Annali della Scuola Normale Superiore di Pisa *Classe di Scienze*

RAGHAVAN NARASIMHAN

A note on Stein spaces and their normalisations

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3^e série, tome 16, nº 4 (1962), p. 327-333

<http://www.numdam.org/item?id=ASNSP_1962_3_16_4_327_0>

© Scuola Normale Superiore, Pisa, 1962, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A NOTE ON STEIN SPACES AND THEIR NORMALISATIONS

RAGHAVAN NARASIMHAN (Bombay) (*)

§ 1. Introduction.

It is well known that every open Riemann surface is a Stein manifold. But no proof has so far appeared of the corresponding statement for complex spaces of dimension one (with arbitrary non-normal singularities) viz. that every (reduced) complex space of dimension one, which has no compact irreducible components, is a Stein space. The object of the present note is to give a proof of the following theorem on complex spaces, of which the statement made above is a particular case in view of the fact that every normal complex space of dimension one is nonsingular (i. e. a disjoint union of Riemann surfaces).

THEOREM 1. A (reduced) complex space X is a Stein space if and only if its normalisation X^* is a Stein space.

A corollary to this statement is the following.

A complex space all of whose irreducible components are Stein spaces is itself a Stein space.

Of course, this statement becomes trivial if we replace «irreducible components » by « connected components ».

§ 2. Preliminaries.

Let (X, \mathcal{H}) be a complex space in the sense of Grauert [3] and (X, \mathcal{O}) the corresponding *reduced* complex space; for $x \in X$, \mathcal{H}_x may contain nilpotent elements, while \mathcal{O}_x does not. If \mathcal{H}_x contains no nilpotent elements, then $\mathcal{H}_x = \mathcal{O}_x$.

^(*) Supported in part by AF-EOAR Grant 62-35.

Let (X, \mathcal{O}) be a reduced complex space. We call X a Stein space if it is holomorph-convex [i. e., for any infinite discrete set $D \subset X$, there is a holomorphic function f for which f(D) is unbounded] and if holomorphic functions separate points of X. The following theorem is well known [1].

THEOREM a. Let (X, \mathcal{O}) be a paracompact reduced complex space. Then X is a Stein space if and only if for every coherent analytic subsheaf $\mathcal{I} \subset \mathcal{O}$, we have

$$H^1(X,\mathcal{I}) = 0$$

If (X, \overline{O}) is Stein, then for any coherent analytic sheaf S, we have $H^q(X, S) = 0$, $q \ge 1$.

The following theorem can be deduced from Theorem a; see $[3, \S 2, Satz 3]$.

THEOREM b. Let (X, \mathcal{H}) be an arbitrary complex space for which the corresponding reduced space (X, O) is Stein. Let S be any coherent \mathcal{H} -sheaf. Then we have

$$H^{q}(X, S) = 0$$
 for $q > 1$.

Let now X, Y be two reduced complex spaces and $\pi: X \to Y$ a proper holomorphic map with discrete fibres. Let S be a coherent analytic sheaf on X and let $\pi_{\nu}(S)$ be the ν^{th} direct image of S under π , i. e. for any open set $U \subset Y$, we have

$$H^{0}(U, \pi_{\nu}(S)) = H^{\nu}(\pi^{-1}(U), S).$$

Then we have [5, Satz 27]

THEOREM C. $\pi_{\nu}(S) = 0$ for $\nu \ge 1$, $\pi_0(S)$ is a coherent analytic sheaf on Y. We require also the following theorem [4, Satz 6]

THEOREM d. Let X, Y be complex spaces, and $\varphi: X \to Y$ a holomorphic map. Let S be an analytic sheaf on X. Suppose that for $\nu \ge 1$, we have $\varphi_{\nu}(S) = 0$. Then, for $\nu \ge 0$, we have

$$H^{\nu}(X, S) = H^{\nu}(Y, \varphi_0(S)).$$

Let now (X, \overline{O}) be a reduced complex space. X is called *normal* if for any $x \in X$, the local ring \overline{O}_x is integrally closed in its complete ring of quotients.

To every reduced complex space (X, \mathcal{O}) corresponds a «normalisation» $(X^*, \mathcal{O}^*) \cdot (X^*, \mathcal{O}^*)$ is a normal complex space, and there is a proper

holomorphic map $\pi: X^* \to X$ which is onto and has discrete fibres. If $\widetilde{O} = \pi_0(O^*)$, then for $x \in X$, \widetilde{O}_x is the integral closure of O_x and if $A \subset X$ is the singular locus of X, then $\pi \mid (X^* - \pi^{-1}(A))$ is an analytic isomorphism onto X - A. \widetilde{O} is a subsheaf of the sheaf of germs of meromorphic functions on X.

§ 3. Proof of Theorem 1.

Let (X, \mathcal{O}) be a complex space for which the normalisation (X^*, \mathcal{O}^*) is Stein. Let \mathcal{I} be a coherent sheaf of ideals, i. e. an analytic subsheaf of \mathcal{O} on X. Let $\widetilde{\mathcal{O}} = \pi_0(\mathcal{O}^*)$ where $\pi: X^* \to X$ is the canonical map. For $x \in X$, let \mathcal{W}_x be the largest ideal in \mathcal{O}_x such that $\mathcal{W}_x \cdot \widetilde{\mathcal{O}}_x \subset \mathcal{O}_x$ and let $\mathcal{W} = \bigcup_{x \in X} \mathcal{W}_x$.

Then \mathcal{W} is an analytic sheaf on X; moreover, it is a *coherent* analytic sheaf on X; see [6 § 2 Prop. 9 and remark which follows Prop. 9].

Let \mathcal{F}^* be the analytic inverse image on X^* of the coherent analytic sheaf \mathcal{W} . \mathcal{I} (i. e. \mathcal{F}^* is the tensor product of the topological inverse image of $\mathcal{W} \cdot \mathcal{I}$ and \mathcal{O}^* over the topological inverse image of \mathcal{O}). Then \mathcal{F}^* is a coherent \mathcal{O}^* -sheaf [4, § 2, (g)].

Let $\mathscr{F} = \pi_0(\mathscr{F}^*)$. By Theorem c, \mathscr{F} is a coherent \mathscr{O} -sheaf. Morevoer, since $\mathscr{W} \cdot \widetilde{\mathscr{O}} = \mathscr{W} \cdot \pi_0(\mathscr{O}^*) \subset \mathscr{O}$, it follows that \mathscr{F} is a subsheaf of \mathscr{O} and in fact of \mathscr{I} . Finally we remark that by Theorem c, $\pi_{\nu}(\mathscr{F}^*) = 0$ for $\nu \geq 1$, so that, by Theorem d, we have

$$H^{q}(X^{*},\mathcal{F}^{*}) = H^{q}(X,\mathcal{F})^{*}$$

By Theorem a, we have $H^q(X^*, \mathcal{F}^*) = 0$ for $q \ge 1$, so that we conclude that $H^q(X, \mathcal{F}) = 0$ for $q \ge 1$.

We shall first prove Theorem 1 for spaces of finite dimension. Let n be the complex dimension of X, and suppose inductively that Theorem 1, has been proved for all spaces of dimension $\leq n - 1$. We then assert that any closed nowhere dense analytic set Y of X is a Stein space. This follows from the following lemma, and the inductive hypothesis.

LEMMA 1. Let (X, O) be a reduced complex space for which the normalisation (X^*, O^*) is Stein. Then, for any closed analytic set $Y \subset X$, with the induced reduced structure from X, the normalisation Y^* is Stein.

The proof will be given later.

We go back to the proof of Theorem 1 in the special case.

Let $\mathcal{I}, \mathcal{W}, \mathcal{F}$ be as above and consider the exact sequence

$$(*) \qquad \qquad 0 \xrightarrow{} \mathcal{F} \longrightarrow \mathcal{F} \longrightarrow$$

Now, since $\pi \mid X^* - \pi^{-1}(A)$ is an analytic isomorphism and, for $x \notin A$, $\widetilde{O}_x = O_x$, we see that $\mathcal{W}_x = O_x$ for $x \notin A$ and $\mathcal{F}_x = \mathcal{F}_x$ for $x \notin A$. Hence the set Y of points $x \in X$ with $\mathcal{W}_x \neq O_x$ (which contains the set of points where $\mathcal{F}_x \neq \mathcal{F}_x$) is a nowhere dense analytic set in X, and so, with its reduced structure, is a Stein space. Moreover, if S is the restriction of \mathcal{I}/\mathcal{F} to Y, then S is a coherent \mathcal{H} -sheaf, where \mathcal{H} is the restriction of O/\mathcal{W} to Y [6, § 2, Théorème 3]. Now, by our remark above (inductive assumption and Lemma 1), Y is a Stein space. Hence, by Theorem d, $H^q(Y,S) = 0$ for $q \ge 1$. But since $H^q(Y,S) \approx H^q(X,\mathcal{F}/\mathcal{F})$, we conclude that $H^q(X,\mathcal{I}/\mathcal{F}) = 0$ for $q \ge 1$. Hence, since, $H^q(X,\mathcal{F}) = 0$ for $q \ge 1$, we deduce from the exact cohomology sequence associated to (*), that $H^q(X,\mathcal{F}) = 0$ for $q \ge 1$; because of Theorem a, this concludes modulo Lemma 1 the proof of Theorem 1 in the special case when X has finite dimension.

For the proof of Lemma 1, we require the following result.

LEMMA 2. Let X, Y be normal complex spaces (reduced) and $\pi: X \to Y$ a proper holomorphic map with discrete fibres onto Y. Then, X is Stein if and only if Y is Stein.

PROOF. The fact that if Y is Stein, then so is X follows at once from [2, Satz B]. Conversely, suppose X Stein. We may suppose X and Y connected. Then, there is a nowhere dense analytic set $M \subset Y$ such that $\pi \mid X - \pi^{-1}(M)$ is an unramified covering of Y - M (say with p sheets); we may suppose also that M contains the singular locus of Y. Then, if f is holomorphic on X, and, for $y \in Y - M$, $a_r(y)$ is the r^{th} elementary symmetric function of the values of f at the points of $\pi^{-1}(y)$, then the $a_r(y)$ remain bounded as $y \to y_0 \in M$ and since Y is normal, can be extended to holomorphic functions a_r on Y. Moreover, we have $f^p(x) + \sum f^{p-r}(x)a_r(\pi(x)) = 0$.

It is now obvious that if |f| is unbounded on a set $D \subset X$, then at least one a_r is unbounded on $\pi(D)$. Since X is holomorphonetry, so is Y. Now Y can contain no compact analytic set T of positive dimension since $\pi^{-1}(T)$ would then be a compact analytic set of positive dimension in X, and this cannot exist since holomorphic functions on X separate points. If we use the fact that a holomorph-convex reduced complex space which contains no compact analytic sets of positive dimension is Stein (an easy consequence of [2, Satz B]), we see that Y is Stein. PROOF OF LEMMA 1. Let $\pi: X^* \to X$ be the natural map, and $Y^1 = = \pi^{-1}(Y)$. Since Y^1 is a closed subspace of the Stein space X^* , Y^1 is Stein. Hence, by [2, Satz B], its normalization \widetilde{Y} is Stein. Clearly, we have a proper holomorphic map $\varphi: \widetilde{Y} \to Y$ which has discrete fibres. Let Y^* be the normalisation of Y and $\pi^1: Y^* \to Y$ the natural map. Since \widetilde{Y} is normal, there exists a holomorphic map $\varphi^1: \widetilde{Y} \to Y^*$ such that $\pi^1 \circ \varphi^1 = \varphi$. Since, clearly φ^1 must be proper, surjective and have discrete fibres, and since \widetilde{Y} is Stein, we see, by Lemma 2, that Y^* is Stein, which is Lemma 1.

To prove Theorem 1 in the general case, we proceed as follows. Let X_k , k = 1, 2, ... be the union of the irreducible components of dimension $\leq k$ of X. The normalisation of X_k is a union of connected components of X and so is Stein. By the special case of Theorem 1 which is already proved, each X_k is Stein.

Let now D be any discrete subset of X and let $D_k = D \cap X_k$, $E_1 = D_1$ and $E_{k+1} = D_{k+1} - D_k$. Let h be a holomorphic function on D (i. e. assignment of a complex number to each point of D) and, for $k \ge 1$, h_k the restriction of h to E_k . Since X_1 is Stein, there is a holomorphic function f_1 on X_1 , so that $f_1 | E_1 = h_1$. Clearly $E_2 \cup X$, is a closed subspace of X_2 , so that there is, since X_2 is Stein, a holomorphic function f_2 on X_2 such that $f_2 | X_1 = f_1, f_2 | E_2 = h_2$. Proceeding thus, we construct f_{k+1} holomorphic on X_{k+1} so that $f_{k+1} | X_k = f_k, f_{k+1} | X_{k+1} = h_{k+1}$. If $f = \lim f_k$, then f is holomorphic on X and clearly f | D = h. Hence X is itself. Stein, and this proves Theorem 1 in the general case.

Using Theorem 1 and Lemma 2, it is possible to prove Lemma 2 without the assumption of normality. We formulate this as a separate Theorem.

THEOREM 2. Let X, Y be reduced complex spaces, $\pi: X \to Y$ a proper holomorphic map onto Y. Then, if X is Stein, so is Y.

PROOF. Since X is Stein, X contains no compact analytic sets of positive dimension. Hence every fibre of π , being a compact analytic set, is a finite set.

Let X^* , Y^* be the normalisations of X, Y respectively and $\pi_X : X^* \to X$, $\pi_Y : Y^* \to Y$ the corresponding projections. Let $\varphi = \pi$ o $\pi_X : X^* \to Y$. Then φ is a surjective proper holomorphic map of X^* onto Y with discrete fibres. Since X^* is normal, there is a holomorphic map $\varphi^1 : X^* \to Y^*$ which is surjective, so that $\pi_Y \circ \varphi^1 = \varphi$. Since X is Stein, so is X^* ; by Lemma 2, so is Y^* . By Theorem 1, we deduce that Y itself is Stein.

. Finally we give a sketch of a direct proof for spaces with isolated singularities in particular, for spaces of one dimension. This proof has the

« merit » of not depending on the heavy machinery of direct and inverse images of analytic sheaves.

Let X be a reduced complex space with isolated singularities, A the set of singular points of X and X^* the normalisation of X. We suppose that X^* is Stein. Let $\{Xk^*\}$ be a sequence of relatively compact open sets in X^* with the following properties.

a) X_k^* is Stein, $X_k^* \subset X_{k+1}^*$ and $\partial X_k^* \cap \pi^{-1}(A) = \emptyset$ [here $\pi: X^* \to X$] is the natural map.

b) X_k^* is X^* -convex, i. e. if K is a compact subset of X_k^* then $K = \{x \in X_k^* | f(x) | \leq \sup | f(K) | \text{ for all } f \text{ holomorphic in } X^* \text{ is compact.} \}$

Let $X_k = \pi (X_k^*)$. We assert that (i) X_k is Stein and that (ii) X_k is X_{k+1} -convex. It then follows that X is Stein.

PROOF OF (i). Since $X_k^* \subset X^*$, for any f holomorphic in X_k^* which vanishes on $X_k^* \cap \pi^{-1}(A)$, there exists an integer $\lambda > 0$ so that $f^{\lambda} = g \circ \pi$ for some g holomorphic on X_k . Clearly we may find, for any $x_0 \in \partial X_k$, an f holomorphic on X_k^* , vanishing on $X_k^* \cap \pi^{-1}(A)$, such that $|f(y)| \to \infty$ as $y \to y_0$ if $y_0 \in \pi^{-1}(x_0) \bigcap \partial X_k^*$.

If λ is such that $f^{\lambda} = g \circ \pi$, then clearly $|g(x)| \to \infty$ as $x \to x_0$. Hence X_k is holomorph-convex. As in the proof of Lemma 2, X_k has no compact analytic sets of positive dimension and so is Stein.

PROOF OF (*ii*). If K is a compact set of X_k and $x_0 \in \partial X_k$, then, there exists f holomorphic on X_{k+1}^* , vanishing on $\pi^{-1}(A) \bigcap X_{k+1}^*$ so that, if $y_0 =$ $=\pi^{-1}(x_0), \text{ then } |f(y_0)| > \sup f(y) \text{ where } K^* = \pi^{-1}(K) \cap X_k^* \text{ (note that for } X_k^*)$ y EK* the existence of f, we need the fact that $\partial X_k^* \cap \pi^{-1}(A) = \emptyset$).

Choose $\lambda > 0$ so that $f^{\lambda} = g \circ \pi$ where g is holomorphic on X_{k+1}^* . Then $|g(x_0)| > \sup_{x \in K} |g(x)|$. Hence X_k is X_{k+1} convex.

and their normalisations

REFERENCES

- 1. H. CARTAN. Variétés analytiques complexes et cohomologie, Colloque sur les fonctions de plusieurs variables complexes de Bruxelles, (1953), 41-55.
- 2. H. GRAUERT. Charakterisierung der holomorph-vollständigen komplexen Räume, Math. Ann. 129 (1955), 233-259.
- H. GRAUERT. Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Publications mathematiques de l'Inst. des Hautes Etudes Scientifiques, Paris, N⁰ 5, 1960.
- 4. H. GRAUERT und R. REMMERT. Bilder und Urbilder analytische Garber, Annals of Math. 68 (1958), 393-443.
- 5. H. GRAUERT und R. REMMERT. Komplexe Räume, Math. Ann. 136 (1958), 245-318.
- 6. J.-P. SERRE. Faisceaux algébriques cohérents. Annals of Math. 61 (1955), 197-278.

Tata Institute of Fundamental Research, Bombay, India.

.