ANNALI DELLA

Scuola Normale Superiore di Pisa Classe di Scienze

A. W. J. Stodmart

Inequalities for convex functions

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3^{e} série, tome 21, no 3 (1967), p. 421-426
http://www.numdam.org/item?id=ASNSP_1967_3_21_3_421_0

L'accès aux archives de la revue «Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

INEQUALITIES FOR CONVEX FUNOTIONS

A. W. J. Stoddart

In proving semicontinuity theorems for nonparametric curve integrals of the calculus of variations, Tonelli utilized linear inequalities for functions convex in a suitably strengthened sense [1, p. 405]. These inequalities were extended to the multidimensional case by Turner [2]. In the corresponding theory of optimal control, it is appropriate to consider functions on proper subsets of Euclidean space. We here extend the results of Tonelli and Turner to this situation.

1. Preliminary results.

We collect here definitions and standard results for later use. With the exception of the existence of a supporting plane, all results below are elementary.

A set S in Euclidean space E_{m} is called convex if, for any points $s, s^{\prime} \in S$ and any real number $\alpha, 0<\alpha<1$,

$$
\alpha s+(1-\alpha) s^{\prime} \in S .
$$

If a convex set S in E_{m} is contained in no ($m-1$) dimensional hyperplane, then S has an interior point; and conversely.

For any point s_{0} at positive distance from a convex set S in E_{m}, there exists a separating plane; that is, there exist $b \in E_{m}, \beta \in E_{1}$, such that $b \cdot s+\beta<0$ for all $s \in S$, and $b \cdot s_{0}+\beta>0$.

For any point s_{0} on the boundary of a convex set S in E_{m}, there exists a supporting plane; that is, there exist $b \in E_{m}, \beta \in E_{1}$, such that $b \neq 0, b \cdot s+\beta \leq 0$ for all $s \in S$, and $b \cdot s_{0}+\beta=0$.

A real function $f(s)$ on a convex set S in E_{m} is called convex if, for any points $s, s^{\prime} \in S$ and any real number $\alpha, 0<\alpha<1$,

$$
f\left(\alpha s+(1-\alpha) s^{\prime}\right) \leq \alpha f(s)+(1-\alpha) f\left(s^{\prime}\right)
$$

This is equivalent to convexity of the set

$$
\{(s, y): s \in S, y \geq f(s)\} \quad \text { in } \quad E_{m+1}
$$

For any point s_{0} in the interior of the domain S of such a convex function, there exists a supporting function ; that is, there exist $b \in E_{m}$, $\beta \in E_{1}$, such that $f(s) \geq b \cdot s+\beta$ for all $s \in S$, and $f\left(s_{0}\right)=b \cdot s_{0}+\beta$. Even if S has no interior points, there exists a supporting function at some point.

2. Approximate supporting functions.

Although a convex function need not have a supporting function at the boundary of its domain (for example, $-\left(1-x^{2}\right)^{\frac{1}{2}}$ on $[-1,1]$), it does have approximate supporting functions in the following way.

Theorem 1. Let $f(s)$ be a continuous convex function on a convex set S in E_{m}. Then, for any $s_{0} \in S$ and any $\varepsilon>0$, there exist $\delta>0, b \in E_{m}$, and $\beta \in E_{1}$ such that
(a) $f(s)>b \cdot s+\beta$ for all $s \in S$; and
(b) $f(s)<b \cdot s+\beta+\varepsilon$ for $\left|s-s_{0}\right|<\delta, s \in S$.

Proof. By continuity of f, the point $\left(s_{0}, f\left(s_{0}\right)-\frac{1}{2} \varepsilon\right)$ is at positive distance from the convex set $\{(s, y): s \in S, y \geq f(s)\}$ in \boldsymbol{E}_{m+1}. Thus there exists a separating plane; that is, there exist $b \in E_{m}, \gamma \in E_{1}$, and $\beta \in E_{1}$ such that

$$
(b, \gamma) \cdot(s, y)+\beta<0 \quad \text { for } \quad s \in S, \quad y \geq f(s)
$$

and $(b, \gamma) \cdot\left(s_{0}, f\left(s_{0}\right)-\frac{1}{2} \varepsilon\right)+\beta>0$.
If $\gamma \geq 0$, these inequalities would be contradictory for $s=s_{0}, y=f\left(s_{0}\right)$. Thus $\gamma<0$, and we can take $\gamma=-1$. Then

$$
b \cdot s-f(s)+\beta<0 \quad \text { for all } \quad s \in S
$$

and $b \cdot s_{0}-f\left(s_{0}\right)+\frac{1}{2} \varepsilon+\beta>0$.
Condition (b) follows by continuity.

Remark. The necessary condition above is easily seen to be sufficient for f to be continuous and convex on S.

3. Strong linear bounds.

Theorem 2. Let $f(s)$ be a continuous convex function on a closed convex set S in E_{m}. If the graph of f contains no whole straight lines, then there exists a linear function $w(s)$ such that $f(s) \geq w(s)$ on S and $f(s)-w(s) \rightarrow \infty$ as $|s| \rightarrow \infty$ on S.

Proof. We restrict consideration at first to f such that $f(s) \geq 0$ on S and $f(a)=0$ for some $a \in S$. Let B be the set of points $b \in E_{m}$ such that $f(s) \geq b \cdot s+\beta$ on S for some $\beta \in E_{1}$. The set B is convex and contains 0 .

Suppose that B is contained in some ($m-1$)dimensional hyperplane. Then there exists $e \in E_{m}, e \neq 0$, such that $b \cdot e=0$ for all $b \in B$. If $a+$ $+\lambda e \varepsilon E_{m}-S$ for some λ, then there exists a separating plane such that $c \cdot s+\gamma<0$ for all $s \in S$ (so $c \in B$ and $c \cdot a+\gamma<0$) and $c \cdot(a+\lambda e)+\gamma>0$, so $c \cdot a+\gamma>0$. Thus $a+\lambda e \varepsilon S$ for all λ. Since the graph of f contains no whole line, $f(a+\lambda e)>0$ for some λ. Consider ε such that $0<\varepsilon<f(a+\lambda e)$. For a corresponding approximate supporting function $b \cdot s+\beta$ at $a+\lambda e$,

$$
f(s)>b \cdot s+\beta \quad \text { for all } \quad s \in S \quad(\text { so } b \in B)
$$

and

$$
f(s)<b \cdot s+\beta+\varepsilon \text { for }|s-a-\lambda e|<\delta
$$

Then $f(a)>b \cdot a+\beta=b \cdot(a+\lambda e)+\beta>f(a+\lambda e)-\varepsilon>0$.
Thus B is contained in no ($m-1$)-dimensional hyperplane, and so has some interior point b_{0}, with corresponding β_{0}. Then $f(s) \geq w(s)=b_{0} \cdot s+\beta_{0}$ for all $s \in S$.

Also, $f(s)-w(s) \rightarrow \infty$ as $|s| \rightarrow \infty$ on S, for suppose not. Then there exists a sequence of points $s_{n} \varepsilon S$ with $f\left(s_{n}\right)-w\left(s_{n}\right)$ bounded above and $\left|s_{n}\right| \rightarrow \infty$. For some subsequence, $s_{n} /\left|s_{n}\right| \rightarrow v \neq 0$. Now $b_{0}+\varrho v \in B$ for ϱ sufficiently small, with corresponding β. Then

$$
f(s) \geq\left(b_{0}+\varrho v\right) \cdot s+\beta \text { for all } s \in S
$$

so

$$
f\left(s_{n}\right)-w\left(s_{n}\right) \geq \varrho v \cdot\left(s_{n} /\left|s_{n}\right|\right)\left|s_{n}\right|+\beta-\beta_{0} \rightarrow \infty
$$

For more general f, let a be some point for which f has a supporting function $b \cdot s+\beta$. Then $f(s) \geq b \cdot s+\beta$ for all $s \in S$, and $f(a)=b \cdot a+\beta$. Consequently, the convex function

$$
f-(s)=f(s)-f(a)-b \cdot(s-a)
$$

has $f^{-}(s) \geq 0$ and $f^{-}(a)=0$, while its graph contains no whole straight lines. Thus there exists a linear function $w^{-}(s)$ such that $f^{-}(s) \geq w^{-}(s)$ and $f^{-}(s)-w^{-}(s) \rightarrow \infty$ as $|s| \rightarrow \infty$ on S. Then

$$
f(s) \geq w(s)=w^{-}(s)+f(a)+b \cdot(s-a)
$$

and $f(s)-w(s)=f^{-}(s)-v^{-}(s) \rightarrow \infty$ as $|s| \rightarrow \infty$ on S.
Remark. For S bounded, Theorem 2 is trivial.

4. Uniform approximate supporting functions.

Theorem 3. Let D be a closed set in $E_{n} \times E_{m}$ such that $D_{r}=$ $=\{s:(r, s) \in D\}$ is convex for each $r \in E_{n}$. Suppose that D_{r} is «continuous» at $\left(r_{0}, s_{0}\right) \in D$ in the sense that $d\left(s_{0}, D_{r}\right) \rightarrow 0$ and $\sup \left\{d\left(s, D_{r_{0}}\right): s \in D_{r}\right\} \rightarrow 0$ as $r \rightarrow r_{0}$ on $\left\{r: D_{r} \neq \Phi\right\}$. Let $f(r, s)$ be a continuous function on D, convex in s and such that the graph of $f\left(r_{0}, s\right)$ contains no whole straight lines. Then, for any $\varepsilon>0$, there exist $b \in E_{m}, \beta \in E_{1}, \nu>0$, and $\delta>0$, such that
(a) $f(r, s)>b \cdot s+\beta+v\left|s-s_{0}\right|$ for $\left|r-r_{0}\right|<\delta$, and
(b) $f(r, s)<b \cdot s+\beta+\varepsilon$ for $\left|r-r_{0}\right|<\delta,\left|s-s_{0}\right|<\delta$.

Proof. Let $w(s)$ be the linear function for $f\left(r_{0}, s\right)$ from Theorem 2: $f\left(r_{0}, s\right) \geq w(s)$, and $f\left(r_{0}, s\right)-w(s) \rightarrow \infty$ as $|s| \rightarrow \infty$ on $D_{r_{0}}$. For the given ε, let $v(s)$ be an approximate supporting function for $f\left(r_{0}, s\right)$ at s_{0} : $f\left(r_{0}, s\right)>v(s)$, and $f\left(r_{0}, s\right)<v(s)+\varepsilon$ for $\left|s-s_{0}\right|<\delta_{0}$. For $0<\alpha<1$, put

$$
z(s)=\alpha w(s)+(1-\alpha) v(s), \quad \boldsymbol{F}^{\prime}(r, s)=f(r, s)-z(s)
$$

Now $\boldsymbol{F}\left(r_{0}, s_{0}\right)=f\left(r_{0}, s_{0}\right)-v\left(s_{0}\right)+\alpha\left[v\left(s_{0}\right)-w\left(s_{0}\right)\right]<2 \varepsilon$ for $\alpha<$ $<\varepsilon \| v\left(s_{0}\right)-w\left(s_{0}\right) \mid$.

By continuity of f at $\left(r_{0}, s_{0}\right)$, there exists $\delta_{1}>0$ such that $F(r, s)<3 \varepsilon$ for $\left|r-r_{0}\right|<\delta_{1},\left|s-s_{0}\right|<\delta_{1}$.

Also, $\quad \boldsymbol{F}\left(r_{0}, s\right)=\alpha\left[f\left(r_{0}, s\right)-w(s)\right]+(1-\alpha)\left[f\left(r_{0}, s\right)-v(s)\right] \rightarrow \infty$ as $|s| \rightarrow \infty$ on $D_{r_{0}}$. Then there exists $m>0$ such that $F\left(r_{0}, s\right)>\delta \varepsilon$ for $\left|s-s_{0}\right| \geq \frac{1}{2} m, s \in D_{r_{0}}$. By uniform continuity of F on

$$
D \cap\left\{(r, s):\left|r-r_{0}\right| \leq \Delta, \frac{1}{2} m \leq\left|s-s_{0}\right| \leq 2 m\right\}
$$

and by continuity of D_{r}, there then exists $\delta_{2}>0$ such that $F(r, s)>4 \varepsilon$ for $\left|r-r_{0}\right|<\delta_{2},\left|s-s_{0}\right|=m,(r, s) \in D$.

Also, $F\left(r_{0}, s\right)>0$. By uniform continuity of F on $D \cap\left\{(r, s):\left|r-r_{0}\right| \leq \Delta\right.$, $\left.\left|s-s_{0}\right| \leq 2 m\right\}$ and by continuity of D_{r}, there exists $\delta_{3}>0$ such that $F(r, s)>-\varepsilon$ for $\left|r-r_{0}\right|<\delta_{3},\left|s-s_{0}\right| \leq m,(r, s) \subseteq D$. Then, under the same conditions, with $\nu=\varepsilon / 2 m$,

$$
\boldsymbol{F}(r, s)>-2 \varepsilon+\boldsymbol{v}\left|s-s_{0}\right|
$$

For any $\varepsilon^{\prime}>0$, there exists $\delta_{4}\left(\varepsilon^{\prime}\right)>0$ such that $D_{r}=\Phi$ or $d\left(s_{0}, D_{r}\right)<\varepsilon^{\prime}$ for $\left|r-r_{0}\right|<\delta_{4}\left(\varepsilon^{\prime}\right)$. Consider $\left|r-r_{0}\right|<\delta=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}\left(\min \left[\delta_{1}, m\right]\right)\right\}$. Then for $D_{r} \neq \Phi$, there exists $s^{\prime} \in D_{r}$ such that $\left|s^{\prime}-s_{0}\right|<\delta_{1}$ and m. For $\left|s-s_{0}\right|>m, s \in D_{r}$, take $s_{1}=\gamma s+(1-\gamma) s^{\prime}$ for some $\gamma, 0<\gamma<1$, such that $\left|s_{1}-s_{0}\right|=m$. Then, by convexity,

$$
F\left(r, s_{1}\right) \leq \gamma F(r, s)+(1-\gamma) F\left(r, s^{\prime}\right)
$$

so

$$
F(r, s) \geq \boldsymbol{F}^{\prime}\left(r, s^{\prime}\right)+\left[\boldsymbol{F}\left(r, s_{1}\right)-\boldsymbol{F}\left(r, s^{\prime}\right)\right] / \gamma>-\varepsilon+\varepsilon / \gamma>-2 \varepsilon+\boldsymbol{v}\left|s-s_{0}\right|
$$

Thus $f(r, s)>z(s)-2 \varepsilon+\nu\left|s-s_{0}\right|$ for $\left|r-r_{0}\right|<\delta$, and $f(r, s)<$ $<z(s)-2 \varepsilon+5 \varepsilon$ for $\left|r-r_{0}\right|<\delta,\left|s-s_{0}\right|<\delta$. We obtain the required result by substituting $\varepsilon / 5$ for ε in our work.

Remarks 1. The straight line condition on the graph of f cannot be omitted, even for the weaker inequalities with $v=0$; for example,

$$
f(r, s)=r s \quad \text { on } \quad E_{1} \times E_{1}, \quad \text { with } \quad r_{0}=s_{0}=0
$$

2. The continuity condition on D_{r} cannot be omitted; for example,

$$
f(r, s)=s^{2} \quad \text { for } \quad r=0, \quad-s^{2} \quad \text { for } \quad r s=1
$$

on $D=\{(r, s): r=0$ or $r s=1\}$ in $E_{1} \times E_{1}$, with $r_{0}=s_{0}=0$.

REFERENCES

[1] L. Tonelli, Su gli integrali del calcolo delle variazioni in forma ordinaria, Ann. Scuola Norm. Sup. Pisa (2) 3 (1934), 401-450.
[2] L. H. Turner, The direct method in the calculus of variations, Thesis, Pardue Univ., Lafayette, Ind., 1957.

> University of Otago, New Zealand
> and
> University of California, Los Angeles

