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A NOTE ON STEIN SPACES AND THEIR
NORMALISATIONS

RAGHAVAN NARASIMHAN (Bombay) (*)

§ 1. Introduction.

It is well known that every open Riemann surface is a Stein manifold.

But no proof has so far appeared of the corresponding statement for com-

plex spaces of dimension one (with arbitrary non-normal singularities) viz.
that every (reduced) complex space of dimension. one, which has no compact
irreducible Steiu space. The object of the present note is
to give a proof of the following theorem on complex spaces, of which the

statement made above is a particular case in view of the fact that every
normal complex space of dimension one is nonsingular (i. e. a disjoint union
of Riemann surfaces). 

THEOREM 1. A (reduced) complex Stein space if only
if its normalisation Stein space.

A corollary to ’this statement is the following.
A complex space all of whose irreducible components are Stein spaces is

itself a Stein space. ,

Of course, this statement becomes trivial if we replace «irreducible
components» by « connected components ».

§ 2. Preliminaries.

Let (X, 9() be a complex space in the sense of Grauert [3] and (X, 0)
the corresponding reduced complex space; for x E X, % may contain nilpo-
tent elements, while 0,, does not. If Wx contains no nilpotent elements,
then = 

(*) Supported in part by AF-EOAR Grant 62-35.
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Let (X, 0) be a reduced complex space. We call X a Stein space if it

is holomorph-convex lie e., for any infinite discrete set DC X, there is a

holomorphic function f for which f (D) is unbounded] and if holomorphic
functions separate points of X. The following theorem is well known [1].

THEOREM a. Let (X,O) be a, paracompact reduced complex- space. Then
X is a Stein space if and only if for every coherent analytic subsheaf 9 C Õ,
we have

If (X, 0) is Stein, then for any coherent analytic sheaf S, we have H q (,V, S ) = 0,
q &#x3E; 1.

The following theorem can be deduced from Theorem a ; see [3, § 2,
Satz 3].

THEOREM b. Let (X, ck) be an arbitrary complex space for which the
corresponding reduced space (X, 0) is Stein. Let S be any coherent 

Then we hacve

Let now X, Y be two reduced complex spaces and n : X - Y a pro
per holomorphic map with discrete fibres. Let 8 be a coherent analytic
sheaf on X and let Tlv (S) be the wth direct image of S under n, i. e. for

any open set U C Y, we have

Then we have [5, Satz 27]

THEOREM c. n, (~’) = 0 for v &#x3E; 1, no (8) is a coherent analytic sheaf on Y.
We require also the following theorem [4, Satz 6]

THEOREM d. Let X, Y be complex spaces, and 99: X -~ Y a holomorphic
map. Let S be an analytic sheaf on X. Suppose that for v &#x3E; 1, we have

99, (S ) = 0. Then, for v &#x3E; 0, we have .

Let now (X, 0) be a reduced complex space. X is called normal if for
any x E X, the local ring Ox is integrally closed in its complete ring of
quotients.

To every reduced complex space (X,O) corresponds a « normalisation &#x3E;&#x3E;
~~‘) ~ (X*2C)*) is a normal complex space, and there is a proper
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holomorphic map n : X*-X which is onto and has discrete fibres. If

no (0*), then for x E X, 0,, is the integral closure of and if A c X
is the singular locus of X, is an analytic isomor-

phism onto X -A. 6 is a subsheaf of the sheaf of germs of meromorphic
functions on X. 

’

§ 3. Proof of Theorem 1.

Let (X, 0) be a complex space for which the normalisation (X*, Ole)
is Stein. Let 9 be a coherent sheaf of ideals, i. e. an analytic subsheaf of

o on X. is the canonical map. For

7 let be the largest ideal in 0,, such that CW,, and let

U
xEX .

Then CW is an analytic sheaf on X; moreover, it is a cohérent analytic
sheaf on X; see [6 § 2 Prop. 9 and remark which follows Prop. 9].

Let iF* be the analytic inverse image on X* of the coherent analytic
sheaf CW. 9 (i. e. 9* is the tensor product of the topological inverse image
of CW. 9 and C~~ over the topological inverse image of 0). Then iF* is a

coherent [4, § 2, (g)].
By Theorem c, if is a coherent 0-sheaf. Morevoer,

since 9fl . · 6 = cW - no (C~~) C C~, it follows that iF is a subsheaf of 0 and in
fact of 9. Finally we remark that by Theorem c, (iF*) = 0 1, so

that, by Theorem d, we have 
’

By Theorem a, we have g q (X ~, ~~‘) = 0 for q ~&#x3E; 1, so that we conclude

that H q (X, 7) == 0 for 
We shall first prove Theorem 1 for spaces of finite dimension. Let n

be , the complex dimension of X, and suppose inductively that Theorem 1,
has been proved for all spaces of flimens’ipn  n - I. We then assert that
any closed nowhere dense analytic set Y of X is a Stein space. This

follows from the following lemma, and the inductive hypothesis.

LEMMA 1. Let (X, reduced complex space for which the normalisa-
tion (X*, Õ*) is Stein. Then, for any closed analytic set YC X, with th~
induced reduced structure from X, the normalisation Y. is Stein.

The proof will be given later.
We go back to the proof of Theorem 1 in the special case. ,
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Let ~, cW, 9 be as above and consider the exact sequence

Now, since n I X. - a-’ (A) is an analytic isomorphism and, for x E A,
0,, = C~~ , we see that = for x ~ A and iF, = 9;» for x ~ A. Hence

the set Y of points x E X with Oz (which contains the set of points
where 9,, =J= is a nowhere dense analytic set in X, and so, with its

reduced structure, is a Stein space. Moreover, if ,S is the restriction of

9/CJ to Y, then S is a coherent W-sheaf, where W is the restriction of

to Y [6, § 2, Théoréme 3]. Now, by our remark above (inductive
assumption and Lemma i ), Y is a Stein space. Hence, by Theorem d,

q &#x3E; 1. But since H q ( Y, S ) N we conclude

that Hence, since, for ~ 1,
we deduce from the exact cohomology sequence associated to (*), that

~9(~~f)== 0 for q &#x3E; 1~ because of Theorem a, this concludes moclulo Lem-

ma 1 the proof of Theorem 1 in the special case when X has finite

dimension.

For the proof of Lemma 1, we require the following result.

LEMMA 2. Let X. Y be normal complex spaces (redceced ) and 11,: X -~ Y

a proper ltolomorphic map discrete fibres onto Y. Then, X is Stein if
and only if Y is Stein.

PROOF. The fact that if Y is Stein, then so is X follows at once from

[2, Satz B]. Conversely, suppose X ~ Stein. We may suppose X and Y con-
nected. Then, there is a nowhere dense analytic set Me Y such that

n X - (M ) is an unramified covering of Y - M (say with p sheets);
we may suppose also that ill contains the singular locus of Y. Then, if f
is holomorphic on X, and, for y E Y - M, av (y) is the vth elementary sym-
metric function of the values of f at the points of (y), then the av (y)
remain bounded as y -~ yo E M and since Y is can be extended to

holomorphic functions a, on Y. Moreover, we 
,-

It is now obvious that if f is unbounded on a set D C X, then at least
one av is unbounded on a (D). Since X is holomorphconvex, so is Y. Now

Y can contain no compact analytic set T of positive dimension since I
would then be a .compact analytic set of positive dimension in X, and

this cannot exist since holomorphic functions on X separate points. If. we

use the fact that a holomorph-convex reduced complex space which contains
no compact analytic sets of positive dimension is Stein (an easy consequence
of [2, Satz Bj), we see that Y is Stein.
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PROOF OF LEMMA 1. Let n : the natural map, and Yi =

n-1 (Y). Since Y1 is a closed subspace of the Stein space X*, Y, is
Stein. Hence, by [2, Satz B], its normalization Y is Stein. Clearly, we have
a proper holomorphic map q : which has discrete fibres. Let Y* be

the normalisation of Y and ni: Y* -+ Y the natural map. Since Y is nor-
mal, there exists a- holomorphic map qi : Y- Y* such that n1 o qi = 99.
Since, clearly ~i must be proper, surjective and have discrete fibres, and
since Y is Stein, we see, by Lemma 2, that Y* is Stein, which is Lemma 1.

To prove Theorem 1 in the general case, we proceed as’ follows. Let

Xk, k = 11 2,... be the union of the irreducible components of dimension
_ k of X. The normalisation of Xk is a union of connected components of X
and so is Stein. By the special case of Theorem 1 which is already proved,
each Xk is Stein.

Let now D be any discrete subset of X and let Dk = D n Xk, Ef = D,
and Dk. Let h be a holomorphic function on D (i. e. assign-
ment of a complex number to each point of D) and., for k &#x3E;_ 1, hk the restriction
of h to Ek. Since Xs is Stein, there is a holomorphic function f i on X~ , 7
so that It I Ef --. hi. Clearly is a closed subspace of X2, so that
there is, since .V2 is Stein, a holomorphic function 12 on X2 such that

f2 j .X1= f! , fz D2 = h2 - Proceeding thus, we construct holomorphic
on Xk+1 so that Ik+1 I Xk = fk , I = If f = limlk, then f is
holomorphic on X and clearly f D = h. Hence X is itself ~Stein, and this
proves Theorem 1 in the general case. 

’

Using Theorem 1 and Lemma 2,. it is possible to prove Lemma 2 wi-
thout the assumption of normality. We formulate this as a separate Theorem.

THEOREM 2. Let X, Y be reduced complex 8pace8, n : 4. X -~ Y a proper
holomorphic map onto Y. Then, if X is Stein, so is Y.

PROOF. Since X is Stei4l X contains no compact analytic sets of po-
sitive dimension. Hence every fibre of n, being a compact analytic set, is
a finite set.

Let X *7 Y* be the normalisations of X, Y respectively and X * - X,
ny : Y’~ --~ Y the corresponding projections. Let q = n o nx : X’~ -~ Y.

Then 99 is a surjective proper holomorphic map of X* onto Y with discrete
fibres. Since X ~ is normal, there is a holomorphic map (pt : X*- Y*
which is surjective, so that any o qJ1 = q~. Since X is Stein, so is X* ; by
Lemma 2, so is Y*. By Theorem 1, we deduce that Y itself is Stein.

" Finally we give a sketch of a direct proof for spaces with isolated

singularities in particular, for spaces of one dimension. This proof has the
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« merit » of not depending on the heavy machinery of direct and inverse
images of analytic sheaves.

Let X be a reduced complex space with isolated singularities, A the
set of singular points of X and X’~ the normalisation of X. We suppose
that X * is Stein. Let (Xk*) be a sequence of relatively compact open sets
in X* with the following properties.

’ 

a) Xk is Stein, and (A) = §j [here n: X ~ --~ X
is the natural map].

b) Xk is X *-convex, i. e. if .1~ is a compact subset of Xk then
E Xk  sup I f (K) ~ I for all f holomorphic in X * is compact.

Let Xk = n (Xk ). We assert that (i) Xk is Stein and that (ii) Xk is
Xk+1-convex. It then follows that X is Stein.

PROOF OF (i). Since Xk C C X ~, for any f holomorphic in Xk which
vanishes on Xk n (A), there exists an integer Â. &#x3E; 0 so that fl = g o yr
for some g holomorphic on Xk. Clearly we may find, for any xo E aXk , an
f holomorphic on X k *, vanishing on x k * n n-1 (A), such that 
as y -~ yo if yo E n-I (xo) f 1 a x*

If A is such that fl = g o ;r, then clearly g (x) 1-+ 00 as x -~ xo . Hence
Xk is holomorph-convex. As in the proof of Lemma 2, Xk has no compact
analytic sets of positive dimension and so is Stein.

PROOF OF If K is a compact set’ of Xk and xo E aXk, then, there
exists f holomorphic on vanishing orc n-l (A) n so that, if yo =

_ ~c-1 (xo), then f &#x3E; sup f (y) where K* = (K) f 1 xk* (note that for
yEK* 

’

the existence of f, we need the fact that aXk f 1 n-, (A) = Q~ ).
, 

Choose 1 &#x3E; 0 so that f ~ = g o ~ where g is holomorphic on Then

I g (xo) I &#x3E; sup g Hence Xk is Xk+,-convex.
, 

xEK
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