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§ 9. Cartan’s Theorem B with Bounds.

Suppose (X, O) is a complex space of reduction order < p << co and F
is a coherent analytic sheaf on (X, O). Suppose ¢° € R} and n: (X, O)— K (o°)
is a holomorphic map.

For the remaining of this paper we need the following notations.
Suppose A and B are two open subsets of X. We say that A4 iB if

A (¢) € B for some p. We say that A cc B if A (¢) cc B for some pg.

Suppose W and V are two collections of open subsets of X. We say
that m,f“’ if W(e)<V for some g. We say that W<<V if W) <<V

for some p.

Pervenuto alla Redazione il 22 Sett. 1969.

The first part of this paper has appeared on this same journal vol. XXIV (1970)
278-330.
(*) Partially supported by NSF Grant GP-7265.
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PROPOSITION 9.1. Suppose H, cc H, are Stein open subsets of X and T;
is a finite Stein open covering of H; (i = 1, 2) such that W, << U, and every
member of Ul, is relatively compact in some Stein open subset of X. Then
for 1=1 there exists w€ Q™ satisfying the following. If ¢ < @ and
FEZ (W, (e)y F) with | f|lq,, < ¢ then there exists g € =1 (W, (o), F) with
19k, ,o < Cp ¢ such that ég =7 on U, (¢), where C, is a constant depen-
ding only on . Moreover, if ¢, is not a zero-divisor for <%, for x € X, then
O, can be chosen to be independent of g, .

Proor. Take a Stein open subset Hy of X such that H, cc H) cc H,.
By replacing H, by H, and by replacing W, by W,NH,, we can
agsume without loss of generality that H, is relatively compact in
a relatively compact Stein open subset H of X.

By replacing X by ﬁ, we can assume without loss of generality that
X is a complex subspace of a Stein open subset G of C¥. We use the
notations of § 8B.

By Proposition 7.2 we can choose Stein open subsets FE; of G,
0 =i =3, such that E;y; cc H; and H, cc E;N X cc H, . By Proposition 7.3
we can choose finite collections ¥); of Stein open subsets of G (1 <11 < 3)
such that T, << DN X < W, , Dit1 << Dy, and | B;| = E;. Let T; =D;n X.

Take w € 2™ and conditions will be imposed on  later. Take o < w
and f€Z' (W, (o), F) with |[f|x,,, < e Let f"=f[UW, (o) [If’ lluq,, o < &
By Proposition 8.4 |9E1 " lEg,e < 0W ¢, where Y is a constant.

Op, (f)EZHE (o) X By, F*).

By Proposition 5.2, if o < w! for a suitable w!'€ Q® (and we assume
this to be the case), then there exists g’ € C'—1(K (g) X By, F*) such that
0g’= Oy, (f’) on K (0)<Dg and | ¢’ |E3, 0 < 0% CWe, where 0P is a constant
depending only on g. Let g = 9513 (9/) € C1 (T, (0)y ). Then dg = f on
T, (o). By Proposition 8.2, || g ”Tlh o< o® Of) OWe, where O® is a constant.

If ¢, is not a zero-divisor for %, for x € X, then ¢, is not a zero-divisor
for FF for K (g% < G. In this case, O, can be chosen to independent
of on. q. e. d.

ProposITION 9.2. Suppose H, cc H, are Stein open subsets of X and
W, is a finite Stein open covering of H, such that every member of T,
is relatively compact is some Stein open subset of X. Then there exists
o € Q™ gatisfying the following. If o < w and f€I'(H, (o), F) with
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Hf“'%, o < & where f€Z°(U, (o), ) is induced by f, then | f|lm.. < Cee,
where C, is a constant depending only on g. Moreover, if ¢, is not a zero-
divisor for % for x € X, then O, can be chosen to be independent of g, .

PROOF. AS in the proof of Proposition 9.1 we can assume that X is
a complex subspace of a Stein open subset @ of C¥. We use the notations
of §8B.

By Proposition 7.2 we can find Stein open subsets G; of G (0 < i < 3)
sdch that Giy;cc G; and H, cc GiN X c H,. Let E; = G; N X. By Proposi-
tion 7.3 we can find finite collections ®; of @G,1<¢=<3, such that
D1 <<B;, DinX << Wy, and | B;| = G;. Let W= D;n X.

Take w € 2™ and we shall impose conditions on  later. Take o < w
and f € I'(H, (o), F) with || # g, o < ¢ where f€ 20 (W, (), F) is induced by f.

Let g=0¢,(f| B, () and ¢=0g (f|TW, (). §€2°(K(e) < D, F* is
induced by g€ I' (K (g) <X Gy, F*).

By Proposition 8.4, | gl} [E2 ,o << 0We, where CU) is a constant. By Proposi-
tion 5.3, if w=w! for a suitable w!€ 2™ (and we assume this to be the case), then
|96, << 0P OWe, where 0P is a constant depending only on ¢. By Pro-
position 8.1, || f|m, . < O® CP 0W e, where (®) is a constant.

If ¢, is not a zero-divisor for %, for x € X, then t, is not a zero-divi-
sor for F} for x € K (0% >< G and hence 022) can be chosen to be indepen-
dent of g, . q.e. d.

ProrosiTION 9.3. Suppose @ is a coherent analytic sheaf on X

and ¢: F— @ is a sheaf-homomorphism. Suppose H, cc H, cc H are Stein
open subsets of X. Then there exists w € QM gatisfying the following.
If o< ow and g€ I'(H, (o), Im ) with| ¢ ||lm,, <<e, then for some
JeE (H (0)y F), @(f)=9¢g on H, (o), and ||f]|lzm,o < Coe, where C, is a
constant depending only on p.

PRrOOF. By replacing X by H and by shrinking ﬁ, we can assume
that X is a complex subspace of a Stein open subset G of C¥. We use
the notations of § 8B.

By Proposition 7.2, we can find Stein open subsets G; of G (1 =< i < 3)
such that 0.'+1 cc G.' and Hi cc Gianﬂz. Let Ei == G;nX-

Take o € 2™ and we shall impose conditions on « later. Take o <
and g€ I'H, (o), Im @) with || g|lm.o<e Let g =g|E (o) |9 ||m,.<e.
By Proposition 8.3, | g, (¢') |¢;,e < €W e, where O is a constant,
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Let @* = 0,(9). We have a unique sheaf-homomorphism ¢*: F* — G*
on K (g% < @ corresponding to ¢. 8¢ (9') € I'(K (¢) X G, , Im ¢*). By Pro-
position 5.4, if w < w! for a suitabe ©!€ 2™ (and we assume this to be
the case), then for some f’ € I'(K (g) X @3, F*) such that |f’ |, < P oV
and @* (f’) = 0g¢, (9') on K (o) X G5, where 0¥ is a constant depending
only on .

Let f=0g, ()€ (H;(0), F). ¢(f)=g on E;(g). By Proposition 8.2,
I ”HLe < ¥ 0P ¢ ¢, where 0 is a constant. q. e. d.

The following Proposition is a consequence of Proposition 9.3.

PROPOSITION 9.4. Suppose @ is a coherent analytic sheaf on X and
¢ : F—> @ is a sheaf-homomorphism. Suppose U, << U, are finite collections
of Stein open subsets of X such that every member of Tl, is relatively
compact in some Stein open subset of X. Then for I = 0 there exists
w € Q™ such that, if ¢ < w and g€ C* (U, (o), Im ¢) with || g ”'012,9 < e, then
for some f€ C*(U, (o), F), ¢ (f) =g and ||f||m“9< 0, ¢, where C, is a con-
stant depending only on p.

ProrosiTION 9.5. If, in Proposition 9.4, the closure of every member
of W, admits a neighborhood basis consisting of Stein open subsets of X,
then the conclusion of Proposition 9.4 remains valid when the condition
W, << W, is weakened to T, << u,.

PROOF. Assume the weaker condition T, << U,. Since the closure of

every member of Tl, admits a Stein open neighborhood basis, we can find
finite collections T’, W’/ of Stein open subsets of X such that U, << W << W’
and W << UW,.

There exists o' < ¢° in R’ such that T’ (o!) << W, . Let Wi = W’ (o).
Apply Proposition 9.4 to T and W, instead of T, and T,. Then use
Proposition 8.5 with Y0l = U, , T =W, W= (oY), and ¢’ =o' q.e.d.

PRroOPOSITION 9.6. Suppose H, cc H, cc H are Stein open subsets of X.
Suppose ¢, is not a zero-divisor for %, for x# € X. Then there exists w € Q™
<e

()7L

for some 1€N,, then || f|m, o < C, 6 where O, is a constant depending only
on p and is independent of I.

satisfying the following. If ¢ < w and f¢€ I'(H, (¢), F) with
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PrOOF. We can assume without loss of generality that X is a complex
subspace of a Stein open subset G of C¥. We use the notations of § 8B.

By Proposition 7.2 we can choose Stein open subsets G;of G (1 < i =< 3)
such that Giy; = @; and H, ce ;N X c H,. Let E; = G;n X.

Take w € 2 and conditions will be imposed on w later. Take o < w

t,\?
and f€I'(H, (¢) ) such that (E—) f“ < ¢ for some L€N,.
n Hj, e
t, 17
Tt g = 00, (7] B, (&) € I (@) < @, ). Then (2] g = 04, () 12,01,
n, n,
t.\!
(?> g < 0" e, where OW is a constant.
n, Gy, 0
Since ¢, is not a zero-divi’sor for %, for x€ X, ¢, is not a zero-divisor
for F* for x€ K (o°) < G. By Proposition 5.6, if w =< ! for a suitable
w!€Q™ (and we assume this to be the case), then | g|q,,o < 0% " e, where

022) is a constant depending only on g. Note that w! and 05,2) are inde-

pendent of I. By Proposition 8.1, || f |z, < 0¥ € ¢V e, where 0¥ is a
constant. q. e. d.
The following is a consequence of Proposition 9.6.

By Proposition 8.3,

ProrosITION 9.7. Suppose W, << W, are finite collections of Stein open
subsets of X such that every member of Tl, is relatively compact in some
Stein open subset of X. Suppose t, is not a zero-divisor for %, for x= € X.
Then for » = 0 there exists w € 20" satisfying the following. If ¢ < w and

. ta\!
FE€0 (W, (o), F) with ‘ (Q—"> f < ¢ for some l€N,, then |]f||-mue < C,e
" W, o
where C, is a constant depending only on o and is independent of I.

The following Proposition is derived from Proposition 9.7 in the same
way as Proposition 9.5 is derived from Proposition 9.4.

ProposITION 9.8. If, in Proposition 9.7, the closure of every member
of W, admits a neighborhood basis consisting of Stein open subsets of X,
then the conclusion of Proposition 9.7 remains valid when the condition
U, << W, is weakened to W, << u,

§ 10. Leray’s Isomorphism Theorem with Bounds.

A. Before we go on, we have to introduce some notations which are
to be used throughout the remaining of this paper.

Suppose X is a complex space. S (X) denotes the collection of subsets
of X defined as follows. U € 8 (X) if and only if (i) U is a relatively com-
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pact Stein open subset of X and (ii) U— admits a neighborhood basis con-
sisting of Stein open subsets of X.

LeMMA 10.1. Suppose W is a Stein open subset of X and L is a
compact subset of W. Then there exists U € S(X) such that Lc U c W.

PROOF. We can assume that there exists a strictly 1l-convex function
@ on W such that B,: = [p < ¢} is relatively compact in W for every real
number ¢. By applying Sard’s Theorem to the restrictions of ¢ to the regular
points of W, o (W), o (6 (W)),... (where o (Y ) denotes the singular set of Y),
we conclude that the image A under ¢ of the subset of W where ¢ attains
a local minimum is of linear measure 0. Take a real number ¢ not belonging
to A such that B, contains L. Since the closure of B, is {p = ¢}, it suffices
to set U = B,. q.e. d.

As a consequence of Lemma 10.1, we have

LemMa. 10.2. If Ue€ S (X), then U~ admits a neighborhood basis con-
sisting of elements of S(X). )

We define the notation S (X) as follows. W = {U;}i. 7€ 8 (X) if and only
if (i) I is finite and (ii) U;€ 8 (X)

The following follows from Lemmas 10.1 and 10.2.

LemMA. 10.3. (a) If W, << U, are finite collections of open subsets of
X and every member of Ul, is Stein, then there exists T € 8 (X) such that
W <<W<L<W,.

(b) If W, << W, are finite collections of open subsets of X and U, €
€ 8 (X), then there exists W € S (X) such that W, << W< W, .

B. Suppose X is a complex space and & is a coherent analytic sheaf
on X. Suppose Wl = {U,}.c4 and VY = { V)i are collections of Stein open
subsets of X such that |W|=|V|

We introduce the following notations.

O« (@) = 0«(W, 7)
(V)= C"(V, F)

0% *(T, V) consists of all & = (£}, Where &5 i € I'(Usy...a, N Vi,...i,, F)
is skew-symmetric in «;,..,o, and skew-symmetric in 4;,...,1,.

Define §,: C#* (W, V) — C++17 (W, V) and 6,: C»* (WU, P) — O«»+1 (W, V)
as follows:

A

ap s @ Q) ers O] aea O
(8, &y i,’u+1 = 345 (— 1p Ei:...i:' wt

A at 41 a...ay
Oy &)ioi,yy = Zimo (— 1) T by
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Define 6,: ¢ (W) — C%* (W, V) and 6,: C* (W) — O« (U, V) as follows.

l

&,
Siy

(0, &)%...q, iy Uag 0 Vi s,

(0 &) = £ | Ugy..q, N Vi,

[
Consider the following diagram :

0 0 0

! l v

0 —I'(X, F)— W) —— €' (W——>...
| e,l 6|
i +
W0Ngv g o) 2 000 (@, V)—> 040 (W, V)—2s ..

8 ‘ 82 03

l i j
0— O (D) —s 001 (T, V)—2s €11 (T, V) —s ...

8 I 33 O3

! s

The diagram is commutative. Since every member of U and U is Stein,
all rows except the first and all columns except the first are exact.

We say that fa, fo,1—1,/1,1—2 y.ey Ji—2, 1, 1—1,0.f1, form a zigzag l-sequence
in (10'1)‘111,1D if the following four conditions are satisfied.

i) S w€ZY W, F),fo1—p—1 €EC1 (W, V), and fi€ ZY W, F).

(i) 0y S =0y fo,1-1-
(111) 61 f'r-——l, l—y = agfv, l—y—1
(iv) 0, fix = 8, fi—1,0.

The following two statements are well-known and can easily be proved
by diagram-chasing.
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(i) For every fwm€Z'(V, ¥) there exists a zigzag l-sequence in
(10.1)qq, p With fi; as the first member.

(ii) the correspondence which relates the first member of a zigzag
l-sequence in (10.1)q yy to its last member induces an isomorphism from
HY (Y, F) to H'(W, F). We call this isomorphism the zigzag isomorphism.

ProPOSITION 10.1. When U = V), the zigzag isomorphism from H (D, F)
to H'(V, F) is equal to the isomorphism mapping every element & of
L41)
HY(V, F) to (—1) * &

ProoF. Take £€ZY(V, F). Let &= (&, ..o} Define a zigzag l-sequence
in (10.1)y yy a8 follows:

Ja=2¢.
v (v+1)
ag ... ay 2
(fv, l—v——l)io.. il_,_lz ("— 1) an”.a,, 10 .0n il—v-—l .
Lil41)
Sfu=(—1) 2 &

To prove that this forms a zigzag I-sequence in (10'1)10,10’ we need only
check the following:

Qif*z == 62f0, l—1¢
61fv—l, l—y = 62fv, l—y—1-+
esz = 51 fl—l, 0

(i) Since 0& =0, (8&)ayis...5; =0 on Vo, Vi 4y,

éfo iy 2;,:0 (—1)}. Saoio,..?;_...il =0.

Hence Gifsq == 62f0,l—1 .
(ii) Since 6& =0, (6&)...q, ... i, = 0 oD

Vao... a n Vio ...il

.
v —

Simo (=D b, 2 e DT I, L, =0

AY +ee GY oee By Q) een “7‘0""1"' il—v

(»—1)» »(v--1)

—_— e Qy,

(—1) 2 O fomrinis, F (=1 (—1) 2 Gyfo tmrig. iy, = 0.

Hence 6, fo—1,1—» = 03 /5, 1—r—1 -
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(iii) Since 6& = 0, (3&) 0= 0 on Vao_“aln V..o.

ag ... ap

Simo(— 108, + (=1t =0

oy apty a ... ap

a—unt

(— 1) % G fir oy A (= D g = 0.

Hence 6, fix = 6, fi1,0- q.e.d.

B. Suppose X is a complex space of reduction order = p < co and ¥
is a coherent analytic sheaf on X. Suppose g€ R} and n: X— K (o is a
holomorphic map.

If W, VeS (X) with |T|=|V| and & = (& *)e 0= > (W, V), then we
denote by & “ the element (& ", of C"(U, nv, F).
iy 0y

Wy ey By .o

ProposITION 10.2. Suppose T, V, W €S (X) such that |TW|==|V],
U << W, and TA << V. Then for I =1 there exists w € 2™ satisfying the
following. If ¢ < @ and &€Z'(V (o), F) with || £ ||y, , < ¢, then there exists
LeZY (W), #) and 7€ O (TU (o), #) such that & —dn={¢ on Tl (o),
I|¢ Hm,e <C, e and ||y ”"(ml,e < C, ¢, where O, is a constant depending only
on o. Moreover, if ¢, is not a zero-divisor for %, for z € X, then C, can be
chosen to be independent of p,.

PRrROOF. (a) Construct ;€S (X) with the same index set as U, 0 =
<i=<2l+1, such that Wi, << Wi, W= Way,, and | W, |c<|V|. Cons-
tant V; €8 (X) with the same index set as U, 0 < i =< 21 4 1, such that
MW << Vipg << Vi, V="V, and | WU, | & | Vot ]|.

Define U); as follows. VeUl); if and only if V is the intersection of a
member of V; and a member of U;. We have the following diagram :

W = Wart1 << Wap << o0 << Wy << Wy
v v \4 v

W << Va1 << Vg << o << V<< P <V

and | ;| =|V;|. Write W, = (U} and V, = (V).
(b) Take we€ 2™ and we shall impose conditions on w later. Take
e <o and §€ZY(V (o), F) with [[£[ly o <e.
We are going to construct, by induction on v, &, 1—,—; € C* =1 (W, 11 (o),
Voprlo), 0 <»=1—1, and & € Z'(W; (o), ¥) such that
@ & &1, 12y ey g1, &0, &+ form a zigzag l-sequence
in (10.1)«%(9)’ Vo) » Where &* ig the restriction of &to ZYV; (o), F) and
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& _,_, is the restriction of & 1—y—1 to C*="=1(W,;(0), Vi (o)),
(il) ” (fv, l—'v—l)ao HU v—{-l) n ]D < 07,9 €, and

(iii) || &= | Wi (0) ||’(uz+1,@ < 01,9 6»
where C;,, 0 =» =1, are constants depending only on g.
Suppose we have constructed &pi;,...,&—1, 1y for some » < I. (The
case » = 0 means that we have only the empty set to start with).
Define a € =" (W, (0), U, (0)) to be

0,(&) for »=0

[0, (6s—1,1—s) for »> 0.

Then it is easily seen that J,a = 0.
@ €2 (U, (0) NV, (o) F)-

” a/ao ey < 0(1) Ov—l,g e,

”U;:)...a,, n mw’ e

where C) is a constant and O_; ,=1.

Apply Proposition 9.1 to U(”'H) NV, << U,,fo) o, NV, . If o =< ! for
a suitable w!€ Q™ (and we assume thls to be the case), then we can find
pe e (UL (@) n 1m+1 (0), F) such that & (b® ) =a®"* on

Uath, (0) N Vsps (o) and [|™ “Ua(”“l, NOe < 0P ¢ C,_y,, e, where
0 e

0(,(2) is a constant depending only on p. By going to the skew-symmetriza-
tion, we can assume that b* " * is skew-symmetric in «y, .., o, .

There exists a unique &, ;—,_;€ C* "1 (W, 1, (o), V41 (0)) such that
b = (£, ). Set O, = 0 ¢V ¢,_; ,. The construction of
& 1mv—yy 0 =9»=<1—1, by induction on » is complete.

We are ready to construct & . Since

B _{6,0,& for I=1 -
80y f1m1,0 =0 8 §11,0 = 0,0, &2,1 for 1>1)
there exists a unique £s € Z'(W; (o), F) such that 0, &n =6, &y, -

Il (8, &1, 0)* < 0B Oy, 6

HU(l> Ve

where O® is a constant. By Proposition 9.2, if w =< »® for a suitable
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w? € QM (and we assume this to be the case), then

HE™ ey <0 € e,

ao...al,g

where C.Y is a constant depending only on @ and (%)™ is the value

of & at the simplex (ay, .., a;) of the nerve of W; (o). Hence | & ”’Ql,_,_,,g <

< Oy, ¢, Where Cp , = 09(4) c® 0y,,-
(c) Let &, & 1y—1, &+ be the restrictions of & &, 1y, & tO
A (‘Dl+1 (o) F), O” b=t (wl—l-l (0)y ml+l (), and Zl(ml+l (0)y F) respectively.
By the proof of Proposition 10.1 we can find a zigzag l-sequence

£, 60, =1y +evy El—-l,O’ 38 in (10'1)wl+1(9):
(i) ¢=¢,
. (141
(i) &x =(—1) * &, and

A
e ag ... 0,
(iii) || (&, . A “V.ﬁtnay 0 V.'(l,l

wH—l(g) such that

+1) <e.

e ‘LZ_’,__I '

‘We are going to construct, by induction on »,

Vo, 1=v—2 € 071772 (Vpy i (0), Vigrpa (0))y, 0=r=1—2,
such that
(i) 8, yo,1-2 = &0, 11 — £, in C%=1 (V43 (), Viys (o)),
(i) 8 7, 1mrm2 = & 1mvm1 — Er. 19t — B Po,1pr D
C7 =71 (Vigygs (0)) Vigrta () for » >0,
and
(iii) || (9, l_,_z):f,‘.'.';"_,_2||7 kD) D) < D, ,e where D, , is

.o Gy 9"

a constant depending only on g. Note that, when [ =1, we do not have
any ¥ i—v—z-
Suppose we have found yg -2, .., Y»—1,1—»—1 for some 0 <» <1 — 2.

For » =10, 6,(&,1—0—1 — é\v, lve1) =60, & — 0, §A= 0 in C"! (Viy4 (0); Vit1 (0))-
For » > 0,
62 (Emlf, l—y—1 — E:, l—y—1— 61 Vv—1, l—v—l) = 61 (E;—l, l—y — é;—l, l—y — 62 Vr—1, l—v-—l)

0 for y=1

= =0for » >1 in 0" (Vipst1(e)y Vitrt1(0)-
51 61 Vr—2,1—»

Hence (£),1y—1 — &y, 1—v—1 — 03 Yot 1mr—)™ " €277 (Viyppa (o), F), Where
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8y y—1,1-1=0.

&ty — é 1—y—1 = 0y Pr, ) Hr+1
[ (& 11 — & 1w — 8y 7 ”V.io“.Lfty)anwv@

<(Cho+14 0O D,y ,)e

where O® is a constant and D_, , = 0.
- (Hv—2) (+»+1) < 3
Apply Proposition 9.1 to Vg o’ N Vgt << Voo a, NV . oo =w
for some suitable w3 € Q® (and we assume this to be the case), then there
exists ¢® € O (VI () 0 Viyype (0), F) such that
8(0™ ™) = (&, 1mv—1 — &v 1yt — Oy Prmr 191) " T

and
cao 0y, ) 0(6) Oy 1 0(5) D’y— e
“ ”Va(;‘F j;z)nwz+y+2;9 < G’ (0 o+ + 1,0) €,

where (Jf) is a constant depending only on g. By going to the skew-sym-

metrization, we can assume that ¢* " °» is skew-symmetric in ag, ., a, .
There exists a unique element

Vo imv—2 € 072 (Vg ps (0)y Vigoss (@) SUCh that (p,,1p0)™ "™ = ¢*"

B

ap ... o,
” (7‘)’, 1—7—2),'00_._ il:V—Z ”Va(l-i—'v-‘l;z) n v(i+r+2) ,0
0 +or Gy 5

[ 7300 il—v—2

< D, .6, where D, ,= C®(C, ,+ 1+ CO® D,_,,).

The construction by induction is complete.

(d) For l=1, 8, (&i—1,0— Eio)=10,& —6,E=0 in 011y (o),
V2 (0). For 1> 1,

A

Oy (E1—1,0 — 51—1, 0— 04 Vi—s,0) = 0, (§i—2,1 — &19,1 — O3 Y1—2,0)

0 for | =2
— in 011 (Vy (0), Vo (0))-
61 61 }’l—3,l=0 for l>2

Hence there exists a unique element %’ € C'—1 (Vy (o), #) such that 6,7’ =
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= &i1,0 — &1-1,0— Oy 71—3,0, Where &, y—;, o= 0.

A
Et,0— Eim1,0 — 04 12,0 " |y @
€0 L V0 |‘V§02.)..a,_1n Ugyse

(Ce1,e+14 0O Dy, ) ¢,
where C® is a constant.
By Proposition 9.2, if o =< w* for a suitable w*€ Q™ (and we assume

this to be the case), then || (5))* ™ “‘—IHV(QH_I) < CP (O o +1 +
oo ... al__l ’
+ 09Dy, 0)e, where O is a constant depending only on g and (’)® " “—1
is the value of 5’ at the simplex (a;, ..., a;—;) of the nerve of Uy (o). Hence
I lyy,e < 02 (Os e+ 1409 Dis e
Ui+1)
(e) Let { be the restriction of — (— 1) 2 &»to Z!(W (o), F) and let
UH+1)

7 be the restriction of (—1) 2 #’ to 01 (Wl(e), F):[|¢ly,, < Ce ¢ and

ll7]lua, o < Ces Where C, is the maximum of ¢ 0® 0y o and €7 (Cy, o+
14 00Dy ,).

In C%° (Va1 (0), Vaita (@), 60, (07") = 6, (6, nll)(z-:_; 0y (fi1,0 — 2'"—1’0 -

— 0y Yi—g,0) = 0, (6w — &»). Hence 6y’ = é&p 4 (—1) 2 £ in C' (V2141 (o) F).
On T (o) we have & — dn ={.

(f) If ¢, is not a zero-divisor for ¢, for x € X, then the constants

OCyey Di o, 09(") can be chosen to be independent of ¢,. Hence C, can be
chosen to independent of o, . q.e.d.

ProPosITION 10.3. Suppose T, W’ V € S (X) such that W << W, V < W/,
and |W| < |V |. Then for I =1 there exists w € Q™ gatisfying the following.
If o<<w and £€Z' (W (o), F) and 5€ O (V(p)y F) such that dp=¢ on
V(o) and || ¢ H«m/,e < e and | 9 [y, o < ¢, then there exists (€ 01 (W (o), F)
such that 0 =¢& on W (e) and |||l o < Ce €, Where C, is a constant de-
pending only on o. Moreover, if ¢, is not a zero-divisor for &, for « € X,
then C, can be chosen to be independent of g, .

PRrOOF. (¢) Choose ;€8 (X) with the same index set as W, 0 =i =
=<1+ 1, such that W = W1, Wit1 << Wi<< W, and | W, | == |V |. Choose
V; €8 (X) with the same index set as V), 0 =i =141, such that Y =1,
Vit << Vi, and |W,|<c<c|Visyy|. Define V; as follows. VeUV; if and
only if V is the intersection of a member of V); and a member of ;. We
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have the following diagram :

m = ml-l—l << ml << e << ml << mo << m’
\'4 \4 v \4
Vi1 << Vi< <<V, <<V <V

and || = | V;|. Write W, = (U} and V, = (V")
(b) Take w € 2™ and we shall impose conditions on w later. Suppose
o< w and £€ZY(W (o), F) and 7 € O (V (o), F) such that éy = & on V (p)
and ||l ¢ < e and 7]y, < e
Let £ be the restriction of & to Z'(U, (o), ). From the proof of Pro-

position 10.1, we can construct a zigzag Il-sequence &/, &y 11, &1,1-2, .
1(141)

B 51, —1,0 % (— 1) 2 'S’ in (10-1)'1111 (o), mi (@) such that

ao‘..a,,
I (&5, 1=v—1) ”Uo(.(l,) nw,, < e.

(¢) We are going to construct, by induction on v,

Ny 1—v—2 € O "2 (Wypa (0), Vry2 (o), 0=v=1—2,

such that
(i) &, 11— 0,9 = Oy 710,12 In C%1 (W, (0), Uy (0)),
(ii) Ev, l—y — 61 Hy—1, l—y—1 = 62 171', l—v—2 in Ov, d (mv+2 (9)7 w7+2 (Q))

for » = 1, and

iii , Iy % e Oy ” D,, e
G oo ey v,y 0 < Pres

where D, , is a constant depending only on p.

Suppose we have constructed 7o 12, 71,13y «oe y %»—1, 1—v—1 fOr S0me 0 =
y 1 — 2,

When » =0, we have d, (50,11 — 0, 9) =0, (6§ —75) =0 in LW, (o),
V, (o)) and || (&, 1y — 6, )™ Il < Ze.

When » > 0, we have

v nwy,,e

62 (59, J—y—1 — 61 Nv—1, l—v—-l) = 61 (‘Ev—l, -y = 62 "77-—1,1—7—1)

0,0, for »=1 l
=0 in O»+* (my+1 (Q)y wv-l-l (Q))
61 61 Ny—2,1—» for » > 1 ’
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and

” (Ev, l—y—1 — 61 Ny—1, l—y—1 :

ao...a, . — 1 (I)D
) “Ungo_.':liynqu-l’e <1+ ve) €

where C() is a constant.
Apply Proposition 9.1 to U.i;“"”,,v NV, << Uo(c:)"'l)a, NV If 0 < of
for a suitable '€ Q™ (and we assume this to be the case), then for some

b% e 00 (Vy42 (0), F) we have
&o,1-1— 0, for yv=10

Ev, l—y — 61 Ny—1, l—p—1 for » > 0

and
“ bao e @y ”U(v+2) 0 w v . < 092) (1 —I-. 0(1) D-y—l, g) €,
@y ... a, v+27

where 0&2) is a constant depending only on ¢ and CW D_; ,=1.

By going to the skew-symmetrization, we can assume that b™ ™ ig
skew-symmetric in «g, ..., . Let 5, 1,9 € "% (W, 42 (0), Vs42 (0)) be the
unique element satisfying (#,,1—,—3)%0 " * = b% % . The construction by in-
duction is complete if we set D, ,= (2 (1 4 OV D,_; ,).

(d) For

l==1, 6251_1_():62915:0165=91661}=0
=1 1 (Wi (0), Vile))

in

For
l > 1, 52 (51——1, 0 51 Ni—2, o) = 51 (51—2, 1 62 Ni—2, o)

861 0,7 for =2
— =0 in C=11(V;(0), Vi(o))-
18,8, 15, for 1>2

Hence there exists a unique element {’ of C'—! (U, (o), F) such that 6, =
E‘—I,O — 61 ’)][_1, 0 Where 61 ?7_1, 0= 0.

|| (Bi1,0 — Oy Mu—g, o) “4—1 ”U(z) <(14 0® Dy ) e,
ao eos

a1 nv,e

where C® is a constant. By Proposition 9.2, if w < w? for a suitable w?€ Q™
(and we assume this to be the case), then

[| (/)% %=1 ”'IIIGEH'” 0 < 0P 1+ P D, o) €

o ®l—1 ’

7. Annali della Scuola Norm. Sup. - Pisa.
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where Cé‘) is a constant depending only on ¢ and ({’)%*~1 is the value

of ¢ at the simplex (a;, ..., a;—;) of the nerve of W;y, (o).
1(141)

(¢) Let ¢ be the restriction of (— 1) 2 (¢’ to C1 (W41 (o), F)- Then
¢ ”'U,l, 0 < Oy) 1+ c® Dy, ) e. In

ChO(Wit1 (0)y Viti1(0))y 65(88") =0,(0,0') =
: 1041
(31 (51—1, 0o 61 Ni—2, 0) = 51 El—l, 0= 92 ((— 1) 2 5)-

Hence 6, = & on U (o).
(f) If t, is not a zero-divisor for <%, for x € X, then the constants

o, D, , can be chosen to be independent of o, . q.e.d.

PRrROPOSITION 10.4. The conclusion of Proposition 10.2 remains valid
when the conditions |W|cc|V|, N <<W, and T <<V are weakened
respectively to || cc|V|, TN << W, and TR << V.

T E3 7T

PROOF. Assume the weaker conditions. Choose T, Tl € S (X ) and p! <o°
in R} such that W<< T, W << T, | W' | cc|V], W (o!)<< W, and
T (o1) << V. Let W = T (o) and TA’ = TA (o).

Take w € 2™ with w < o' and we shall impose more conditions on
o later. Take ¢ < w and £€Z'(V (), F) with |[& ||y , <e.

By Proposition 10.2, if w < w! for a suitable w!€ 2™ (and we assume
this to be the case), then there exist {’ € Z' (W’ (o), F) and %’ € C*—1 (VW' (o),
?73) such that(l)f'—-dn’=i’ on W () || ¢ e < G & and [1” [l o<
O, e, where C,’ is a constant depending only on ¢ (and is independent of
on When ¢, is not a zero-divisor for %, for =€ X).

Let { ={’|W (o) and n=19"| Tl (¢). By Proposition 8.5, ||¢ “'(u,g <
< D0 e and ||y lluq, 0 < 0@ ¢y e, where (2 is a constant. &— oy =1¢
on T (o). q.e.d.

The following Proposition is derived from Proposition 10.3 in the
same way as Proposition 10.4 is derived from Proposition 10.2

PRrROPOSITION 10.5. The conclusion of Proposition 10.3 remains valid
when the conditions W<< W, V< W, and |W|cc|VP| are weakened
respectively to W << W,V < W/, and | W | cc|V]|.

D. Suppose ° € R’ , @ is an open subset of C¥, and & is a coherent
analytic sheaf on K (p% < G. The following two Propositions are proved
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in the same way as Propositions 10.2 and 10.3. (The last statement of
each Proposition follows trivially when we make use of Taylor series
expansions.)

ProposiTION 10.6. Suppose W, V, TN €S () such that |W|cec|V],
U << W, and T << V. Then for ! =1 there exists w € QM satisfying the
following. 1f o < w and £€ZY (K (0) < VU, F) with |&y , <e, then there
exists [ €Z' (K (p) <X W, F) and n€ (1 (K (9) < TUA, F) such that & — oy =
={ on K(o) <X W, |l|q, o < OCce and |7 |y, ,<< Coe, Where O, is a con-
stant depending only on p. Moreover, if ¢, is not a zero-divisor for % for
x € K(g% < @, then C, can be chosen to be independent of g, . In the spe-
cial case F= 4507, can be chosen to be @° and C, can be chosen to
be independent of p.

ProprosITION 10.7. Suppose W, W, V€S (G) such that W<< W,V <
< W, and |W|cc| V| Then for I =1 there exists w € Q™ satisfying the
following. If o < wand £€Z'(K (o) X W, F) and ne€ (K (g) XV, F)
such that oy =¢& on K(o) <V and |&|[q,, <e and |7y ,<e, then
there exists { € O'—1(K (¢) < W, F) such that 6 = & on K(g) < Wand |{|q, o<
< C, ¢, where (O, is a constant depending only on p. Moreover, if ¢, is
not a zero-divisor for <%, for » € K (¢°) < @, then O, can be chosen to
be independent of g,. In the special case F= ,{¥O7,w can be chosen
to be ¢® and C, can be chosen to be independent of p.

§.11 Bounded Sheaf Cocycles on Pseudoconcave Spaces.

This section deals with the extension of sheaf cohomology classes
on a family of pseudoconcave spaces. The techniques used here are es-
sentially those developed in [1]. The situation we have here is far more
complicated than that of [1], because we have parameters and also we
have to take care of the bounds. Results developed in § 10 concerning
Leray’s isomorphism theorem with bounds will be used to cope with this
complicated situation.

In the remaining of this paper, we use the following notation. If

0 == (04, ,0n) ER}, then we denote (g, ,..., 0n1) ERT" by o.

A.

DEFINITION. Suppose D is an open subset of C¥ and g€ N.
(@) D is called (H) if H*(D,#0)=0 for 1=» < N —q.
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(b)) D is called (H*), if for every compact subset L of D there
exists a relatively compact (H), open neighborhood of L in D.

DEFINITION. Suppose D,ﬁ are open subsets of C¥and g€ N.
(a) (D, f)) is called an extension couple if D c D and the restric-
tion map I’ (D, ¥O)— I'(D, yO) is bijective.
(b) (D, 5) is called (E), if D is (H), and (D, ﬁ) is an extension couple.
(¢) (D, T)) is called (E*), if for every compact subset L of D and
every compact subset I of D there exist a relatively compact open neigh-
borhood D, of L in D and a relatively compact open neighborhood 13'1 of I in
D such that (D,, D)) is (B),.
Suppose ¢ EN, meN,, and o€ R . Suppose D; is an (H), open sub-
set of C¥,0 <i=<m, and ¥ is a coherent analytic sheaf on K (g% < D,
such that
(i) Digqcc Dy,
(ii) t, is not a zero-divisor for %, for x € K (¢° < D,, and
(iii) ¥ admits a finite free resolution of length m on K (0% < D,.

ProrosITioN 11.1. Suppose W, V€S (C¥) such that |V | cc Dy, D, cc
cc|W|, and Y <<W. Then for 1 <» < N—q—m there exists o € 2"
such that, if o<w and feZ’(K (o)< W, ¥) and |f|‘111,9< e, then there
exists g€ 01 (K (o) X V, F) with dg=f on K (o) < U and lglm,9< G e,
where 0‘; is a constant depending only on E In the special case m =0,
C; can be chosen to be independent of E

Proor. Useinduction on m. Take w € 2" and we shall impose conditions
on w later. Fix 1 <y < N—gq —m. Take o < w and f€ Z7(K (9) <X W, F)
with lfl'lll,g <e.

(@ m=0. F=,4y0? on K (¢° > D, for some p € N.

Choose a countable Stein open covering TYQl of D, such that TA < U.
Choose TQ* €8 (CY) such that |V |ecc|TU* | and TA* << TA.

By considering Taylor series expansions in ¢,,...,¢, and applying the
open mapping theorem to the continuous linear surjection of Fréchet spa-
ces J: C1 (U, yO?)— Z” (1A, yO?), we can find ¢’ € C*7! (K (o) X
> TA*, n4+5O?) such that 8¢’ =f on K (o) < TA* and |g’ |’0§11‘,9 < (CWe,
where C() is a constant.

By Proposition 10.7 there exists g € C*! (K (¢) X V), n4xOP) such that
69 =7 on K(g) < U and | gllb,e < 0@ CW e, where O is a constant.
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(b) For the general case assume m > 0. Let ¢ :, yO? — & be the
sheaf-epimorphism on K (¢°) < D, which is part of the finite free resolution
of F of length m on K (¢°) <X D,. Let Q= Ker ¢.

Choose T’ €8(CY) such that Dy cc|TW’| and W’ << W. Choose T € S (C¥)
such that Dycc|TU|cc Dp—y and TA << W’. Choose V' €S (C¥) such that
|V|ec |V |cc Dy and V' << Wl

By definition of ||y ,, We can find f’€ C” (K (¢) X W, n4xO?) such
that ¢ (/) = f and | £ |, o < . 857 € 2741 (K () < W, §). | 35" g, o < ODe,
where C(1) is a constant.

By Proposition 5.1, if @ < w! for a suitable w! € 2™ (and we assume this

2)
to be the case), then |4f’ |y 0 < ()'Zf "o e, where 05(2) is a constant de-
pending only on E

By induction hypothesis, if w = w? for a suitable «?€Q®™ (and we

assume this to be the case), then for some f’/ € C” (K (o) X U, @), f"'=df’

on K (o) < U0l and |f’” | w, e < 0-(3) C—(Z) Om ¢, where 05(3) is a constant de-

pending only on p.
® )
F'—f" €2 (K (@<, iy OF) and | f'—7" g, <14 0 " 0%y 0,
where 0@ is a constant. By (a) there exists g’ € 0"~ (K (o) >< v, n-l-NOp)
such that d¢’ =f" — f’/ on K (p) <X V)’ and

® 0
19y, < 0P+ 0¥ e ¢ e

where C®) is a constant = 1.

Let ¢’ =@ (g9') € G”—l (K(Q) =XV, F). Then f=4¢’’ on K (p) x V) and
Ig// |]D',g (5) (14 0 0 0(2)) 0(1) .
By Proposutlon 10.7, 1f ® < w® for a suitable w3€ Q™ (and we assume

this to be the case), then for some gE 01 (K () >< V, F), f=24g on

K@) <V and |[gly, <0, © ¢ (1 + cf 0—(3) 0-(2)) ¥ ¢, where 05{6) is a

constant depending only on Q. q.e.d..

PROPOSITION 11.2. Suppose N > q -+ m. Suppose D is an open subset
of C¥ such that (D, , 5) is an extension couple. Suppose U, V, TA € 8 (CY)
such that | TQ |cc Dy, Dycc | V|, |W|cc D, T <V, and W < W. Then
there exists w€ Q2™ such that, if o <w and f€Z°(K (o) <V, F) and
| flp,o < ¢ then there exists geZ°(K () < W, F) such that g=f on
K () < U and |g|xq,, < C;¢, where C; is a constant depending only on
o. In the special case m =0, » can be chosen to be ¢° and O; can be
chosen to be independent of .
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ProoF. Take € Q™ and we shall impose conditions on ¢ later. Take
o< and fE€Z° (K (o) X U, F) with |fly , <e.

(@) Consider first the special case m = 0. F =, yO? for some p € N.

Choose a countable Stein open covering U’ of D such that W <<W.
Choose a countable Stein open covering V' of D, such that V' <1 and
V<.

By considering Taylor series expansions in ¢,,..,?, and applying the
open mapping theorem to the continuous linear bijection of Fréchet spaces
1:Z°(W, yO?) — Z°(V’, yOP) induced by restriction, we conclude that
[+ (f) |, o < C¢, Where C is a constant. Hence g = v~!(f) satisfies the
requirement.

(b) For the general case assume m > 0. Let ¢: ,4.yOP — % be the
epimorphism on K (¢° > D, which is part of the finite free resolution of
F of length m on K (9% < D,. Let @ = Ker ¢.

Choose V)’ € S (C¥) such that Y <<\ and D, cc |V’ |. Choose V"’ € 8 (C¥)
such that D,cc|V’|cc D,y and VW’ <<’. Choose T’ €S (C¥) such
that |TA | < | TN’ | c€ Dy, TA < V7, and T << W.

By definition of ||y ,, We can find f’€ C°(K (¢) X U, n4#OP) such
that @ (f')=f on K(o) <V and |f’ |y, <e 0f'€Z*(K (o) <V, Q) and
| 8s” HD,Q < 2e.

By Proposition 5.1, if o < w! for a suitable w!€ Q2™ (and we assume
this to be the case), then |df’ v, e < 05(1) 2¢, where 05(1) is a constant de-
pending only on 5

Since N > ¢ + m, by Proposition 11.1, if o =< w? for a suitable
w? € QM (and we assume this to be the case), then for some f’ € 0° (K (p) <

2
<XV’ Q) df = 6)1” and | £/ |y, o < 05(2) OE(D 2e¢, where GE( " is a constant

depending only on g.
P =B (E(Q) X VU, nyn O and |7 — 7 | <1+ ¢ 0 )2,
By (a) there exists ¢’ €Z°(K (o) X W, ny+x¥O?) such that f' — f’" =g’ on

K (o) < TV and | g’ |, 0 < c® (14 ¢® 05(2) C’E(l)) 2e, where C“ is a constant.

Let g =@ (¢’). Then f=yg on K(o) < W and |g|y ,< "1+

+ ¢ 0 02) 2. q.e.d.

B. Suppose X is a complex subspace of a polydisec G of C¥ and the
reduction order of X is < p < co. Suppose o°€R} and n: X— K (¢° is
a holomorphic map. Suppose <& is a coherent analytic sheaf on X such
that codh = r and ¢, is not a zero-divisor for %, for « € X.

Suppose ¢€N and D is a relatively compact open subset of @ such
that D is (H*),. Let E=Dn X.
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ProPosITION 11.3. Suppose T, V€S (X) such that |V |cc Becc|W|
and V) << W. Then for 1 <y < r —q—n there exists w € 2™ such that,
if o<w and f€Z” (W(e), ¥) and || fllqy, o <e, then there exists g€
€01 (V(e), F) with dg=f on V(o) and [ gy ,< O;e, Where 05 is a
constant depending only on E

ProoF. We use the notations of § 8 B.

Since codh F* =+ on the polydisc K (¢°) <X @, by shrinking ¢° and @,
we can assume that F* admits a finite free resolution of length m < n -4
+ N —r on K (0% < G. Since t, is not a zero-divisor for %, for x€ X, ¢,
is not a zero-divisor for %* for x € K (¢°) < G.

Since D is (H*),, we can choose (H), open subsets D; of D, 0 =1t =1m,
such that |V |<c D, and Diy, cc D;cc D.

Choose By << B, << B, in 8 (&) such that |V|cc|D;| ccDp, Dycc| D, ],
and DN X<<W. Let Wi =D:;n X, 1=i=3. Choose W, €8 (X) such that
W, << Wy and |V]ec|W,|.

Take w € 2™ and we shall impose conditions on  later. Fix 1 < » <
<r—g—mn. Take ¢ < and f€Z” (W (), F) with || flq,, <e-

Let f*= 60g, (f| W, (o)) € 2" (K (¢) X B, , F*). By Proposition 8.4,
| f* |E2y9 < 0We¢, where C® ig a constant = 1.

By Proposition 11.1, if w =< w! for a suitable w!€ 2" (and we assume
this to be the case), then for some g¢*€ 0*~1 (K (o) <X By, F*), d9* =f* on

@ @
K (@) < By and | g*|p < 05 O
pending only on p.

Let g’ = 0 (9") € ¢~ (U4 (), F). By Proposition 8.2, | ¢’ |y, o <

< 0(3)052) CWe, where O® is a constant = 1. d¢9’ = f on W, (o).

By Proposition 10.3, if o < w? for a suitable w?€ 2" (and we assume

this to be the case), then for some g€ C*~1 (V) (¢), ¥), g =f on V(o) and

@ 3 @ Q)
l9lly,e<C; ¢ G C

2
e, where 0’5() is a constant =1 de-

¢, where 0;) is a constant depending only on g.
q. e d.

Suppose Dis a relatively compact open subset of G such that (D, _'f))
is (B%,. Let #=Dn X.

PROPOSITION 11.4. Suppose » > q + n. Suppose W, VY, TN €8 (X) such
that | Wl |cc Hec|V ]|, | W] cc B, Tl <V and TN < W. Then there ex-
ists w € Q™ such that, if ¢ < w and f€Z°(V (o), F) and | f|ly, , <e, then
for some g€Z°(W (o), F), g=f on Wl() and || g |y o << Oz ¢, where C;
is a constant depending only on p.

PROOF. We use the notations of § 8B,
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As in the proof of Proposition 11.3, ¢, is not a zero-divisor for % for
2 € K (0% >< G and we can assume that &* admits a finite free resolution
of length m <n 4+ N —r on K {o° < G.

Since (D, ﬁ) is (B*),, we can choose a relatively compact open subset
D’ of D and (H), open subsets D; of D, 0 < i < m, such that | Tl | cc D,
Dty ce D; ce D, | W| cc D’y and (Dy,, D’) is an extension couple. Choose
D, << D, in §(G) such that Dy cc|D, | and B, N X << V. Choose B, << B,
in S(@ such that |W|cc|V;| cc D’. Choose B’ €S (G) such that
[V | | D | cc Dpyyes, B’ <Dy, and B’ <D,. Let W, =D, nX and
W,=D,nx.

Take w € 2 and we shall impose conditions on « later. Take ¢ << w

and f€Z° (V(0),F) with || f|| y, o<l e. Let f *=0g (f| W, (0) €Z° (K (0) <X By, F*).
By Proposition 8.4, [f*|g, ,<< C®e, where 0V is a constant.
By Proposition 11.2 if w < w! for a suitable w!€ 2® (and we assume
this to be the case), then for some ¢*€Z%(K(p) < f)i , F*), g* =f* on
, . Jop
K(o) < B and |g |E“Q<09 C

only on E

2) . .
e, where GZE) i8 a constant depending

Let ¢’ = Grg (9*). By Proposition 8.2, || ¢’ |1, o < ¢ ()5(2) oV ¢, where
1 )

O® ig a constant. Let g =g’ | W (o).

By Proposition 9.2, if w < w? for a suitable w?€ Q2™ (and we assume

this to be the case), then ||g g, o< Cs 0 €5 0"

stant depending only on p. ¢ =f on T (o). q. e. d.

“ .
e, where 0(—) is a con-

C. Suppose X is a complex space of reduction order < p << co and ¥
is a coherent analytic sheaf on X. Suppose o € R} and n: X— K (0% is a
holomorphic map.

Suppose H, H,, H, are relatively compact open subsets of X such
that H = H, U H, and (H, — H,)~N(Hy, — H,)~ = . Let H,=H,NH,.
Suppose some open neighborhood U of H; is biholomorphic to a complex
subspace of a polydisc G in C¥ under a map v such that H,, = (D) for
some relatively compact (H*), open subset D of G.

Suppose ¢, is not a zero-divisor for %, for # € X and codh ¥ =1 on U.

ProprosiTION 11.5. Suppose U, V, U € S (X) such that |TVA | cc
ccHycc |V, |W|ccH TW<<U, and YW << V. Then for 1 <y <r—gqg—n
there exists w € Q™ satisfying the following. If ¢ < w and f€Z*(V (o), F)
and || f|ly o < ¢, then there exist g€Z* (W (o), ) and ke "~ (TW (o), F)
such that f— oh =g on Tl (o), || ¢ ”t_u,g < C;e and || ||y, o < U5 ¢ where
05 is a constant depending only on .
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Proo¥F. Choose B’ €8 (X) such that Hj, cc|®D’|cc U and B’ < V.
Since (H, — H,y~ n (H, — H,)~ = @, we can choose B, D, , B,, B, €
€ S(X) such that

i) =D, uD,, D, =D, ND,,

i) B <V, D, <<D,

(i) [W[es|D||W|e=|[D, | |Dyp| == Hyp, and

(iv) If VeD, and V€D — D, and VN V' == @, then VeD,,.

Choose TQ’ € 8 (X) such that | T |e=|TA’ |, WA’ << W, W' < B, , and
W << D.

Take w € 2™ and we shall impose conditions on w later. Fix 1 < » <C
<r—gq—n Take ¢ << ® and f€Z”(V (o), F) with || flly ,<e.

Consider the restriction of f to B’ (¢). By Proposition 11.3, if o < !
for a suitable w!€ Q@ (and we assume this to be the case), then for some

B €0 (D, (), F)y f=100 on By,(e) and b [lp, , < Oi—,l) e, where O’S)
is a constant = 1 depending only on E
Extend k' trivially to h” € C”—1(®, (o), ) By condition (iv), (f —
— )| B, g) can be extended trivially to g’ €Z” (D (o), %) |9 llm,o <

<1+4+0® 0— )e, where C® is a constant.
By Proposmon 10.2, if w < w? for a suitable ®®€ Q2™ (and we assume
this to be the case), then for some g € Z” (‘m (0), F) and R’ € C*~L (W’ (o), F),

g — " =g on W' (g ugnmg<o— 1+o‘2’o- and || M [lgqy, p <

0(_3) 1+ G 0— )e, where 0— is a constant depending only on o.

Feg=08W + W) on W (o) B + " [lgq o< (€5 4+ & 1+
+ 07 )e

Choose ’ﬂm* €S (X) such that YA << TA*, TA*< W, and TN * < V. Then
17— g lwar, o <@+ 62 (1 + ¢ D).

By Proposmon 10 3, if o= w3 for a suitable @3¢ 2™ (and we as-
sume this to be the case), then for some he 01 (U (o), F), f — g = 6h on

W (o) and |7 lqq, o < 0(4) (0(—1) + 0’ 14 ol Gg))) e, where 02—,4) is a con-
stant depending only on g q.e.d.

Suppose in addition that Hy < U and H, =-c—1 (D) for some open
subset D of G such that (D, D) is (E*)q .
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PROPOSITION 11.6. Suppose r > ¢ 4 n. Suppose W, V, TN € S (X) such
that |Tl|cc Hy cc|V]|, |W|ccH, TA< W, and TA < V. Then there
exists w € 2™ gatisfying the following. If o < w and feZ° () (9), ¥) and
|/ lly, o < ¢ then there exists g€Z° (W (), F) such that f=g on Tl (o)

and | g ||y, o < C; ¢, where C; is a constant depending only on o

PrOOF. Choose B/, D, D, , D,, D,, in S(X) in precisely the same way
as in the proof of Proposition 11.5, except that we require the condition
| Dy [cc Hy .

Take w € 2™ and we shall impose conditions on « later. Take ¢ < w
and f€Z°(V (o), F) with [|f]ly, o <<e-

Consider the restriction of f to ®’ (o). By Proposition 11.4, if w = !
for a suitable ! € 2™ (and we assume this to be the case), then for some
9’ €Z° (D, (0), ¥) we have f=g¢’ on D, (¢) and ”9”232,9 < Cgl)e, where
O:fl) is a constant =1 depending only on o.

Conditions (iv) in the proof of Proposition 11.5 implies that there exists
a unique ¢’’ € Z°(® (o), ¥) such that g’ =f on B, (0) and ¢’ =g’ on
D, 0 119" |, <C; e

Since | W | cc|D|, we can choose W € S (X) such that W << YW’ and
| W || D] ¢’ corresponds uniquely to an element g¢* of I'(|D (o)|, F).
g* induces uniquely an element g of Z9 (T’ (o), F).

By Proposition 9.2, if v < w?® for a sultable w?€ QM (and we assume
this to be the case), then 19w, 0 < 0(2)0 where 0‘-52) is a constant
depending only on 9.

f=2g¢ on TQ (o), because || c|D,| and f=g¢’’ on B, (0). q.e.d.

In the remaining of this paper we adopt the following convention :
If MeS(X), then ¢~ (W (), F)=0 and d: C~1 (W (o), F) — C° (W (o), F)

is the zero-map.

ProPOSITION 11.7. Suppose T, V, TN €S (X) such that | TA| ce H, cc|1D|,
| Wlcc H, TN << W, and TA << V. Then for 0<v<r—q—n there exi-

sts wEQ(”) satlsfylng the followmg If o < w and f€Z”(V (o), ¥) and
| flly, o < ¢, then there exists g€Z” (U (c), 7) and he 0"~ (W (o), F) such
that f—oh =g on W (o), || g, o < C€ and | % llgg, o < C5 ¢, Where Oy is

a constant dedending only on p.

PROOF. There exists o' < ¢ in R} such that Tl (o!) <= H,, H, (¢!) <
ce | V|, | Wle!)| == H, Tl (o!) << W, and TN (o!) << V.
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Take o? < ¢! in R}.. Choose V* €S (X) of the form V* =V y )’ such
that H, cc|V*| and |V’ |n a1 (K (0*) = &

For ¢ = ¢% since U*(o) =V (o), we have " (V*(g), ‘7)= 0" (U (0)y F).
It is clear that |||l , = ||-]ly,o on €” (V* (o), F) for o = o*

Choose w, W’Eb (X) such that W << W, W << TN, |W (¢? |ecc H,
| TV (0 | e Hy , T’ (0%) << W, and TA’ (0®) << V. Let TW* =T’ (¢* and
wW* = m' (@

Take w € 2" with @ < ¢*> and we shall impose conditions on w later.
Fix 0 =»<r—gq— n Take o< and fe€Z"(V(o), F) with [|fly ,<e.
We can regard f as an element of Z* (V% (), F)-|| fly= o < e

By Proposition 11.5 and 11.6, if & =< ! for a suitable w!€ Q2™ (and
we assume this to be the case), then for some g’ € Z” (U* (o), ) and k'€

C*~1 (W* (0), F), we have g’ = f— b’ on TM* (o), |9’ llug,e < Ob(—l) e, and
2 lluas, 0 < C;)e, where 099) is a constant depending only on g.
Let ¢ be the restriction of g’ to W (o) and let h be the restriction of

1 to Wl (o). By Proposition 8.5, || g |lq,o<C” (s e and ||h]jyy (<005 e
where C® is a constant. q. e d

D. For 0 <a<bin R¥ we denote {(2;,..,2x)E KY(b)||2:|> a;, fi
some 1 <i=< N} by G¥(a,b).

DEFINITION. Suppose ¢ is a strictly g-convex function and fis a holo-
morphic function on some open neighborhood U of K¥ (a)—, where a =
= (@, , a,,) € R < RY'. Suppose c€ R and a€ Ry . K¥(a)is said to be
well-situated with respect to (g, @, ¢;f, «) if there exist aj, <a,, in Rﬂv__q"'l
and o’ <o in Ry such that {p <¢} is disjoint from both {|f|=a}n
n (K91 (a,)~ < GVt (aL,, a,)") and {|f| =o'} n K¥ (a)".

The following two Lemmas are clear.

LEMMA 11.1. Suppose ¢, is a C> function on U such that the restric-
tion of ¢, to U N ({y} < C¥—et1) ig strictly g-convex for y€ Cs—'. Suppose
g =cand 0o <o If o, = ¢ and K% (a) is well-situated with respect
ot (¢, p, ¢;f,a), then K¥ (a) is well-situated with respect to (¢, ¢, , ¢, ; f, ,).

LEMMA 11.2. Suppose K7¥ (a) is well-situated with respect to (g, @, ¢; f, @).
If a! is sufficiently close to @, ¢, is sufficiently close to ¢, «, is suf-
ficiently close to «, and Dr ¢, is sufficiently close to D’¢ for y € N¥ and
|7| =2, then KV (a') is well-situated with respect to (g, ¢, , ¢, ; f, &)
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The following Proposition follows from the arguments on pp. 223-224
of [1].

ProrosirioN 11.8. If K¥ (a) is well-situated with respect to (a, ¢, ¢; f, o),
then (K% (@) {|/] <o) N lp>c), EY ()N (|/] < a)) is (B),.

PropPOSITION 11.9. Suppose K% (a) is well-situated with respect to
(@ Piyc;fra), i=1,2. Let Di=K¥(a)n{|f|<aln{p:>c}. If p,=9o,,
then (D, , D,) is (B*), .

PrOOF. Let L; be a compact subset of D;, ¢ =1,2. By Lemma 11.2
we can choose a’ < a in Ri, 0 < a’<a and ¢’ > ¢ such that

(i) K¥(a’) is well-situated with respect to (g, ¢, ,¢’, f, "), and
(i) L; € Dj, where D; =K7Y (a’)n {|f]| < &’} N {gs > ¢’}.

Let D= K¥(a/)n{|f| < «’). By Proposition 11.8, (D}, D) is (&), for
i =1,2. We have H”(D;,y0)=0 for 1 <y < N — q. Since I'(D, yO)—
— I'(D;, yO) is bijective for i = 1, 2, the restriction map I'(D;, yO)—
— I'(D}, yO) is bijective. Hence (D;, D3) is (E),. q.e. d.

The following Proposition follows from the arguments on pp. 219-223
of [1].

PROPOSITION 11.10. Suppose U is an open neighborhood of 0 in C¥ and
@ is a strictly q-convex function on U. If ¢ (0)=¢, then, after a linear
coordinates transformation and a shrinking of U, there exist a€ R.N,_, a ho-
lomorphic function f on U, and « € Ry such that K¥ (a)—c U, |f(0)| < «,
and K7 (a) is well-situated with respect to (g, ¢, ¢;f, a).

E. Suppose X is a complex space, o’ € R} and =:X—> K (") is a ¢-
concave holomorphic map with exhaustion function ¢ and concavity bounds
Cpsy Cy -

In the remaining of this paper we use the following notations, some
of which have been introduced earlier. For c€ (c,, co), X.= [@ > ¢}. X, de-
notes X, N 7z~ (0). X,(o) denotes X,Nn—1 (K (o) for g€ R} . X+ (g) is also
denoted simply by X (o).

The following notation is used for this section only. Suppose T is a
coordinates system of C¥. For € C¥ and a,ERi we denote by P, (x;a)
the open set which with respect to the coordinates system 7' is the poly-
disc centered at x with polyradii a.

Fix ce€(c,, cy). Take arbitrarily € 3X, . We have ¢ (z) = c.
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There exists a holomorphic embedding & from an open neighborhood
U of z in {¢ < ¢y} onto a complex subspace V of a polydisc G of C¥ such

that o | U=<;;0 o @ for some strictly ¢-convex function 30'0 of G.

By Proposition 11.10, after a shrinking of U there exist a,EB,_lr_, '€
€ G, a holomorphic function f on @&, «€R;, and a coordinates system
T of C¥such that @ ()€ Py (@ ;a)cc @, |f(P(®)|<a, and Pr(x’;a) is
well-situated with respect to (g, &;, ¢;f,a). Let D= &1 (Pr(x’;a)N {| f| < a}).
D is an open neighborhood of .

Since §X. is compact, we can choose x,,.., %€ 8X° such that s X c
c UZ‘=1 D;, where D; has the same relation to x; as D to x. Let the symbols
@, U;, Gy, N;,goi y @b, &, fi, «;, T; have meanings similar to &, U, G, N,
Py @ &'y fyay T,

Choose a relatively compact open subset L; of D; such that 0X. c U.-’f_l L;.

Choose non-negative functions o; on X,1 =< j =<k, such that

(i) Ljece Supp ojcec D; for 1 =j =k, and
(ii) for every 1 <4,j =<k there exists a non-negative C* function
&;.- on @; with compact supports satisfying o; = 3;-,- o d; on D;.

Choose LR, ,1 =1=<1F so small that the restriction of Z;M -+ i
Loy to Gin ({y} < C¥—e+1) is strictly g-convex for 1 <j <1 and ye(Cs1,
where the product {y} < C¥—¢+! jg taken with respect to the coordinates
gystem T;.

Let Py =@ and Q=@ —|— 2{=1 lz op. Let 9’;,"1' - go.' + Z]l=1 11’;“ . Then
pj= q'r;;; o @;. Since 'J:j.-g 39'0.- y Pr, (wi; @¥) is well-situated with respect to
(@ Ty 05 fiy @) for 1=4,§ < T

~ 0
For some, ¢ < ¢ X; cc (x> ¢}, because 0X.) < U,!f_.l Lice UL, Supp o;.

DEFINITION. ¢ is said to be reachable from ¢ with respect to (g, ) if

¢ can be obtained from such a construction as described above.
The following Lemma is clear.

LEMmA 11.3. (a) For every cE€(c,,cs) there exists ?E(c*,c) such that
¢ is reachable from ¢ with respect to (g, @).

() If c€(cy,cy) and ce (¢, ¢) such that ¢ is reachable from ¢ with
respect to (¢, ), then

(i) ¢’ is reachable from ¢ with respect to (g, ) for ¢’ E(E; c),
(ii) © is reachable from ¢’ with respect to (g, @) for ¢ G(E; ¢), and

(iii) there exists ¢’ €(c,cy) such that ¢ is reachable from ¢’ with
respect to (g, ¢).
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Suppose ¥ is a coherent analytic sheaf on X such that codh F=r
on {p < ¢y} aud ¢, is not a zero-divisor for % for x€ X. Suppose X

has reduction order =< p < co.

PRrROPOSITION 11.11 Suppose c*<'cv< ¢ <ocy and ¢ is reachable from

¢ with respect to (¢, ¢). Suppose W, U, TN €S (X) such that | Y| ce X, cc V],
|m|c“cX;,W<n<m, and "(KII<n< V. Then for 0 <» < r—q— n there

exists € Q™ satisfying the following. If ¢ << & and f€Z” (V) (o), ) with
I/ g, o < € then for some g€ Z* (W (o), 7) and k€ "~ (UA (o), F), we have
f—oh=g on W(e)lgluge<Ce and | h||yy , < C; ¢ where C.is a

constant depending only on p.

ProoF. Choose c¢’€(c,cy) 80 close to ¢ that the following three con-
ditions are satisfied :

(i) Pr, (a;;a) is well-situated with respect to (g, 650,', ¢ ;fi, o) for
every i,

(i) X; c={gx > ¢’} and
(iii) | W | cc X

Choose ¢/ =6 >>¢;—1 > .. > ¢, > ¢, = ¢. Let H() = {p;>>¢;}. Then we
have the following :

(@) X, = HQ,

i) | WA | <= B,

(i) Xy cc 7Y,

(iv) H? ce "™, and
v) HV<c B, .

Since HPecc H;(""l), we can choose U;€S(X), 1<i=<k%, such that
HYcc | W] cc HEY, Let W, =V.

gince ITEII | ce H®, we can choose TQl’ € S (X) such that T’ << W; for
0=i=Fk W <<UW, and IWI:":IW’I.
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We are going to prove (11.1);for 0 < ¢ <HF.

For 0=»<{r—q —n there exists w;€ QM such that, if
e <o and f€2”(Wi(o), F) with ||f |, o <e then for some
(11.1); 9€2Z” (Witq1(0), F) and he C—1 (AW’ (g), F) we have f —dh =g

(1) (@)
on‘m’ (@) and [ g |lgyy,, o < G5 e and ||kl gy, o <O e, Where

0’5‘) is a constant = 1 depending only on p.

Fix 0<i<k Let H=HY 6 H = H® H,= D;y,nHY;, and
H12=1)‘-+10H( Since H(”C H(_'ﬁl, H,,=H NnH,. Since Supp (@i+1 — ¢;)CDiq4,
we have HY; — HY%cc D;y,. Hence H = H, UH, and (H, — Hy)~ N

n(H, — H,)~ @.

Let D’ = Pr,(xf; a') n{|f| <a}n {(p.' > ¢} and D" = P, (ai; o)

0 {]f] <) 0 {@ig,: > ¢} We have H,, = &; ' (D) and H, = &;* (D”). By
Proposition 11.9, (D, D’’) is (E*),.

Now apply Proposition 11.7 (with Ul substituted by Wiy, VU by Wi,
and T by TA’) and (11.1) follows.

Take w € 2™ and we shall impose conditions on w later. Fix 0 < v <

<r—gq—n. Take ¢ < w and f€2"(V (o), F) With [|f]ly, , <e.
By using (11.1);, 0 =i<Fk, and using induction on I, we obtain (11.2)
for 11k

If o < w* for 0 =< i<l, then for some ¢® € Z”(W;(o), ¥) and
(11.2); rO € =1 (WA’ (o ?7) we have f — 6h® = g® on T’ (o),

— ®
199 I, o < (2,’-=o 05 e, and || h® g, o < (B0 G5 ) e

Now assume w < w’ for 0 < i+ <k. Let (“ b ,":01 —(').
By Proposition 10.4, if w < o’ for a suitable w’ € .Q(”) (and we assume
this to be the case), then for some g€ Z” (W (o), ) and r* € ¢~ (TA’ (9), F)

we have ¢g® — 6h*=¢g on TN’ (o), ||g||m,9<0— 0 & and || h*||w, 0 <
0'— O—e, where 0— is a constant depending only on g.

f—g=200" 4 1*) on T’ (o)

Choose T{*e€ S (X) such that W<fw*, | Ta™ | :”cl‘(llll’ [y WA *<< v,
and V* < W. || f — g luge, o < A+ 5 C)e[|BE 4+, , <1+ 05) O 6
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By Proposition 10.5, if w =< o’/ for a suitable w’/ € Q" (and we as-
sume this to be the case), then for some & € C*—1 (T (o) F) we have
S— g =23k on W(e) and ||}y, o < 0;—,"(1 + 02) 0;-, ¢, where O';-:' is a con-
stant depending only on p. q.e. d.

PROPOSITION 11.12 Suppose c€(c,,cy) and EE(G*,G) such that ¢ is
reachable from ¢ with respect to (g, ¢). Then there exists o' < ¢° in R}
such that, for ¢ =< o' and 0 =<» <7 — ¢ — n, the restriction map H*(X; (o),
F)— H” (X, (0), F) is surjective.

ProoF. Since X;CC{qok > ¢}, there exists o! < o° in R} such that
X; (0") < {gx > o).

Take o < o' in R} . Let M; = {p; >e¢jNX(0),0=<1%=<"Fk Then
M, = X, (o) and X; (¢) € M;. To finish the proof, we need only show that,
for 0 <i<kand 0<»<r—gq—mn, the restriction map H*(M;, F)—
— H” (M;_,, F) is surjective.

Let Ei= D;N X (9) N {p; > ¢} and F;= D;Nn X (o) N {p;—; > ¢}. Since
@; = @iy and Supp (p;i — @i—;) € D;, we have M;= M; ,UE; and M; ;N
N B;= F;. The following portion of the Mayer-Vietoris sequence of < on
M; = M;_, U F; is exact.

(11.3) H (M, F)—> H* (M;—y, F) D H” (Bi, F)— H" (F;, F).

There exists a unique holomorphic embedding DF: U;— K (0% X< G;
such that I, o ®F =n and II, o &} = &;, where II,: K (¢°) <X @G;— K (¢°)
and IT,: K (¢°) X G;— @Q; are the projections. Let F() = (DF), (F).

Since Pr, (xi; a’) is well-gituated with respect to (g, ag_“ y €355 o)
and also with respect to (g, %.-, iy €5 fiy o), K (0) X Pr; (2i; @) is well-situated
with respect to (g, g;_l,i olly,c;fioIl,, «;) and also with respect to
(gy @i,5 0 Hz’ c;fio Hz’“i)'

Let Q:= K (o) X (Pr; (wi; @) N { | fi] <o} N {@ig,i > aif) Q= K (o) X
X (Pr, (@i a)n (| fi] <ai}N {q';.. > ¢}). By the proof of Proposition 11.8,
(Q:, @) is (B),.

Since codh ¥® = r, there exists a finite free resolution of F® of length
=n+4 N;—r on K(g) X Pr,(x;;a’). Hence H”(Qi, FV) =0 for 1 =»<
< r — ¢ —n and the restriction map F(@i, GOy —I'(Q;, FO) is bijective
when » > q — n.

It is clear that B; = (&%)~ (Q;) and F; = (D)~ (Q,). Hence H” (F;,F)=0
for 1<y»<r—q—mn and the restriction map I'(E;,F)— I'(F;,F) is
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bijective when » > q¢ — n. (11.3) implies that the restriction map H”(M;, F)—>
— H” (M;—,, F) is surjective for 0 <Ci <k and 0 <y <r—q—mn. q.e.d.

§ 12. Proof of H'-finiteness.

In § 3 we reduce the proof of the Main Theorem essentially to the
task of proving a certain property which we call H'finiteness. In this
section we shall establish H'finiteness by assuming a certain property con-
cerning bounds which we call property (B);. Property (B); corresponds to
the Hauptlemma in [2] and is the most vital point in this paper. Its proof
will be presented in § 13 and § 14.

Suppose X is a complex space of reduction order < p < oo, g°€ R},
and z: X — K (o is a ¢-concave holomorphic map with exhaustion function
@ and concavity bounds ¢,, ¢y . Suppose F is a coherent analytic sheaf on
X and 1€ N,. Recall the following notations. For ¢ € (c,, ¢3), X. = {p > ¢},
n° =n|X,, and nj(F) denotes the Ith direct image of ¥|X, under n°.

DEFINITION. F has property (B); at 0 with respect to (=, ¢) if, for every

c€(c,,cy) and every ce (cy 5 ¢) Which is reachable from ¢ with respect to
(¢, ¢), the following two conditions are satisfied.

(i) m; (F), is finitely generated over ,0,.

(ii) Suppose V, M eS8 (X) with |lD|c”c X,cc[W|cc X; and V<<
Suppose ¢! < ¢° and §&,,..,& €Z (W (¢!), ) and A is the ,Opsubmodule
of nj(F), generated by the images of &, ,...,& in nj(F),. Then there exists
w € Q™ such that, if o <<w and §€Z'(W (), F) with [| & ||y, , < e and the
image of ¢ in nj(F), belongs to A, then for some a,,...,a: €I (K (0), ,O)
and €01V (o), F), E=Zai&i+ 6y on V(o) and |a;|, < Cpe and
| 7 lly, o < Cce, Where C, is a constant depending only on .

PROPOSITION 12.1. Suppose codh F> 1+ ¢+ n on {p <<cy) and ¢, is
not a zero-divisor for %, for x€{p < cy}. Suppose d€N, and ¢, is not a
zero-divisor for t2 %, for z € X. If g/tﬂ"'l % has property (B) at 0 with
respect to (, ), then for every c€(c,,cy), F|X. is H'finite at 0 with re-
spect to n°.

Proor. Fix c€(c,, ¢y). By Lemma 11.3 (a) there exists cEe (64 ¢) such
that ¢ is reachable from ¢ with respect to (g, ). Choose ¢ <o < egyg<e.
By Lemma 11.3 (b), ¢ is reachable from both ¢, and ¢, .

Choose T €S (X), 0 =i=3, such that Xof‘lma |<:"c Xe,c“c I U, |y
lmi l cc X,,lcuc ] W, I cc X;, and Wiy <”<m.‘.

8. Annali della Scuola Norm. Sup. - Pisa.
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Let A be the image of 7§ (F), — i (F/te™" F), . By Proposition 11.12, after
shrinking ¢° we can assume that, for some ¢&,,..,& €Z' (W, (%, F), 4 is
generated by the images of £, , ..., & in af (F/ta %), - By Proposition 8.6,
after further shrinking o we can assume that || &, ”'1111, 00 << 0.

We are going to prove the following : For o! < o° we can find ¢® < p!
such that Im (H (X, (o), F) — H'(X.(0?), F)) is contained in the I" (K (o?), .O)-
submodule generated by the images of &,,..,& in H'!(X, (0%, ). This
will imply that F| X, is H'finite at 0.

Fix o! < 0% Choose ¢ =< ¢! and we shall impose more conditions on
later. Take £ € H? (Xe (1), F).

We claim that, if ¢ is small enough, we can find £€Z' (W, (o), F)
with | & |lq,,o < oo such that & and Z induce the same element in
H'(X,(g), ). By Proposition 11.12, for some o’ < p! we can find &€
€ H'(X; (¢"), ¥) such that & and Z induce the same element in HY (X (0") F).
Since |UWy|c=X;, we can find a countable Stein open covering W’ of
X, (¢”) such that U, (¢”/) << W’ for some @’/ = p’. Let & be represented by
EEZV W, F). If o<’ and £€ZY(W,(g), F) is induced by &/, then
| ¢llm,, e < oo by Proposition 8.6, and & induces the same element in
HY(X, (o), F) a8 Z. The claim is proved.

Choose ¢ € Ry such that ¢ > || & ”'%»e‘ We are going to construct by
induction on r €N, , &€ ZH (W, (o), F), n™tV € C=1 (W, (o), F), and alrth), ...
vy @tV € I'(K (), »O) such that

(i) E(O) = f,
(ii) &0 = 3, al+D & + ontr+) 4 (:)_") £r+1) on T, (o)

(i) [ §9 [l , o < (Do) ¢y
(iv) ||yt ”‘Ula o < (D)Jtte, and
(v) | afrt |, < (Do)t e,

where D, is a constant depending only on .

Set £©=¢§. Suppose for some 7,€N, we have constructed &0, 5,
af) for r = r,.

Since §7/t,d.+1 & has properly (B); with respect to (n, @), if ¢ < w! for
a suitable ! € Q™ with w! < @ (and we assume this to be the case), then
there exist a{ot, .., a{fotD € I'(K (g), ,O) and 5’ € 0= (W, (¢), ) such that
(& — =iaf™ & — 80| W, (€2 (W, (o), ™ F) and | o], < C;” (D"
and || 7’ ||lq,, ¢ < Cél) (D,)" e, where (" is a constant depending only on g.
(Lemma 8.3 is used in obtaining the preceding statement).



of Grauert’s Direct Image Theorem : IT 471

Since each member of '(1],1 (o) is Stein, there exists (€ O'(UW, (), F)
(roF1) tn \3H1 1

such that E('fo) — 2ia; 0 §i— _:— {on mi \Q) Since ”2i et )& ||mu e

<0 (D) e and || oy’ []mu 0 < 0® 0 (D,) ¢ for some constant C®,

|G

By Proposition 9.5 (with ¢ defined by multiplication by tf,"'l), if p < w?
for a suitable w?€ Q™ (and we assume this to be the case), then there

exists ” € C' (T, (o), ) such that (;” )d+l = (-tl)d ¢ on T, () and ||/ “‘(112, 0

<4206 (D))"

W,eo

n

< 0(3) 1+ 20® (1)) (Do)™ 6, Where c, ® is a constant dependmg only on .

Since ¢, is not a zero-divisor for ¢ %, for x€ X, ( C’ €Z'{W, (o), e F).
Since t, is not a zero-divisor for % for x € {p < ¢4}, the sheaf-epimorphism
F—>t¢ F defined by multiplication by ¢Z is a sheaf-isomorphism on {p < cy}.

Hence codt te F>1+ ¢+ n on (p < ).
By Proposition 11.11 (applied to 2 F), if ¢ < w3 for a suitable w3 € Q®
(and we assume this to be the case), then there exist {ro+D e Z (W (o), t2 F)C

2V (W, (@), F) and " € G (s (o), # F)c 011 (Ws (o), F) such that( )c'

= g0t 4 3977 on Wy (@) and || £+ [, o << 0 O (1 + 20 ) (D) e
and || v [l,, o < Ce @ 0¥ 1 4 200 0) (Dyoe, where €Y is a constant
depending only on p.

Set 5rt) = 7 (-etf) n’’ on Ws(g). Then
ntotD € 01 (Wy (o), F)-
£ = 0l g 0" (-;—) £ on Ty (o)
177 |, o <1067 4 05 057 (1 + 20 7)) (D) .

We need only set D,> 0"+ 0¥ ¢ 1 4 202 ¢) and the construc-
tion by induction is complete.

tn \" (r+1) tn\" r41) 9 —1
Let a;= 2, |—| a and 9 =2, o T, Let 0°=(g,yeesy 0n—1y D 0n)-
n,

On
The first series converges on K (¢%) and the second series converges on

W; (0». It is easily seen that & = Z;a; & + o7 on T, (¢%). Therefore
Im (H' (X, (o!), F) — H'(X.(0%), F)) is contained in the I'(K (¢?), ,O)-submodule
generated by the images of &, , .., & in H!(X.(0?, F). q.e.d.
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§ 13. Some Preparations for the Proof of (B.).

A. Suppose X is a complex space and < is a coherent analytic sheat
on X. Suppose ¢°€ R} and n: X— K (¢ is a holomorphic map. Suppose
leN,.

ProposITION 13.1. Suppose f, is not a zero-divisor for ¢ %~ for x€ X

and ¢, is not a zero-divisor for ¢2 L (F)o. If reN,, then Im o =Tm § in

7, (Flo =5 1, (Ftr. T), <2 o (T +22 F)
where o and B are induced by quotient maps.

PRrOOF. It is clear that Im « € Im 8. We are going to prove Im fSIm a.
The commutative diagram with exact rows

0 —— it F ey Ty FHX F— 5 0

I

0—> 8#F —>TF——>FMHF —0

n
gives rise to the following diagram with exact rows
a e
o (F T ——> 7, (G2 TF) ——r 7, (F)

|

7, (F), 2 7, (F/tr F), —— . (tr 57)0 .

0

All we need to prove is that ba = 0.
Consider the following commutative diagram :

¢ b
1 (F)y T (U Fp—> T (tn F)y

Tu 1

Ty (t2F), q

nl-*-l(g:)o <_'L nl+1 (9)0 _P—") nl+1 (g)o )
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where « is induced by the map u: 8 F— 77" T defined by multiplication
by e ,v is defined by the inclusion map e F ey %, w is defined by mul-
tiplication by tf.+d,p is defined by multiplication by ¢, and q is induced
by the map F— ¢, F defined by multiplication by t,.

Since t, is not a zero-divisor for 2%, for x € X, % is a sheafisomor-
phism. Hence % is an isomorphism. Since ¢, is not a zero-divisor for
e s (F)y, Ker we Ker p.

Im ¢ = Ker ¢ = Ker wou—! = (vu—1)~! (Ker w)
c (vu—1)~1 (Ker p) = Ker pvu—! c Ker ¢ pvu—! = Ker b.
Hence ba = 0. q.e. d.

B. Suppose (X,0) is a complex space of reduction order < p < oo.
Suppose @° € R} and n: (X, 0) — K (¢° is a g-concave map with exhaustion
function ¢ and concavity bounds c,,cy. Suppose l€N,.

PROPOSITION 13.2. Suppose 0 — Q:—> ?T—ﬁ;) R — 0 is an exact sequence
of coherent analytic sheaves on X. If @ and ‘® have property (B); at 0
with respect to (w, ¢), then & has property (B); at 0 with respect to (w, ¢).

Proor. Fix ¢, <73'< ¢ < ¢y such that ‘¢ is reachable from ¢ with

respect to (q, ).
8

Since 7} (g)o—>n°(9’)o—°mf(%)o is exact, nj(¥F), is finitely generated
over 0, .

Suppose V, We 8 (X) such that |V|cc X,cc|W|cc X; and V <<W.

7

Suppose o' =< o° and ¢&,,..., & €ZH (W (o), F). Let A be the ,0,-submodule
of n¢(F), generated by the images of &, , ..., & in 25 (F), .

Take ¢’ € (c, ¢y) such that ¢ is reachable from ¢’ and | V| cc Xy . Choose

7T

W;eS(X), 1 =i=<3, such that

Wi << Wi<<W, |V]ce|Wy| cc Xo cc| Wy,

and ‘u‘ | cc X..
By Proposition 8.5 and 8.6, for some ¢® =< o' We have || & ||y, o2 < oo.
Take w€ Q® with w < o? and we shall impose more conditions on w
later on. Take ¢ <o and £€Z'(W(g), F) with || £ ||, o < 6 such that the
image of & in n7(F), belongs to 4.
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Let A, = p.(A). The image of §(£) in ¢ (R), belongs to A, . Since R
has property (B)', if o = w! for a suitable @!€ Q® (and we assume this
to be the case), then for some af € I'(K(g),,0) and 7’ € 0=1(T, (o), V),
B (&) =i ai B(&)+ 0" on Wy (o) and |ail, < OV e and || 7/ [q,, o < Ce" ¢
where 051) is a constant depending only on p.

By Lemma 8.3, for some 7’/ € C'=1 (U, (o), F), B (n”’) = n’ on W, (o) and
7 0 << Cee §—Ziaiéi—3y"" €21 (W, (o) Tm o). [|& — Ziaids —
— " [, e <+ 0® o) e, where 0@ is a constant.

By Proposition 9.5, if o < w? for a suitable w?€ Q2™ (and we assume
this to be the case), then || a~1(§ —3iai & — dn”') [lqq,, o < 0P 1400 cMye,
where 0 is a constant depending only on o.

Let n’ be the restriction of = to |Tl,|. Let A’ be the ,0,submodule
of 7f (F)y (=1 (F|| W, | )o) generated by the images of &, ,...,& in a; (F),.
Let a : 7} (@) — ni (F), be induced by « and let o: =/ (G),— =f' (G), be
induced by restriction map. Let 4, = o ((a’)~1(4")).

Since n} (@), is finitely generated over ,0,, 4, = 3{—;,0,f; for some
Ji€a8 (@) fi = o(g:) for some g;€(a')1(4")C 7{(§),. Since W, (o) is a
Stein open covering of | W, (0)|, we can find ;€ Z} (W, (0%),§) for some
0% =< o° such that ¢; induces g;.

The images of {,, .., in 27 (§), generate A,. Since a’(g:)€A’, by
shrinking o2, we can find b} € I'(K (¢%), ,0) and #®€ ¢! (W, (¢%, F) such
that « (&) = 3; b5 &+ on® on U, (%)

Since the image of & — 3;ai & in af(F), belongs to A4, the image of
E—3;ai & — 8y’ in 7y (F), belongs to A’. The image of a—1(& — 3 a; & —dn’’)
in n{ (§), belongs to A4,.

Since @ has property (B) at 0 with respect to (7, @), if o << w3 for a
suitable w3€ Q™ (and we assume this to be the case), then for some
a* € I' (K (), nO) and n*€ C'—1(W; (o), §), a ' (§ — Ziai & — 0n’’') = Zsall; +
+ 87" and |af, <OF 0P (14 0O 0P e and [9*|ly,, < O 0P (1 +
+ 0@ 0" e, where 0 is a constant depending only on .

Lot a;=a! + Z;a}b € I'(K (9), ,0) and 7 = n’* + Zia¥ 0 4+ « (4% €
€ 01 (W, (0)y F). Then &= a:&; + 6; on W;(0). If o <p® (and we as-
sume this to be the case), then |a|, <<(C 4 0@ ¢ 0¥ 14+ c® o) e
and || 7|, < (08 + 09 ¢ 0 (14 0P ")) 6, where where €O is a
constant.

1§ — Ziabillq,, o <M+ 09O 4+ 09002 1+ 0P o)) e,

where C© is a constant = 1. By Proposition 10.5, if v < w® for a suita-
ble w*€ Q2™ (and we assume this to be the case), then for some 7€
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€01V (o), F)y & — Siai&i=10n on V(o) and |7 ||y , < 0 (1 4 00+
4+ 090014 0P 0M)e, where ¢ is a constant depending only
on o. Hence 7 has properly (B); at 0 with respect to (, ). q. e. d.

Let X’ = X n{t, = 0} and O’ = Oft, O. Suppose (X’, O’) has reduction
order < p’ < oo. Let a’:(X’,0’)—> K" 1(g% be induced by =. Let ¢’ =
= @ | X’. Suppose F is a coherent analytic sheaf on X such that ¢, F=0.
Let ¥ = F| X’.

PROPOSITION 13.3. If ¥’ has properly (B)f ™ at 0 with respect to
(7’, ’), then F has property (B) at 0 with respect to (m, ¢).

ProOF. We use the notations of § 8.D.

Fix c,<'z< ¢ < ¢4 such that ‘e is reachable from ¢ with respect to
(¢y ¢). Then ¢ is reachable from ¢ with respect to (g, ¢’).

Since we have a natural isomorphism o:zf(F)y—> (7");(F)y , @S (F)p i8
finitely generated over ,O,.

Suppose V), WeS (X) such that |V |cc Xocc|U| cc X; and V<<
Suppose o' < o° and &,,...,& €2 (W (¢!), ). Let A be the ,Opsubmodule
of n¢(F) generated by the images of &, ..., & in nf(F),.

Choose U, , W, €8 (X) such that V<<V << W, <<, and |V, |cc X,
ce Q|-

Take w€ Q™ and we shall impose more conditions on o later. Take
e <o and £€Z'(W(g), F) with | &|lyqm, o <€ such that the image of & in
n¢(F), belongs to A. _

Let A’ =0(A) and & =oq(&)EZ (W (¢7!), F). A’ is generated by
the images of & in (n/)t(F’), . Let & = aqq (§)€ Z* (W (o), F).

By Proposition 8.8, if w < o? for a suitable o? € R} (and we assume

this to be the case), then || & [, - < OWe, where CY ig a constant.
’ @

Since ¥’ has property (B); " at 0 with respect to (n/,¢’), if (@) On—y)=

< o’ for a suitable @’ € Q") (and we assume this to be the case), then
for some a € I'(K"1(g), »_;0) and »’ € C—1(V} (g), F), & = Zia} & + oy’ on
Vi (o) and | &/ I < 0(2»2) 00 ¢ and [|9'|ly; 7 < Gg) CYe, where Og) is a constant
depending only on g. B

Let P: K (g9)— K" () be the projection. Let a; = a{ o P. Then |a;|, <
< 0P 0We. Let n = oy () € C1(V; (o), F).

By Proposition 8.8, if w < g® for a suitable o3 € R’ (and we assume
this to be the case), then | 7 ||y, << 0@ Cg) O0We, where C® is a constant.
&= Z;a;& -+ 0n on V(o). q. e. d.
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C. We are going to introduce a property weaker than (B); which, in
the cases we are interested in, is equivalent to property (B);. We call it
property pre-(B); .

Suppose X is a complex space of reduction order < p < oo, 0° €R}
and n: X— K (% is a g-concave map with exhaustion function ¢ and
concavity bounds ¢,,c; . Suppose  is a coherent analytic sheaf on X and
leN,.

DEFINITION. F has property pre-(B); at 0 with respect to (z, ) if, for
every cE€(c,,cy) and every vE (¢4 4 ¢) such that ¢ is reachable from ¢ with
respect to (g, ), the following two conditions are satisfied.

(i) a7(F), is finitely generated over ,O,.

(ii) Suppose V, W €S (X) with |V | ce X, cc [ W ce X; and V<< W.
Suppose o! < o° and &,,..,& € Z' (W (o!), F) such that the images of &, , ...
vy & in 7f(F), generate nf(F), over ,O,. Then there exists w € Q™ such
that, if ¢ << and £€Z' (W (g), F) with |/ & ”w,e < e, then for some a, , ...
vy @ € I' (K (0)y #O) and n€ OV (0), F)yé = Zia; &+ 0y on V(p) and
|aile < O, e and |||y , << O, ¢, where C, is a constant depending only
on .

PROPOSITION 13.4. Suppose & satisfies following: if ¢, <?;'< c < oy
and ¢ is reachable from ¢, then nf(C]')o—)ng (F), is surjective. Then F has

property (B)f, at 0 with respect to (n, ) if and only if ¥ has property pre-
(B), at 0 with respect to (w, @).

ProoFr. The «only if » part is clear.

To prove the «if» part, fix c, <'5<c < ¢y such that ¢ is reachable
from ¢. Take U, T €S (X) such that || S,CXCE,c|m|E,CXZ and lD<“<'U,l.
Suppose ¢! =< o° and &,,..,&€Z (W (o'), F) and A is the ,Opsubmodule
of 7, (F), generated by the images of &, , ..., & in 75 (F),.

Since nf (F)o—> ni (F), is surjective and ={(F), is finitely generated
over ,0,, there exist {,,..,{m €Z (W (0?), F) for some o* = p! such that
the images of {,,...,{m in f(F), generate = (F), over ,0, .

Choose U’ €8 (X) such that V<<V’ <<W and |V | cX,.

Since the images of {,,...,{n in zf(¥), generate nf (), over ,0,, for
some @3 < o? there exist 0’€I'(K(0%,,0) and n;€ O (W’ (0%, F) such
that &= 2 b}" {j+ 0n:; on UV (¢%). By Propositions 8.5 and 8.6, after shrin-
king o we have || 7|y o3 << 0. Let v¥ =(d{, ..., ).
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Let (i€t (F), be the image of {; in n¢(F),. Let Tc ,Op be the re-
lation-module of {1, ..,{m over ,O,. T = 3iw; 40, ¢g: for some g;€,0, .

By shrinking o3 we can assume the following :
(i) g; is the germ at 0 of f(i)=(f1(‘), vy ,9)51"(1((@3), 20™), and

di) 577 6=y on V(¥ for some yPe ¢*7' (VY (¢%, F). By fur-
ther shrinking o® we can assume || y® ”lD, o8 < 00

Let M = iz 20 b9 + 31 ,0f® € ,0™ on K (g¥).

Take w € Q) with © < 0® and we shall impose more conditions on
later on. Take 9 < w and £€Z!(W(p), ¥) such that || E”'Ul,e < ¢ and the
image of ¢ in n¢ (), belongs to A.

Since < has property pre-(B)f1 at 0 with respect to (m, @), if w = w!
for a suitable w!€ Q™ (and we assume this to be the case), then for some
@i,y am € I'(K(0), nO) and 4" € C=1 (V) (o), F), & = Ziai {i+ 0y’ on V(o) and
lail, < ¢ e and |y ly, o < ce, where €}’ is a constant depending
only on p.

Since the image of & in nf(F), belongs to A, (a;,...,am), € NM,. By
Proposition 1 of [7] (with N =0), if o =< w? for a suitable w?€ Q™ (and
we assume this to be the case), then for some a,,..,a:, a;,...,a, €
€T (K ()y :0), (a1, am) =31 b + 3L, al' f¥ on K(o) and |ail, <
< 0P 0cPe and |af'|, << CP M, where 0 is a constant depending only
on o.

=3 a0 5+ 3ol ¥ G+ Oy = i ai &+ Ony

where n = Ziai' y9 — Sias i+’ || ||y, o < (1 + €¥02) 6P ¢, where 0©
is a constant. q.e.d:

§ 14. Proof of Property (B);.

Suppose X is a complex space of reduction order < p < oo, o°€ R} ,
and n: X— K (0% is a g-concave map with exhaustion function ¢ and
concavity bounds ¢, , ¢4 .

PROPOSITION (14.1),. Suppose < is a coherent analytic sheaf on X
such that (i) codh F=r on {¢p < ¢y} and (ii) ¢,,...,¢, form an %-sequence
for z€{p<ecyNn—1(0). Then & has property (Byf at 0 with respect to
(7, @) for 0 =1 <<r—gq—2n.

PRrROOF. We are going to prove by induction on n,
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(@) Assume n=0. Fix 0=1<r—gq and c€(c,, ¢y). By Theorem
A-G, it (F), = H'(X;, F) is finite-dimensional over C.

Suppose V, W €8 (X) such that |V |cc X.cc| W | and Y << W. Suppose
ElyenyEr€ZY (W, F) and A is the vector subspace of H!(X,, F) generated
by &5y br-

Take £€Z! (W, F) such that || £ ||y << e and the image of & in HY(X,,F)
belongs to A.

Choose a countable Stein open covering Tl of X, such that <<
<<TW <<W. Let &=4¢; W and & =¢£|TA. Define y: C* P 1 (TN, F) —
—Z' (A, F) by w(ay, «.,ax,n) = Z;a; & -+ oy for a;€ C and 5 € C-1(TA, F).

Since dime¢ Coker v < dime¢ H'(U{l, #) = dim¢ H'(X,, F) < oo, y has
closed range when C*, C'-1(U(l, ¥), and Z!(TA, F) are given the natural
Fréchet space structures. Im y is a Fréchet space. Since £ € Im y, by ap-
plying the open mapping theorem to v, we conclude that & = 3;a; & + oy
for some a;€C and 7€ C1(UQ, F) such that |a;
where O is a constant. Proposition (14.1), is proved.

(b) In the rest of the proof we assume = > 0 and tuat Proposition
(14.1),—; is proved.

Take arbitrarily ¢, << ¢, <ey <ey.

Since t, is not a zero-divisor for ¢, for x € {p < ey} N 2—1(0), the sup-
port 8 of the kernel of the sheaf-homomorphism % — % defined by multi-
plication by ¢, is disjoint from {p <Zec4}Na—1.(0). For some p? < % § is
disjoint from {0, =< ¢ =< ¢4} N X (¢?). Hence ¢, is not a zero-divisor for %, for
2 € (0, = ¢ = ci) N X ().

Since X, (0®)cc X, by Lemma 3.3 (b), there exists d, €N, such that
¢, 18 not a zero-divisor for %+ 7, for wEXc; (0®).

By replacing X by Xc;,(é’?) and ¢y by ¢, , we can assume without loss
of generality the following.

(14.1) t, is not a zero-divisor for %, for x € {p < cy}.

There exists d, €N, such that ¢, is not a zero-divisor for t5* %,

(14.2) for x € X.

By Proposition 6.6, we can also assume that X n {¢, = 0} has reduction
order = p’ for some p’ €N, .

(¢) We are going to reduce the proof of Proposition (14.1), to the
special case where t, is not a zero-divisor of %, for =€ X.

By (14.1), for d € N, the sheaf-homomorphism < F—> 12 F defined by mul-
tiplication by > mduces a sheaf-isomorphism /¢, F—> 2 F/t+ Fon {p<<ey)
Hence codh (6, F/tat! F) = codh (FtnFyzr—1 on {p <ecy) and t,,..,toy
is a (td Cf/t’“” F)u-sequence for x € {p < ¢} N 21 (0),
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Since t, (ta ?7/tf,+l F) =0, by applying Proposition (14.1),_; to the sheaf
te F/tit! F restricted to XN {t, =0} and by using Proposition 13.3, we
conclude that

(14.3) e ‘;’lf/tﬁ'*l 7 has property (B) at 0 with respect to (n, ) for
’ deN, and 0=S1<<r—gq—2n-1.

By using (14.3) and applying Proposition 13.2 to the exact sequence
0 — 2G4 75 FJtgt! F— Fjta F—> 0, we conclude by induction on d
that
F/te F has property (B); at 0 with respect to (z, ) for d €N
and 0=l<r—q—2n-41.

By using (14.4) and applying Proposition 13.2 to the exact sequence
0 —t2* F— F— F/ts* F— 0, we conclude that, if t2* F has property (B);
at 0 with rispect to (w, ), then ¥ has property (B); at 0 with respect to
(”7 ?).

Since Fxt* F on {p < ey} by (14.1), by replacing ¥ by i F we can
assume without loss of generality that ¢, is not a zero-divisor for <, for
ze X.

(14.4)

@ Fix 0=1<r—gq—2n.

By Proposition 11.12, for any c*<3'<c<c# such that ¢ is reachable
from ¢, the map az;é (F)o—> 7 (F), is surjective. Hence by Proposition 13.4
we need only prove that & has property pre-(B);.

Fix ¢, < ¢ < ¢<cy such that ¢ is reachable from c. By (14.4) and
Proposition 12.1, ¥| X, is H'finite at 0 with respect to =°. In particular,
ag (F), is finitely gemerated over ,O, .

Choose U, WES (X) such that [V|cc X,ce || cc X; and V<<W.
Suppose ¢! < o and &0, .., E® € ZV (W (o!), F) such that the images of
“EW, .., &® in @ (F) generate =f(F) over O, .

Choose ¢ < ¢, < ¢ < 6y < 63 < ¢y such that |V | ce Xy Xy cc |W |, and

¢ is reachable from ¢; with respect to (¢, ). Choose TW:eS(X), 1 =i =6,
such that Wiy, << Wi<< T, V] e | We | e Xy, e | Wy |, and | W, | e
X, ce l w0, I cc X, cc | u, | ce X, cc |, |-

By shrinking o, we can assume that || &9 ||qy .1 < oo,

Consider the following statement.

There exists w € 2™ such that, if ¢ < w and £€Z(UW (o), F) with
| €|, ¢ < ¢ then for some a;€I'(K (), 0) and z€ 0" (W (o), F),
laile < De, llzllm,, o <Dse and || § — Ziaid® — x|l , o< enDje,
where Dé is a constant = 1 depending only on p.

(14.5)
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We are going to assume (14.5) and finish the proof of Proposition
(14.1), . After we finish the proof of Proposition (14.1), , we will prove (14.5).
Fix o’ € Q™ guch that o’ satisfies the requirement stated in (14.5).

Take w € Q™ with w =< o’ and w < ¢! and we ghall impose more con-
ditions on  later. Take ¢ < w and ¢ €Z' (W (), F) with || &gy, , <e-
We are going to construct by induction on »,

&, €21 (W (o) F)y bt € I' (K (0), w0)y and g4 € C1 (W) (0), F)y
v€N,, such that
(i) Co = 59

(ii) L — 2000 8O — 8y, q1 = Copq on W (o),

(i) 1 I, o < lon C5 D) ¢,
(iv) |06, |, < D; (e, 0s Dy e and
(v) [ %p g, 0 < D5 (1 + 00 ;) (0, O; D, e

where Dé is the constant in (14.5) and 0;— is a constant depending only
on o.

Set {,=¢&. Suppose for some »,€N, we have constructed [,, ,_)H,
and y,4, for » =< ”0

Since ¢ < w’, we can find bi:,)+1 I’'(K (0), O) and yx’ € C*1(U; (o), F)
such that | b(') ] < D; (e, 0— ~ywe, |y ”1115,9 <D; (e, 05 D;yve, and
| C”o — 2 b(l) 5(0) — &y’ ”ms, o < o, D (Qn (," )vo e.

By PrOpOSlthll 11.11, if 0 =< o for a sultable o’/ €02M (and we as-
sume this to be the case), then for some (,4 € Z’ ('U,l (0)y F) and y’"€
€ 0= (W, (o), F) we have (&, — Zibys £V — 8y') — 8¢”" = Cyn on U (),
||Cyo+l H < 0 0, -D (e, G‘D Yo e, and ” x’ ”'Ille,g < 0 o, D (Qn 0 D ) e,

where 0— is a constant dependlng only on p.

Let gops = 2 + 27 € 0% (Ty () F)r Then || ot [, o < (L+ OF 0,)-
Dg (e, CE DE )° e and {,, — 3; bi'.,.l ) — by, 41=Crp1 00 We(0). The construc-
tion by induction is complete when we set 0— =0;.

Impose the following condition on w: w, (Q (20 D- )—l

Since o, < (‘)0— 7 | Wil < D; 27 ¢ and || 141 ”'Uls. o < D;27He.

Hence Z‘,_O bi_H converges on K (o) and 3720 gv41 CODVErges on ms( ). Let
=30 b,_H and 4’ = 3,7, x»+1- Then | a; |, < 2D— e and ||y’ ”“(116,9 < 4D—
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Since || & — Zi (S b1 £7) — 8 (0 2t1) [y, 0 = |l S [y, 0 <
< 2—m=1¢ for m€ N, &= Z;a; &9 4 é»” on W, (o).

| & — Zaié® [l o <@ + 0" 2D;)e, where ('’ is a constant = 1.
By Proposition 10.5, if o = w’’’ for a suitable o’/ € Q™ (and we assume
this to be the case), then there exists %€ 01 (D (g), ¥) such that & —
— Zia; &9 =26y on V(o) and ||y ”lb,e < O';—," (1 + 0" 2D,) ¢, where C;-:" is a
constant depending only on o.

Hence & has property pre (B); at 0 with respect to (m, ¢). Proposition
(14.1), is proved under the assumption of the validity of (14.5).

(e) We are going to reduce the proof of (14.5) to the proof of a

simpler statement.

Since ! 4+ 1 < r —q — 2n 4 1, by (14.4) F/t, F has property (B)r1 at
0 with respect to (=, ). By Proposition 12.1, F| X, is H'tl-finite at 0
with respect to m. In particular, LA (), is finitely generated over ,0,.
Since ,0, is Noetherian, by Lemma 3.3 (a) there exists d € N, such that ¢,
is not a zero-divisor for ty nj;(F), -

Let m = 2d 4 1. By Proposition 13.1, Im (xf (F/tn F), —> al(Fts F)o) =
= Im (a¢(F), — a¢(Ft, F),). Consider the following commutative diagram :

—— > Fta F

H lm/l

F— s Flta F,

where @, &/, and P’/ are quotient maps.

1
Define ¢* as follows: of =p; for 1 =i=n—1 and op= - @ (0)-

Then o* depends only on g and ¢* < w. We assume that o, < o¥.
By the definition of || & ”"01, o there exists 5;‘1,“,‘ . € C'(W, F) such that

] ' t \“ tn \¥n
I Eu, i |lp <e and 25,41...,‘,, (—Q—) (Q—) =¢ on .
1 n
For »€N, define

, t, \“1 t”_ Hn—1
b= S rin s G (EI) ...(Qn_‘l) € G (T (%), F),

Then | & |k, o+ <6 and Z,en, & (51)’=5 on (o)

n
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Consider the following statement.

If o = ! for a sunitable w!€ ™), then there exists o, € 0! (W, (0*), F)
such that
i) [| o, [ln,, o* << Ce* ¢, Where Cp»is a constant depending only

on g%

(14.6) (Il) X)) (fv —_— _g_: gv) =0 on m2 (Q*)’ and

(iii) the image of @(5, — %"_o,) in ¢ (F/t, F), belongs to
Im (7 (F), —> 75 (F[t, F),)

We are going to prove (14.5) by assuming (14.6). (14.6) will be proved

later.
Assume w =< ! so that the requirements in (14.6) are satisfied.

By (14 4), F/t, F has property (B); at 0 with respect to (=, ¢).
! o (Ev 50 ) (1 + L >e Since the images of ®(ZW),...,d (£X)
On W,, o*

in #§ (F/t, F), generate Im (nf (f) _*"z (Tt F)o) over ,0,, if o = w?® for a
suitable w?€ 2™ (and we assume this to be the case), then for some
all, ..., a®e ' (K (o), ,O) and u, € O (W, (%), F/tn F), We have

| a®) | < OX (1 + % e*) %

and || 7; [l , o* < 0(1)(1 + =5 Q" )e, where O is a constant depending only
on o*
By Lemma 8.3 there exists y, € C'—1(U, (o*), F) such that || 5, [, o <

ol (1—|— L) )e and & (y,) =1n,. Since t, is not a zero-divisor for

% for x € X, there exists a unique 0, € C' (W, (¢*), F) such that &, — % 0y =

8 ty tn n
a0+ on, + (2o on e [0 [ <07 d(14+5%0)
n 3y n

where C® is a constant. By Proposmon 9.5 (applied to the sheaf-homo-
morphism F— & defined by multiplication by t,), if o = w® for a suitable
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w3 €O (and we assume this to be the case), then
6 [, , o* < 0% (L + co o) (1 + = Q" )e, where C%

is a constant depending only on o*.
Let 0= 320 of (&) e P (9,0

tn
let y = 2520 7» (Q ) € 0'=1(W; (o), F)y

loe] t‘) e 00 n y+1
and let o6 = 2,2, 0, (Q—') + 2,206, (;-) € C1 (W, (o), F).
n n
By Lemma 8.4, we have
—1
e < (1= %) 0 (1 4+ & o) e
On On

o\t On
Iy, e < (1= %) 0@ (142 0s)e

and
-1
Il o ||m“9 < ( — %’{,—) (0‘,* + 023,2(1 4+ 0® ) (1 + % 0,_,*))&
It is easily checked that &= 3, a;&% 4 6x—|— % 0 Hence
i @n
&= Zat— oy, o =% 1o, o <

< é’;‘—( — 9—’;)—1 (0,_,. + 021+ 6@ o) (1 + & oe..)) e.
On On Qe

%*
(14.5) is proved if we require o, = % and choose 1)5 =1 so that

D, > 20 (1 + %oe*) and D > = (0,,*4- 0¥ + ¢® o) (1 + —;- 09*»
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r—1 i
(f) To prove (14.6), let y, = (Z—"*) 03icy & (:’—") for » € N. Since

_ oo v—1 M ti #y t, \Hn On y=#p—1
7y = 62,“1 ’ "':“n_1=0 Zlun =0 E:"‘i bty (a‘) o (a) (Q? )

17+ [, g+ < O®e, where O is a constant.
We claim that y, € Z1+1(W (o*), tn F). To prove the claim, we need only
1]
show that y, | T (o) € CH (W (o), t F). Since 65 = 0 on U (), 6Zi<» & (9 ) =
tn ty

[
= — 03z ,& (E—) = (Q—) [— 02> & (——) J The claim is proved.

Since %, is not a zero-divisor for %, for x € X, there exists a unique
~ tn Y~
7, € ZW1 (W (o*), F) such that y, = (?> 7» on U (0*%. By Proposition 9.8,
n
if X = w* for a suitable w*€ Q™ (and we assume this to be the case), then

| 7 vy, o < ol C(‘)‘e, where O% is a constant depending only on o*.

~ t, \\— ~
Since y, = Q—" [—62};}& (E"—) on MW (o), the image of y, in
n n

nty1 (F), is zero. The image of @’ (y,) in a1 (Fty F), is zero.
|| @ ;7,' Hw“ o < 0(5) “ ¢, By (14.4), F/t2 F has property (B)iy1 at 0
with respect to (7, ¢) By considering the zero ,O,-submodule of n{ +1(j/t,':‘cf)o

which is generated by the image of 0€ Z'(U, (¢¥), F/t™ F) we conclude
that, if w < w® for a suitable w®¢ Q™ (and we assume this to be the case),

then for some o, € C'(W, (¢*), F/tn F) we have P (y,) = dag, on W, (¢*) and

[I'o" [lum,, o* < © c) ¢ 0¥ ¢, where (% is a constant depending only on o*.
For some o, € C! (T, (¢*), F), &’ (0,) = — o} and ||o,|lqq,, o+ < O O % e

Since ¢, is not a zero-divisor for %, for x€ X, there exists a unique

7, € ZH1(W, (¢*), F) such that 7y + 80, = (;—”‘)m 7, on T, (o*).

n

W-t+m— tﬂr t” ¢ tn i
LI YAl (—) =0 Jicytmbi (;) — 4 2«05;‘(9—) =

On

_ (@)v-{-m—l}’ _(ﬁ)v—l gy = (Q_:)v+m—l(tl)v+m;; _
on v+m on v on Q: »m

(&) @)
On, Q‘f‘; yee
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Since ?, i8 not a zero-divisor for %, for « € X, we can take out the

factor (t—"-) from both sides.

On
e tn \i—» Q* m—1/¢ \m ., on\ ~
o= (4 e
' on on k) T \ex)?
= o) G 7o (= ()
on Q: Yr4m 9: » on v] -

V—1m— tn Aid n
Hence 6 9’ ( tml g (En—) — %:— o.,) = 0 on T, (o).

¢’( g (—Z})'_V— 9% o,) € ZH(W, (o), Ftn F).

Let o : a5(F)y—> 75 (Fta F)y and a'” : 7t (F[t™ F)y—> 75 (F/tn F), be in-
duced respectively by @ and @’’. Let f, be the image of ¢’ (2:::" —1e,.

tn i’_" n . . n .
. (Z)——) — %a,) in 2y (FtaF), and let g, be the image of 45(57 — g; o,)m
7 (F[tn F)o- Then g, = a’’ (f,). Since Im a = Im a’’,g, € Ima. (14.6) is pro-

ved. q.e. d.

COROLLARY. Suppose n = 1. Under the assumptions of Proposition
(14.1),, F/t3 F has property (B)r at 0 with respect to (=, q) for d €N and
0=l<r—q—2n+1.

§15. Proof of Main Theorem.

A. PROPOSITION 15.1. Suppose X is a complex space and < is a cohe-
rent analytic sheaf on X. Suppose ¢°€ R} and n: X — K (¢°) is a proper
holomorphic map. Then for 1€ N, and t°€ K (¢°, ¥ is H'finite at t° with
respect to m.

ProoF. Fix 1€ N, and t°€ K (¢°). Without loss of generality we can
agsume that ¢° =0,

Take p! < @° in R} . Since X (o!) cc X, by Proposition 6.6 we can
assume (after replacing ¢° by o!) that X has reduction order =p for some
pEN,. By choosing a bounded real-valued C* function ¢ on X and ¢, < ¢;
in R satisfying X c {¢p= ¢y}, we can make n: X — K (o% into 1-concave
map.

9. Annali della Scuola Norm. Sup. - Pisa.
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By proposition (14.1),, ¥ has property (B) at 0 with respect to (=, ¢).
In particular, m;(¥), is finitely generated over ,O,. For some =" we
can find U << w << W in S (X) and &, , ..., & € Z1 (W, F) such that |V (0¥ | =

= |W (| =| T (¢? | = X (¢?) and the images of &, ,...,& in m(F), gene-
rate (), over ,0, .

Since & has property (B); at 0 with respect to (7, @), there exists
@ € 2™ with & < ¢? such that, if ¢ < w and §eZ4UW (o), F) with ||&[lx, , < oo,
then for some @, , .., a; € I'(K (), »O) and n€ CY(V (o), F), & = Ziai&i + Oy
on N (o).

Take arbitrarily ¢’ = ¢° To finish the proof, we need only find o’ < o’
such that the I'(K (¢’’), nO)-submodule I (¢’’) generated by Im (H'®(o’), F) —
H!(X (o’’), F)) is finitely generated over I (K (o’’), »O). .

Choose o’/ < ¢’ such that ¢’ <w. We claim that p’/ satisfies the
requirement.

Take (€ H'(X (o), #) Since | Ul (¢”)|= X (o), { is induced by some (*€
€Z' (W (¢"), F). Since o"" <o’y || {* [l o7 < oo. Since " < w, for some
@y, wery 4z € T'(K ("), 20) and n € 01 () ("), F), £* = Ssa; &+ oy on V (o)
Hence the images of & ,..,& in HY(X (¢”), #) generate I (¢’/) over
I'(K (0”’), xO). q. e. d.

B. Suppose X is a complex space, o° € R}, and n:X— K (% is a
g-concave holomorphic map with exhaustion function ¢ and concavity
bounds ¢, , ¢4 . Suppose ¥ is a coherent analytic sheaf on X such that (i)
codh F=r on {p ey and (i) ¢, — ¢, (= (®), e ytn — t,(n (2) form an
Frsequence for x € (p < o).

PROPOSITION (15.2); If dy—pyyyeeey dn EN, P €K (00, 0 =1 <<r—q—n—
— max (0,n — k — 1), and ¢ € (c, , ¢y), then (F/Zion_k+1 £ F) | X, is Hfinite
at t° with respect to n°.

PrROOF. We are going to prove by induction on % for 0 =k = n.

Fix c€ (e, , ¢y). By Proposition 6.6, after shrinking ¢° and replacing
X by Xc; for some ¢, €(c,,c), we can assume without loss of generality
that X has reduction order = p for some p€eN,.

Fix € K (0%. We need only consider the case where t!=0 for
n—k -+ 1=1i=mn, because, if ¢ ==0 for some n —k-1=i=mn, then
FE ki #iF =0 on n—1(U) for some open neighborhood U of & and
(F/|Ztan—it1 8 F) | X, is trivially H'finite at t° with respect to n°. After
applying a coordinates transformation of C* affecting only ¢,,..,%—x, We
can assume without loss of generality that ¢ = 0.

(@) Assume k= 0. Then F/Zl, it T =
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When # =0, dim¢ H'(X,, F) < oo for 0 =1 <r —g¢. Hence F|X, is
Htfinite at 0 with respect to #* for 0 =1l <7 — ¢ — n — max (0, n—k—1).

When n =1, by Corollary to Proposition (14.1),, F/t, F has property
(B at 0 with respect to (m,¢) for veN and 0 <1 <r—gq—2n -+ 1.
Lemma 3.3 (b), after shrinking ¢° and by replacing X by X, n for some
cy €(c,,c), we can assume that there exists » €N, such that t,. is not a
zero-divisor for ¢, %, for x € X. By Proposition 12.1, ¥| X, is H'finite at 0
with respect to z° for 0 < l<r—q——2n—}—1=r—q—n — max (0, n — k—1).

(b) For the general case, assume 0 < %k =n and further assume that
Proposition (15.2),_; is true. We are going to prove Proposition (15.2), by
induction on d,. Let §= F/t, T

When d,=1, C]/ZL,._H] t?i§f'= Q/Z._,._H_l t. G codh G=r —1 on
{p < ¢4}, By replacing X by X n {t, = 0}, Preposition (15.2);_; implies that
(Q/Z1ok 441 Q)| X, is Hlfinite at 0 with respect to n°. Proposition (15.2);
is therefore proved for d, = 1.

Suppose d, > 1. Let R® = S5 4., t?iff—l— t, . Consider the following
exact sequence 0 —» R /RU_y GRU_y qiplia=D) _y 9, By induction
hypothesis, (F/R*—1) | X, is H'finite at 0 with respect to =° for 0 =1 <
<r—q—n—max(0,n — k —1). By Lemma 3.1, to complete the indu-
ction on d,, it suffices to show that (R /")Q(d"))lXc is H'finite at 0
with respect to n¢ for 0 =1l <r—q—mn—max(0,n — k — 1).

By Lemma 4.4 we have a natural sheaf homomorphism a: Q/Z,_n_k“t. Q
—» R ) Pln) and « is a sheaf-isomorphism on {p < cy}. Sup Ker aC
€ {¢p = ¢y} and Supp Coker o € {p = cy}. The restriction of z to Supp Ker «
and Supp Coker & are proper. By Proposition 15.1, (Kera) | X, and (Coker a)| X,
are H'finite at 0 with respect to n¢ for 1 = 0.

Since (Q/E}:,Lkﬂt?‘ Q)| X. is H'finite at 0 with respect to n¢ for
0=1<r—q—n—max (0,n— k—1), from Lemma 3.1 and the following
two exact sequences :

0— Kera — Q/ZZ’;,.I_H[ t?“ g—) Im o — 0.
0—Ima — R»™Y/R™ _; Cokera — ¢,

we conclude that (R%Y /C)Q(d")) |X. is H'finite at 0 with respect to =,
for 0 =1 <r—gq—n—max (0,n — k — 1). The induction on d, is comple-
te and Proposition (15.2); is proved q.e. d.

C. PROOF OF MAIN THEOREM.

Without loss of generality we can assume that M= K (¢°) for some
o € RY. Since F|{p <ecy) is (7 |{p < cy)) — flat, ¢, —t, (w @), ..., tn — ta(7(®))
form an %-sequence for x € {p << cy.
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First we are going to prove (15.1); for 1 =k = »n -4 1 by induction on %.

Ifdgyee,dn EN, 0= 1 <r—q—mn—%k-4 1 and c€(c,, cy),
(18.1) then i} (F/3i— t* %) is coherent.

When k=1, by Lemma 4.3, ¢*, ..., 2 form an %,-sequence for 2€{p <oy
Na—1(0). On {p < ¢y} we have codh (F/Zi; t5i)= r —n. Since Supp (F/Sr, -
- t¥% Fyc 7~1(0) and 71 (0) is a g-concave space, dime HYX,,F/ 3t HF)< 0o
for 0=1<r—q—n. (15.1), follows.

For the general case, assume ¥ > 1. Fix0=1<r—q—n—Fk-1.
By Proposition 3.2, to prove the coherence of nj(F/3riti:iF), we need
only verify the following three conditions

(i) 7% (F/( Stk t85 F + (toms — ti—1)” F)) is coherent for every »€ N,
° € K (0%, and every 0 =pu =1.
(i) (F/ Stk t8 F) | X, is H'finite and H'*'-finite with respect to n°.
(iii) For every t°€ K (0% and every relatively compact open subset U
of K (9% there exists » €N, such that ¢, — o i8 not a zero-divisor for
(tn — t3)* F, for a € (a1 (U).

(i) follows from (15.1);_; after a coordinates transformation in C». (ii)
follows from Proposition (15.2),—r+;. (iii) follows from (2°)~1(U)cc X and
Lemma 3.3 (b). Hence (15.1); is proved.

(15.1),4, implies that =f () is coherent for c€(c,, ¢y) and 0 =1 < r—
— ¢ — 2n. The Main Theorem follows from Propositions 4.2 and 11.12.

q.e.d.
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