we replace it by,

Using this form in (32) the integral is,

This is an (ab) section of a surface,

In the case of a glacier, the upper sign in (34), (~ro =1), gives the ellipsoid as
a product of erosion, an the lower sign gives hyperboloids. The latter are the

shapes of the hills which can survive beneath a deep glacier.
The transformations. - The form of G(8) in (33) is independent of the size

of the solid and depends only on the parameters y, p, a/b. Hence the most

fundamental transformation leaving dk invariant is the ternary linear tran-

sformation T which carries an ellipsoidal E into an ellipsoidal E’ and leaves
the axes of E’ proportional respectively tho those of E. Thus under r,

we should have,

If we assume (36) to be an identity we can solve for some of the Ài, vi,

(’2) - Found on Cape Ann Mass. by MR. W. H. BARKER of Lansdowne, Pa.
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(six in the case ~ro =1), in terms of the rest as independent parameters. We
have carried out the work for p =1, as shown in what follows.

We note first that the determination of all binary transformations,

for which,

is a special solution for transformations which leave dk invariant, that is, which
leave the ellipse eq relatively invariant. We readily determine t, as,

When we substitute, from r in (36), we obtain; (p =1),

To derive elimination formulas which will be free from extraneous factors the

following plan must be pursued. Eliminate 13 between the first, fourth and

fifth equations (37), leaving five equations in eight unknowns, three being free
from ~2. Eliminate A2 and we then have,

together with enough auxiliary equations to eliminate fl2, v3 from Ai, leaving
the latter a function of It,, vi, vz . The solution may then be completed readily
and is as follows, when expressed in the form of a transformation T;

In this result the essential irrationalities, assumed real, are
in which
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If s stands for the alterations under which dk is invariant, dk is relatively
invariant under sT. ,

(ivi) - Functional relations between the masses of the planets in a system.

It is known that the integral,

of the equation of central orbits,

involves, as a parameter, the mass m of the moving body, here assumed to
have the dimensions of a planet. A finite segment of the orbit can therefore

be represented by an equation,

The are rational, integral quantics with real coefficients [12], y

in which m has a range of continuous variation but so small that the orbital

perturbations caused by the variation are not sufficient to render the orbit

unstable. The parameter m cannot be varied ab initio over the masses of

the sequence of planets in a central system.
For any value 03B8 in (39) the distances from the center of force o to the

respective planets are given by a generalized form of BODE’S formula, viz.,

being the distance from o
to planet number i, and necessarily given by observational measurements.
It is obviously an algebraic simplification to subtract h from the roots of

m), and multiply the roots of the result by These processes lead to

equations of fictitious or auxiliary orbits,

each of which is moved outward by one space if we multiply the roots of r(r, m)
by Here 8 should be allowed only a small variation which, by a choice
of axes, may be held near to zero. With z known we will therefore have the

following as an orbital system;
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The independence of these equations can be emphasized by using a different

letter m in each; also a different r. Relations between the different masses can

be shown to exist by means of (41), but more simply as follows. If we form

an equation like (39) for the orbit qe+2, its auxiliary will have an equation,

Since the equation for the mass m’ is unique and A, may be assumed to be
of the same order as yv we have,

whence the functional relation between m’ and m must be linear, that is,
homographic in general,

If Åv is the same function as yv, (43) is a relation of covariancy of yv under
direct transformation by H. Therefore a homographic relation between the

masses of any two planets, correlating their respective orbital equations, will

exist if an expansion (41), of generality sufficient to represent the system of

orbits, can be formed, having covariants of H as the yz .
The key to this construction is the periodic homography. The period must

be greater than the number of planets in the system. The homography H will
be periodic, and will have the period w mentioned concurrently, if the parameters
satisfy one of the following relations. Each generates a formal cyclic
group. 

"

The following propositions are important, though, for the sake of brevity,
proofs are omitted.

A homography of period three combined with one of period five is a

homography of period fifteen, thus some higher orders, also, are represented
in the list.

If a set of real numbers ml, m2 ,u., are permuted in a simple cycle by a

homography in which the parameters are complex imaginaries, then mi, m2,...
can also be permuted cyclically by a homography H whose parameters are

real. Hence only real homographies need be considered here.
If a homography is periodic with period &#x3E;2, its poles are imaginary.

Covariants of periodic homographies. - Iteration of an H(p’,p) of period

Annali della S’cuola Norm. Sup. - Pisa. 6
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w gives a set S of linear fractional functions which are permuted cyclically by
the transformation. When w=3 the set is,

When the cycle of w functions is known, the quantic in homogeneous inde-

terminates X2 which has the functions as roots, is a covariant under direct

transformation by XIIX2), since the transformation on Xi/X2 induces
a cogredient transformation on the roots, which are therefore merely permuted.
With w=3, the covariant is,

and the transformations are,

where ~ is arbitrary. From RP= P’ we find,

D~3 being the determinant of R. We can (Cf. (41)), i. e.
choose the modulus of P for z. We also require an absolute covariant. Let

Pi, P2 be two covariants of type P, order w, and modulus of Xi/X2)
of period w. Then, by polynomial approximation,

can be expressed in the form,

In the finite region delimited by the determinations (Qi, X(i» used in calculating
Q(x), the latter is an absolute E - covariant of H.

We have now determined (40) so the yv will have the required invariant
properties (43) under a periodic H(x, x’). When (42) is the same as F, (ci
arbitrary constants),

then (41) is the same as HeF, except for E-terms, He being the e-th iteration
of H, q. e. d.

All masses of the planetary system can be obtained from the second mass

by the iteration of a properly calculated H(m, m’), but the first, obtainable

from the inverse of H, should not be used as a basis for the calculation of H.
The main practical object is the determination of H.
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The system of moons (planets) of Saturn.

We chose the system of moons of Saturn as the planetary system most

likely to give accurate results as a numerical instance of the above theory.
That is, the generalized Bodeian law for the distances of these moons (from
Saturn), gives, with the value z=1 · 3 as the Bodeian ratio-number, accurate

values of the distances. [12] This system is the best known illustration of the

Bodeian principle.
We substituted successively in the equation,

for (m, m’), (xa Enceladus, ya Tethys), (ya Tethys, .187a Dione), (. 187a
Dione, .4a Rhea), and solved for the ratios a2/flll, This gives
the homography,

Beginning with m= ·4a (Rhea) we iterated this H four times, that is, across

four Bodeian intervals, from Rhea to Titan and equated the result to 21 (Titan).
The unit of mass here is a/100000, a being the mass of Saturn. Numbers

such as .187a (Dione) were treated as if exact but, as this computation
progresses, no decimal number should be cut off, as sufficiently accurate, short
of fourteen decimal places. We thus obtain an equation, J=0, of order 12 in
(x, y). Knowing that the mass of Enceladus is near .025a, we construct a

series of solutions (x, y) of J= 0 with x in the vicinity of 025a. One such
solution, substituted in H(m’, m), would give to H its desired numerical form,
except that H itself imposes certain arithmetical restrictions. All results of its

iteration, in numerical form, should be positive numbers. Hence C and D

should be opposite, and C and A the same in sign. Also the zero - aB~A
and the singularity -aD/G should be near together in value, for if any m’

produced by iteration falls within the interval I between the zero and the

singularity, the next m’ will be negative. It is soon seen that the value .025a,
which astronomers have published for xa (Enceladus), is the most favorable

x-value in our series of solutions (x, y) of J=0. The latter equation then

becomes an octic in y, the pertinent solution of which is ya= ~ 137241a (Tethys).
The uniqueness of the resulting H in the vicinity (x, y) considered on J=0,
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appears to be a case of an important theorem yet unproved. Our final result
for His,

The poles of Hi are imaginary as the theory requires.
Substituting m’==: .025a (Enceladus) in Hi and solving for ’fn we get,

m= .2727112a, (Mimas). The results obtained by iterating Hi across the
seventeen Bodeian intervals from Mimas to Phoebe are shown in Table IV

wherein the numbers in parentheses are the mass-values given previously in
astronomical tables.

TABLE IV. - The mass-values of the moons of Saturn.

The small revision of the mass of Faustina should be explained. The mass

given by H," is m’ _ .23308a and this value is on the interval I between the

singularity and the zero of I(.205716a, .25704a). Trial calculations show

that this impasse cannot be corrected by small alterations alone of the mass

of Enceladus ( · U25a). It is a result of the several possibilities for small errors
which we have mentioned but especially of the fact that we have treated the

mass of Dione and that of Rhea as if they were exact. Accordingly we

arbitrarily replaced the value .23308a by .264a thus moving the mass-value
for Faustina a little way out of the interval I. It is perhaps fortunate, since

we cannot expect perfect accuracy, that, after eleven iterations, we have a
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method of introducing a corrective alteration that is both definite and much

restricted. Wishing to avoid conjectures, we do not account for the fact that
the mass-value obtained for Mimas is too large.

The fact that a unique homography so accurately produces the mass-values
of this planetary system appears to be a contradiction of the idea that chance
has played any essential part in the cosmic creative processes, as far as the

sizes of the planets of a central system are concerned [15].

(iii) - Invariants in the theory of orbits.

Further variety in the program of inverse processes in invariant theory may
be obtained and this will be evident from our third special problem. The

question next considered is that of the determination of the equation of the

orbit of a celestial body from its invariants of stability. We derive the equation
of the arbitrary stable arc of finite length. Most of our illustrations were drawn

from the theory of the comets. The problem of the invariance of periods of
revolution is considered.

The stabilizing invariants.

A curve is said to be a stable orbit of a celestial mass if the curve’s position
and form are such that the central forces will constrain the mass to move on

the curve. Since least action is a vital principle in central motion we regard
the form of the orbital curve, and not the form of the force-function I’ in (38),
as the element expected to have essential simplicity [13]. In a previous paper
[12], I have derived the most general form of F in order that the orbit should
be stable. It is,

p(r) ~ arn-i + brn-2 +... -t k), r being the distance of the astral body
from the center of force. Another definition of a stable arc would be, any integral
curve of (38) when F has the value (44). For increasing integral values of .

n, Gn is an increasingly accurate gravitational formula. The number a decreases
rapidly as n increases. We can say that G5 is « practically accurate &#x3E;&#x3E; for

astrophysical theory, and,

It is important that the potential rG5(r) is nearly reproduced, with sign reversed,
by the reciprocation r =1lr’.
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The segment of the orbit, for which (44) is valid as the force, has the

equation,
r

but (39), which we express more simply as,

can also be the equation of this segment. If we make (46) and C identical, we
obtain n - 2 rational expressions in v,..., n, the vanishing of which are necessary
and sufficient conditions that C should be stable. These expressions,

are invariants and may be called invariants of stability. When n=5,

THEOREM. - The equation of any stable finite arc, (n=5), can be expressed
in the form,

where (x, y) are the (cartesian) coordinates of a common intersection of
the three curves,

In proof of this theorem, the elimination of v between C25 = O, and ~35 ===0,
gives,
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Substitution of these values v, $ in Ci5, (i=1, 2, 3), gives (48). The equations
from (46) onward hold within the field ( Y) of approximation which is assumed
when C is derived by polynomial approximation. The powers of O/n, which

are involved as factors against the expressions (48) were cancelled. They are

small for some units of distance and large for other units, while the set (48)
is unaltered by a change of units. That is, the equations hold regardless of

the factors, q. e. d.

A solution of (48) is x=.5934, y=.1763, this x being a root of (49). If

we use n=6, the equation of C will be (47) with the term 

added to the right hand side. Then (x, y, zi) is the common intersection of four

algebraic surfaces, and the new (x, y) will be a little more accurate than the

(x, y) of (48).
To find the substitutions for which the Cin are invariant, we may use the

generators of the algebraic Q, (Cf. (1), § I), as given by DICKSON

When these in succession are tried on the homogeneous form of C, it is found

that only Sk leaves Cin invariant, q. e. d.

The arbitrary phase of the ground-function (47) depends upon the arbitra-
riness of e. There is but one intersection of (48).

Equation C is in the rational or parabolic form. We shall be able to compare
it with the general functional form in certain cases.

Can an ellipse which is very eccentric be the permanent orbit of a comet

_ 

HALLEY’S is a typical comet, and its orbit has been considered to be an

ellipse of large eccentricity, which is described to a close approximation by the

following data. (The ellipse of the data is a little longer than that of the comet).
We refer to the ellipse of the data as Y, and we can proceed as if the orbit

had been transferred to the ecliptic.

Unit of distance 22046875 miles ; semi-axes a=80, b =20,
Perihelion distance Z)=~(l2013o)=2.5403, ( = 56006000 miles),

Aphelion distance r1’ = 157.459667, (=3471493600 miles),distance rs =157 · 459667, (= 3471493600 mlles),

Eccentricity ~ I

Equation
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The aphelion is on the positive polar axis and has the coordinates (r1’, 81’), viz.,
(80 + 20 ~15, 0). The intersection of Y with the mean orbit of Jupiter ; (Mean
distance from the Sun 483000000 miles), is the point Qz : (182’, (}2’), viz.,
(21.90786, .648351). We shall prove the following,

LEMMA 1. - An arc of the ellipse Y, chosen in the vicinity of the
irctersection of Y with the orbit of Venus, is not a stable arc.

Five points on Y in the vicinity noted are Pi : (ri, Ðlad.), as follows; (The
mean distance from the Sun to Venus being taken as 67000000 miles),

The equation,

determined by these points is,

It is the equation of the arc In order to determine whether it is a case

of the type-form (47) we calculate the results,

Comparing these numbers with the respective coefficients of r4 and r3 in (52)
we conclude that the discordance is too great and that it cannot be corrected.

No ellipse of large eccentricity will satisfy this test for stability.
If a comet travelling on an ellipse Y is considerably perturbed in the region

corresponding to its intersection with the orbit of Venus, it will not reestablish
Y as its orbit. The question therefore arises, what closed curve, possible as the
orbit of a comet, possesses the property of stability throughout its length ? [14].

The central force which engages a comet.

We obtain the answer to this question from the standpoint of formula (44)
which includes the central force for the case of any stable central motion of a

single mass.
Whether a comet is an inert remnant of the primordial nebula (SIMON

NEWCOMB) or a composition within which some chemical action, involving an
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effect of illumination, is taking place (W. W. CAMPBELL), or a cloud which has
integrated from the substance of a « planetary nebula &#x3E;&#x3E; surrounding, distantly,
the Sun, it is a reasonable conjecture that its motion is mechanically equivalent
to a mere flight of particles which influence each other gravitationally only in
a measure insufficient to destroy the stability of central motion of any consti-
tuent particle. 

Let the origin 0 (Fig. 1) be the center of the force (Sun). Project all of

the aforesaid particles of the comet by dropping a perpendicular from each to
the plane of the orbit of the nucleus. The feet of these perpendiculars will

trace central orbits, each having the property of stability, and a chosen group
of these orbits will be properly contained in a region po. The equation of a

chosen orbit Ci in ~Oo is given by the formula (13), that is,

Here r is continuous over a range e &#x3E; l&#x3E; 0. and p is a number of a point-set
on a segment (,u t~?,... , 

In the perturbational field z immediately surrounding p may be regarded
as the mass m of a particle of which Ci is the orbit Cf. (40). We choose the
lower bounding radius, of as the polar axis, and assume

POSTULATE 1. - The angular width Oo of 0,, is of such smallness that

s within ( Y), s being taken from the transformation To which returns
a perturbed orbit of 7: to its primary C,, (Cf. Ri’ p, 301),

We note that , G(r) of (44) was derived by means of To, and secondly that,
with g conveniently extensive, the effect of angular narrowing of go is to make

the orbital arcs in go like eccentric ellipses focal at 0 rather than approximate
circles centered at 0.

The formal inverse of (53) is now, 0). Expressing 1p on O by
polynomial approximation, (0==0, 92 = 0 in eo),

In the central force-function for a stable orbit y viz.,

’e may now use for p(r), that is, h(r) for p(r), since sOo == 0, and
 8o in go . We then find, ,
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POSTULATE 2. - The mass m is small, such that the bracket expression
in (55) is zero, in (Y)

In point of fact the mass of a whole comet may be small enough to satisfy
this postulate, but we can assume this only for the mass m of one of its

particles. Moreover, when advantage results from the broader interpretation,
we can replace r by ri + w in To, and in (54), giving a new p, a new set

A,..., Xi, and therefore a new h and hi. The first G is reproduced with ri

in place of r and (55) becomes G(ri). Stability of (46) is preserved by this

transformation if the positive w is properly limited above. Therefore,
THEOREM. - The central force, as it acts upon the diffuse mass called

a comet, is equal in ( Y), to the formula of the inverse cube, J(r)=r2/(r-w)3.

The transcendental equation of the orbit.

When is substituted for the arbitrary F(llu) in (38), i, e., in

the equation can be integrated and the result is,

Arbitrary constants are x, q, a, the latter being a function of V/y2. This orbit

is a double spiral (R2, p. 244). In the vicinity of the origin it consists of two

oppositely directed whirls, each approaching asymptotically the small circle r=w,
this circle being a species of ROCHE limit. In the outer part of the plane the
curve is a single oval. Its aphelion point may be, in fact, at infinity but we

give attention only to cases where the aphelion Q, is at a finite distance from 0.
We shall assume OQi as the positively directed polar axis. By definition the

outer node 8 of the curve (in the negative direction from the Sun) is the

perinodal point and the next consecutive node v, on the positive side of the

Sun is the anodal point.
LEMMA 2. - The polar axis can always be chosen so as to be a unique

line of symmetry of the curve (56).
If we rotate the polar axis through an angle - 03B2, the equation (56) is

transformed into,

Write,

then,
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a unique result, assuming that q, x, a are different from zero. The equation
now becomes,

and it is evident that the positive coordinate axis is a line of symmetry; (If
~r’, 9’) is on the curve, (r’, - 0’) is also), q, e. d.

The conclusion is forced that (57), for properly chosen a, ~, w must be an
approximation of an ellipse which’ is focal at the Sun. A special case is where
we would make (57) coincide as near as possible with the orbit of HALLEY’S,
comet that is, with Y of (50). We would substitute the numerical coordinates
of three points for (r, 0) in (57) and solve for a, ~, w. These points are the
coordinates (r1’, ~1’) of the aphelion the coordinates (r2’, 02’) of the point
where Jupiter’s orbit intersects Y, and (r3’, 03’)=--(24-99251, .613444). We
would then plot (57) and Y together making them coincide as nearly as their
respective equations permit.

This work can be simplified some by means of a preliminary theorem
about a. Let (r2, ()2), (r2, - ()2), be any two points symmetrically situated on

an orbit (57), and (ri, 0) the aphelion. Then,

whence,

and we obtain a general formula for a,

The function a remains invariant when the point (r~, 82) is moved along the
curve.

In the determination, described above, of a special equation (57), where,

we find,

The equation of the orbit is, therefore,
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Figure 4 shows the curve (59) and the ellipse E Any arc of (59) satisfies

the conditions for stability given by (47).
The equation (57) can be made to represent, closely within the solar system,
an ellipse, a parabola, or a hyperbola, by proper choices of the set (a, ~, w) [14].
More than two hundred of the observed orbits of comets could not be distin-

Fig. 4.

guished from parabolas. Related to the properties of the transcendental curves
is the fact that the great comet of 1811, which was perturbed from its normal

course by Jupiter’s attraction, at the beginning of its recessive motion, approxi-
mated 3v as its path. A comet must have such momentum that it will span
the perinodal region as a projectile. The jump required will be of almost zero
duration if the radius w is but little less than the comet’s perihelial distance.

The node 6 is an « almost minimal » point.

The period of Halley’s comet. Invariant periods.

We give a simple determination of the period of HALLEY’S comet. An equation
from the known theory of central motion, (center of force at 0), which involves
the time variable t, is

dt =-- r2doly.

The time required for a planetary body N to complete a revolution around 0
on a simple closed circuit r=F(6) may therefore be written,

If r==F(O) is the equation (57), the indefinite integral of r2 is,
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Particularizing (57) to (59), W(O) becomes a numerical function of 0. Accepted
Astronomical data give this comet (HALLEY’s) a speed of « about one mile per
second» at aphelion. We shall use this speed as .6914 miles per second, or

...

miles in 70 days on a circular arc Q, (center of circle at 0), which is bisected
by the aphelion point. Hence Q is an arc of radius,

miles. The angle subtended at 0 by S~ is,

With time-unit --- one day, we have

The period of this comet is, therefore,

The next return to perihelion of this comet will be in 1986.

* * *

LAPLACE (1749-1827) emphasized the importance of the invariability of the
period of the Earth’s revolution around the Sun, and referred to this invariance
as « one of the most remarkable phenomena in the system of the universe » [15].
Thus he was among the first to recognize an invariant; was second only to

LAGRANGE who had noticed, in 1773, the invariance of the discriminant of a

binary quadratic quantic under a linear transformation. No complete analytic
proof of LAPLACE’S invariance has ever been given. We here prove a theorem
which includes, as a special case, the invariance of the Earth’s period.

We have stated that (46) is the equation of only a segment of the orbit

which corresponds to G(r) as the force, but, if the segment is of length above
some definite minimum there will be enough discrete points upon it to determine
the orbit completely. This being assumed, G(r) may be regarded as the force

at any point on the stable orbit. Its general equation can therefore be determined.
We have only to integrate.
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With,

and,

the integral is,

We can now identify, y

that is (46), with any arc of the orbit, assuming the latter to be a closed curve
of one circuit, for, since (60), (61) are the same functional forms on the arc,
we have,

Note also that the hyperelliptic integrand in the case of any orbit, becomes

rational when the orbit is stable.

We shall refer to a maximum (of r) on the segment (61) as an aphelion
and to the next consecutive extreme, a minimum, if existent on the segment,
as a perihelion.

LEMMA 3. - The aphelion and perihelion distances are roots 
In fact, from (61), and, since we have assumed the existence

of the extremes, the Lemma follows from the elementary theory of such extremes.
THEOREM. - The time of rotation from aphelion, (r=a), to perihelion,

(r=v), on a stable orbit as represented by (61), is an e-invariant under

the arbitrary perturbations taken as equivalent to the transformation,

Our proof is a follows. The equation used above to introduce the time-

variable t, can be written,

Therefore the time of rotation from aphelion to perihelion is,
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When we transform z by To, since a, v are roots of p(r), the limits of the

integral remain unaltered. We consequently obtain,

If the orbit is that of the Earth, v is so near in value to 6 that the e-term

is of the second order of magnitude and negligible. If the orbit is that of

HALLEY’S comet there is an aphelion distance but no proper perihelion. The

arc upon which the comet makes its circuit about the Sun may be said to provide
a weak perihelion, (r = v). There will remain, however, an e-term which can be
made small but not zero by decreasing E . It is known from observations that

the period of the comet is not exactly invariant but depends upon the relative
positions of the planets when the comet passes through their field.
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