@article{ASNSP_1968_3_22_1_113_0, author = {Burak, Tamar}, title = {Fractional powers of elliptic differential operators}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {113--132}, publisher = {Scuola normale superiore}, volume = {Ser. 3, 22}, number = {1}, year = {1968}, zbl = {0159.15601}, mrnumber = {236767}, language = {en}, url = {archive.numdam.org/item/ASNSP_1968_3_22_1_113_0/} }
Burak, Tamar. Fractional powers of elliptic differential operators. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 3, Tome 22 (1968) no. 1, pp. 113-132. http://archive.numdam.org/item/ASNSP_1968_3_22_1_113_0/
[1] On the eigenfunctions and on the eigenvalues of elliptic boundary value problems, Comm. Pure Appl. Math. Vol. 15, pp. 119-147 (1962). | MR 147774 | Zbl 0109.32701
:[2] Lectures on elliptic boundary value problems. Van-Nostrand Mathematical Studies. Princeton N. J. 1965. | MR 178246 | Zbl 0142.37401
:[3] On kernels eigenvalues and eigenfunctions of operators related to elliptic problems. Comm. Pure Appl. Math. Vol. 18, pp. 627-663 (1965). | MR 198287 | Zbl 0151.20203
:[4] Pseudodifferential operators depending on a parameter and fractional powers of elliptic differential operators. Thesis. Hebrew University of Jerusalem. (1967).
:: [5] Linear operators II.
[6] Note on fractional powers of linear operators. Proc. Japan Acad. Vol. 36, pp. 94-96 (1960). | MR 121666 | Zbl 0097.31802
:[7] An algebra of pseudodifferential operators. Comm. Pure Appl. Math. Vol. 18, pp. 267-305 (1965). | Zbl 0171.35101
and :[8] Regutarity theorems for fractional powers of a linear elliptic operator. Bull. Soc. Math. France. Vol. 90, pp. 449-471 (1962). | Numdam | MR 149329 | Zbl 0104.32503
and :[9] Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds. Canadian Journal of Mathematics. Vol. I, pp. 242-256 (1949). | MR 31145 | Zbl 0041.42701
and :[10] Seminar on the Atiyah-Singer index theorem. Annals of Mathematics. Studies No. 5.7.
:[11] The powers As of an elliptic operator A. To be published.
: