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Introduction.

In this paper we consider solutions of the initial-Dirichlet boundary
value problem in the cylinder, £ >< (0, T'), for parabolic equations of order
2b, and solutions of the Dirichlet problem in the domain £ for strongly
elliptic equations of order 2b. (b is any integer = 1). The coefficients of
each operator in question are assumed to be bounded and measurable and
in addition those of highest order are taken to be Hélder-continuous in the
closure of the domain of definition.

For the parabolic case we estimate the LPnorm (1 <p << oo) of the
solution, u(a?, t), over all lateral surfaces near and parallel to 3802 >< (0, T)
(862 = boundary of Q) by a constant times the sum of the L?P-norm over
Q of the initial value, u (x,0), the LP-norm over 82 < (0, T) of u, and
certain « negative» norms over 94 < (0, T') of the remaining Dirichlet data.
In the elliptic case we estimate the L?norm of the solution, u(z), over
any surface near and parallel to 92 by a constant times the sum of the

Pervenuto alla Redazione il 28 Gennaio 1970.
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L?-norm of w over 08, «negative » norms over §£2 of the remaining Dirich-
let data, and the L'-norm over £ of u. (See statement of theorems in sec-
tion 2). For elliptic operators one of the inequalities we state (theorem 5.3)
was announced by Agmon in [1] but there the coefficients of highest order
were assumed to have derivatives up to that order continuous in Q.

The estimates in the parabolic case allow us to prove existence and
uniqueness results for the initial-Dirichlet problem when the restriction of
the solution bolongs only to L? (theorems 4.1.6, 4.1.7, 4.2.2, 4.2.3).

Section 1 of this paper is concerned with defining the type of opera-
tors which will be used in the statements and proofs of the results in this
work. Section 2 states the main results of the paper. These results are
proved in sections 4 and 5. In section 3 we examine the problem in the
half-space and obtain the necessary estimates for sections 4 and 5.

1. Basic definitions.

(1.1) Definition of parabolic singular integral operator, symbol, and the
operators A—*, A* on R™ < (0, T).
In this section and elsewhere we will denote points in R™ by x, 2, or
w and positive real numbers by ¢ or s. If f and g are measurable functions
defined in some Euclidean space we denote by f+g the convolution of f
with g and by F(f) the Fourier transform of f. For a = (0t;, ..., &), %
on a“n
pre Py

=am .22, We set Sp= B < (0,T) and R} = B" x< (0, co).

n
non-negative integer, we set |a|= X «;, Dy , and x° =
i==]

DEFINITION. A parabolic singular integral operator (p.s.i.o.) has the
form

t—s
(1.1.1) Sf (%, t) = a (2, 8) f (», ) + lim/fk(w,t;w—z,t—s)f(z,s)dzds,
&0
0 gn

where a (z, t) is bounded, uniformly continuous on Sr, and k (z, t ; 2, 8) satisfies

a) k(x,t:2,8)=0 for s << 0
b) for every 1 >0, k(x,t; 12, AP 8) == A2 L (x,t;2,8)

c) fk(w,t;z,l)dz:O

@) Fe (k@158 1) () = Q (2, t;72) satisfies
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(% means Fourier transform only in §)
| D; Q (x,t;2)| gBaexp(—Aalzlﬂ’),

with A4, and B, depending only on «, and

P

| D Q(w,,t,;2) — 2(xy, t552) | < wa (|20, —2,| + |8, — t, |®) exp (— A, | 2 |?)

where lim w, (8) = 0. '
50+

Under the above assumptions on the kernel the limit in 1.1.1 is known
to exist in L?(Sy) 1 < p < co. In this paper the functions a (x,¢) which
arise will satisfy a uniform Holder-continuity condition in 87 and w, (8) <<
< 0, 0” where y is a fixed number satisfying 0 <y << 1.

(1.1.2) DEFINITION. We will denote by Y, (Sr) (1 <p << oo) the class
of operators J mapping L? (S8y) — L?(Sy) and satisfying for any ¢ = 0; if
X4 5 denotes the characteristic function of (a, ), then

1) JX(3, 00y = X(g, 00) I X(g, o) (. &, if f (@, ?) = 0 for ¢ < a then Jf (x, t)=0
for t < a).

if) ”X(“: “+8)J(X(a. a+8)f)“L1’(sT)Sw(e)”X(G, “+8)f”LP(sT) where w(¢)—0
with ¢, uniformly in a=>0. We set §(87) = 159500 I (81).

If an operator § is of the form 1.1.1 we define the « symbol of § »,
denoted by o(8S) (x,t; 2,8) to be the function.

R
(1.1.3) ..a(xt) 4 lim ffk(w, t; w, r) 6@ e do dr, =
®

€—~0
R+ ¢ R,

O (m o apl/2d
=a(a',t)-|-—fw—’tr’fr—)e“'dr,
0

the above limit existing for (x,?)€ Sr and (2, 8) == (0, 0).

Throughout this paper we will rely on the results in ([4], [8]) relating
the notions of a parabolic singular integral operator, its symbol, and the
operators Y, (Sz).

In this section we also want to define an operator A—* (k> 0) which
will act as a « fractional » integration operator for functions defined on Sr.
We will also define its inverse, denoted by A*.

‘We begin by using the fundamental solution of (— 1) 4> 4+ D, (4 =
=2 Df,‘.) defined by I'(w, t)=F(e=121™) (x) for t> 0 and 0 for t< 0.
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(1.1.4) For k> 0 set A~* (x,t) =

k
7 (/20) 57" I'(w, ?) where y(-) is the

gamma function.

It is not difficult to see that A—* (x, t) € &’ (R*+1) = space of tempered
distributions on R"*+! and that for k¥ a positive integer < 2b, the TFourier
transform of A—* (x,t) in the distribution sense is (|« [?> — it)~*/?> (see [5]).

For a given g€ L?(Syp), 1 <<p < oo, we set

(1.1.5) A7E(g) (2, t) = (A% * g) (w, T) =[ fA"" (€ —2,t — 8) g(2,8) de ds.

0 pn

We define A° to be the identity. The function u (z,t) = A~* (g)(»,t) has
the property that for g € L? (8p), 1 < p < oo, Dz u(»,t)€ L? 8g) for |a| <<k
and D, A—2t* (y) € L? (Sg). In fact this last statement characterizes those
functions wu (x,t)€ L? (8y) for which wu(z,t)= A~*(g) for some g€ L?(Sr)
(1 < p<<oo) (See [5]).

Now for k a positive integer << 2b we define the inverse to the ope-
rator A—*, denoted by A%, by

(1.1.6) e A¥ () (2, 1) = lz R Dif -+ D, A2tk
Bl=

Pg (@)
( | x l2b — ,it)l—k/Zb
is the homogeneous polynomial of degree 2b — k defined by |z [? =

= 3 Pg(w)af. The operator A* is well defined on functions f€c5(R"t1)
18]l=%
(= space of rapidly decreasing functions on R»t+!) which vanish for ¢ << 0.

For such functions f it is easy to see that F(A* f) (w,t) = (| « [2* — it} K f).

where K, is the p.s.i.o. with o (Kj) (x, t) = %—*

and Pg(x)

(1.2) Definitions of A—* and A* on 882 < (0. T).

Throughout this paper 2 will denote a bounded, smooth domain in
R*t1, More precisely we assume there is a number &, > 0 such that if
Q; = (w€ Q: dist (v, Q) > 4} then the compact set 2\ £, can be covered
by a finite number of open sets U; with the property that U;n Q can be
mapped in a 1 — 1 manner onto the closure of the hemisphere B;’;= {(2,9):
|2 +y2 <72, y>0}, 0<r;<1, in (n 4 1) space, with U;n 82 mapping
onto the flat part of the hemisphere. We assume that the mapping toge-
ther with its inverse, which we will denote by F;, are assumed to have
continuous and bounded derivatives up to order 2b -} 1. Moreover, we can
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choose the mapping so that D, F;(x,y) = Ng where Q = F;(»,0)€0Q and
Ny denotes the unit inner normal to 92 at Q. We also assume that U;n
NQc 2\ £ and that each xefQ\ £, can be uniquely written as
x=Q+rNq, with Q€9%Q, and 0 << r < 44,.

We set Qr= Q2 (0,T), 02r= 02 < (0, T). We let {p;} denote a (fixed)
partition of unity subordinate to the cover {U;] of 2\ 2, and we denote
by {yi} a sequence of functions for which v;€ 0y (U) and y; =1 in a
neighborhood of the support of ¢;.

If u(Q,t)€ L?(0Q21), 1 < p < oo, and k is a non-negative integer << 2b,
we define

(1.2.1) e A7F (W) (Q, 8) = 2 wi (Q) A= [(w @) o F)(Fi (Q)y ).

t

<A—’° (w@) o Fy) (@,9,1t) =ff11—" (@—2,t—8) (u ) (Fi(2,9)8)dz ds).

0 gpn

Algo for u(Q,t)€ C= 08 < (0,00) which is zero for ¢ near zero we
define

(1.2.2) o A @) (Q 1) = Z yi(Q) 4* (w99 o F) (FHQ), t)
(e o [A* (u i 0 Fi (2,9, 8)] (7, ) = (| @[22 — it} F, , [ug; o Fy (2, 9, 8)] (, 1).

As we have described in the parentheses above, the operators A—*,
A* which appear in the summations of 1.2.1 and 1.2.2 are those operators
on Sy described in the previous section. We have used the same notation
for the corresponding operators on §Q2r since in context there should be
no confusion.

A—* A* ig not the identity on functions f(Q, ¢) € 0= (092 < (0, T']) which
vanish near ¢ = 0, but it is invertible in this class. One way of seeing
this is to observe that A—* A* is an invertible p.s.i.o on 6y as defined
in [6] which maps the above class into itself. We have chosen not to go
through the somewhat lengthy details of this result as we feel it is not
an integral part of the techniques of this paper.

As in the case of 897 if w(Q)€ L?(34) we define Gy (u)(Q)= 2 v:(Q)-

1

-[Gr * (ug; o F)] (F; l(Q)) where @ (x) is defined on R" and ¥ (Gi) =
(14 |x[»~*2. G»f is the familiar Bessel potential of f.
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2. Summary of Main Results.

We set L= 3 aq(Ja—,t)D;——D,,EEQ,tE(O,T), and we assume L
fa] <20

is parabolic in the Petrovsky sense, i.e. Re( X a,(w, 1) (i£)") << — O|&[®
2b

la]=

where & € R*H1\ {0} and 0> 0 and independent of (Zv—, t) € Qr. About the coef-
ficients we will assume that a,(x,?) is bounded an(l measurable for all o
and that for |a|=2b, a, is Holder continuous in £ > [0, T].

For a given p, 1<<p<< oo, and given y, 0 <y <1, set dp (2, t) =
min [dist (z, 92), t"7/2] where y,, =1 and for 1< p<oo, y, is any number <1

1 2b —

for which 1 e <P < Eﬁ(1 —-%) For o= Q -4 rNg€ 2\ £y, set
(Divgu) (@ + rNg, t) = D5 (u (Q + 8Ng, t) [s=r -

L%, 1(27) denotes the space of functions u (,t) defined on 2r for which
D; u, | & | << 2b, and D,u€ L?(Q7). We set

Hllzg, o =2l Pt ey + 1-Dewllzp 0y -
10}2‘2,1 (Qr) denotes those € L, , (27) for which % = lim u; in
k

L% 1 (21 with wg€ C5° (R™ < (0, o0)).

L}, 1100 (27) is the space of functions » on £p for which D;u and D,ue€
€ Ll{w ('Q 1')'

‘We will now list the theorems in this paper which we consider to be
the main results. These theorems are proved in sections 4 and 5 and the
numbers appearing here by the theorem correspond to the number of the
same theorem in the appropriate section.

THEOREM (4.1.2). If ue L} 1 (A, 1 < p < oo, and satisfies Lu =0 in
Qr, then

b—1 :
= 7'|“|||D;_u(Q—|—qu,t)“Lp(aQT)+j20“/1_’(D1{rQ“)(Q+TNQ’t)”Lp(a.or)

r<d | |a]|=20—1

b—1 :
< 0";50 | 4~ (Dirgw) (@) |52 (3.0, -
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THEOREM (4.1.5) Assume we N £2.1(92) and satisfies Lu =0 in Qr.
pr<o0

Then u satisfies the inequality of 4.1.2 with p = oco.

THEOREM (4.1.6) Suppose D, ..., Po—y € L? (6921, 1< p<<oo., Then
there exists a unique w (x, t) satisfying :
—_ o
i) for any subdomain Q* with Q*c Q, we L3, (27)
ii) Lu =0 in Qr
i) lim A7 D}y u(Q+1Ng, )= ®;(Q,¢) in L7 (8Qn), 0<j=<b—1.

r—+0
Moreover this solution satisfies the inequality

r<£ la| <2 —1 ” x @+ Q‘t)“Lp(SQm)—!_

b—1 : b—1
jfo | 4 ]DIjVQ“(Q + rNg, ) ”LP(Q.{JT) = C"ijo l dsi”Lp(;;g,_,.) .

THEOREM (4.1.7) Suppose D, ..., Py € C (62 <[0,T]) with @;(Q, 0)=10
for 0 <<j << b — 1. Then there exists unique u (v, t) satisfying :
j— o
i * Q*c n 3. 1 (0%
i) for all Q* Q*c Q, u€1<p<m1}2b'1( T
ii) Lu=0 in Qr

i) Hm || % () 8|z g =0

iv) lim A~ Diyyu(Q + rNe, )= P;(@,1) in L= (3Q), 0<j<b—1.

r—0t

Moreover, this solution satisfies the inequality of 4.1.6 with p = oco.

THEOREM (4.2.1) Suppose u € L, ; (21), 1 < p < oo, and satisfies Lu =10
in Q7. There exists a y, 0 < y <1, depending only on L such that

lal 2
|3 1@ DI 0@+ Ve, s o

b—1 L
—|—j£,(‘) || 4 ]DJ{YQ“(Q'*‘TNQ)t)HLP(gQT)]

b—1 .
< O Li’o || 477 Dler ()|l 50, T % (5 0) 120 ] .
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THEOREM (4.2.2) Suppose D, .., Dy, € L (6827), 1 <<p < oo, and
h (x) € L? (). Then there exists a umque u(m, t) satisfying :

498

i) w (0, ¢) € L} 1,100 (1)
ii) Lu=0 in Qg

o A~ i

“1) rEI(?+ ‘E?_F” DNQ(“(')""8)>(Q+VNQ’t)_gpi(Qrt)”Lp(agT_e)=

iv) for each subdomain Q* Q*c Q, lim | u(z, )—h@)||Lp(Q*)=O.
t—0+4

Moreover with the same y as in (4.2.1) this solution satisfies the ine

quality,
sup[ 2 ||(d1|;“|1);1 u) (@ + rNg, t) ”LP(;;QT)+

r<d |a|=<20—1

b—1 . b—1 _
jfo |4 ]DIJVQ'“‘(Q"FrNQ?“”LP(ggT)]goﬂ jio I dsf”LP(ggT)+”h(w)”1;r(g) .

THEOREM (4.2.3) Suppose u E ﬂ L,,, 1 (27) and satisfies Lu = 0. Then

u satisfies the inequality of 4.2.1. Wlth b = co. (dy is to be replaced by d..).

THEOREM (4.2.4) Suppose @y, ..., Py, € C (32 < [0, T]) and h (z) € C(Q).
Assume & (Q) = D, (Q, 0),_QE 04, and that @; (Q,0) = 0, 1 <<j<<b—1. Then
there exists a unique wu (x,t) satisfying :

l) u (.”I/‘, t) E p 2b 1,1oc (‘QT)

ii) Lu=0 in Qg

i) lim lim || A7 D}y (u(-ye + €)(Q 4 rNg, 0) —

r—+0+ e—~0+
— (@ lo(yo, , =0 (O=<j=<b—1)

iv)  lim || (a, t) — k() ”L°°(Q 0.

t—0+4

Moreover this solution satisfies the inequality of 4.2.2 with p = oo. _
In the final two results to be stated here the operator E= 3 aa(x )Df
a|S2b

is assumed to be strongly elliptic in £, i.e. & — D, is parabolic in the Pe-
trovsky sense. The coefficients are assumed to be bounded and measurable

for all & and for |a|= 2b Hélder continuous in £.
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THEOREM (5.1). Suppose u € L}, (2), 1 < p < oo, and satisfies Cu =10
in Q. Then

b—1
sup [ 3 rlalHD;u(Q-{-rNQ)HLp(SQ)—|—j£0HGJ-DZ,QM(Q—FVNQ)”L,,,\QQ)]

r<d |a|=20—1
b—1 .
= 0Co jﬁ) I GJ'D;VQ“(Q) “LP(;;[)) + [z @)

THEOREM (5.3) Suppose u€1<ﬂ< L, (Q) satisfies Cu =0 in £. Then
pr<oo
u satisfies the inequality in (5.1) with p = oo.

3. Estimates for the Half-Space.

For any 6 =0 we set Ry™" = R" < (, 00). For Ry we will also use
the notation R . A point in R will be generally denoted by (x,y)
where € R* and y > 0. For 1 < p < oo, L 1 (R31T" > (0, T)) denotes the
space of function u (x,y,t) for which D7 ,u, |«|<2b, and D,u belong to
L* (R} < (0, T)). Again we define
HD:,y % ”LP(R";-H X (0, T)) + || Dew HLP(R:;H % (0, T)) *

|| » ”L;Z’I(RQ-H X0 1)~ |a|=<2b

33{&,,1(1{3"'1 < (0, T)) denotes the space of functions u €L ,(Ry™ > (0, T))

such that w = lim u;, the limit taken in the space L ,(R3T" >< (0, T),
k

with u € 05° (B*! < (0, 00)).

The parabolic operator we consider now has the form L =

2 a,(xy,t)-Dzy— D, and again we assume
=2

la|=2b

Re (= 2ba.,‘ (2, 9, t) (1&)") < — CO| &]?,

la|=

(6 =F 0), with C > 0 and independent of (w, y, ?).
For a given number y,0 <y < 1, and for 1 <p<< oo, set d, (x, y, ) =
min (y, t"?/?*) where again y, =1 and for 1 < p < oo, y, is any number sati-

b
sfying 1 —1/p <yp < 53— ; 1 —1/p).

2b
31. Lu=f, u(2%,¥,0) =0 and « almost» zero data at y = 0.

A. The parametriz.

Let
FELP(RY 5 (0, T)) (1 < py < o0).



500 E. B. FaBes and N. M. Riviere : LP-FEstimates near

We will construct a function u, satisfying :
(@) uy € If5,1 (B < (0, 7))

(b) Luy (xyy, 1) =f (2, 9,8), y>0

(¢) lim (D§ A7 u, (2, y,t) = hm D (/f A —z,t— s)u, (2,9, )dzds)

y—»0+

exigts in L?(Sz), 0 <<k <<b — 1.
(d) For

E 4k 2b—y
1<psoo,ys;1§|lDyA ui(-,y,->HM(ST)gw(T);g%||a,, TG0 ongsy,

where w (T) — 0 as T — 0+, (Condition (d) expresses the meaning of «almost»

zero data at y = 0).
‘We will begin by constructing a parametrix for a fundamental solu-
tion to the above problem. To do this we first consider a homogeneous

parabolic operator L= X a, D, — D, with constant coefficients, and we
la|=2b

begin our development by considering the function @, (x,y,v,t) which as

a function of (x,y,?) satisfies

1) G(-y,0,°)E ifb,l(Rn > (8, 00) X (0, T)) for each & > 0.
2) L G,(x,y,v,t) =0 for y > 0.
3) For k=0,.., b—1,

lim A7 D} G, (@, y,v,8) = A" (DET (-, — v,-)) (&, t) in L? (Sg)

y—0+

(I' (@, 9, t) = F (exp (|«|2= o (€6)%) 2) (2, ).

Here A—* is taken in the variables (»,t). We will set
AFDET (-, —v,-) (&, t) = A7" D} I'(w, — v, 1).

In [5] it is shown that there is a b >< b matrix of parabolic singular
integral operators, (1), for which
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t
b_l 20—1—.
Go(m,y,’v,t)=k20f[/1‘b ' kD: F(x"'w’ Yt —r)-
=0 |
Rn
Ty(A= DI+, —v,+)) (w0, 7) dw dr.
For j =0,..,b—1 set

gj,0 (0, t) = lim (A_j -Dg ( lim Dfl: (I'(xyy — v, t) — Gy (2, Y, 0, 1))

y—~ot v—0

The inner limit, i.e. the limit in v, is a point-wise limit, and the limit in
y exists in L? for some p > 1. Now define;

k, =0
0

t
b1 2b—1—k Nk 2b—1
Gy (z,y, v, t)= X A Dy I'(w—w,y,t—1) T, j (gj,0% Dy I (— ) (w,7) dw dr.
Rn

By induction on I, 0<<1<_b—2, and for j=0,..,b — 1, set

gj, v+ (e, t) = lim (A—j Df, (lim it [F (w,y— v, 1) — Gy (2, y, v, t) —

y—0 v —>0

1—1 b+
=2, @50 05 1)

and

t
bl 2b—1—k 1k 20 —1
Goyi(x,y,0,1) =k;‘ A Dy I'(w— w,y,t — ) Txj (gj, 041 * Dy~ L'(—2)(w, r) dwdr
=0
R™

3

if b=1 we take Gb+l= 0).
The proof the following lemma appears in the appendix.

LemMA 3.1.1. For y > 0 and v > 0.

|| v v
v VED ¥ t1/2p Y 11726

$ It [a [ TR o020

ID;,y D,;(Gb-l-l(m’?h v, 1)) | =

In this estimate and whenever used v (r) is a function of the form e—°,
r =0, and depends only on the parameter of parabolicity and on the num.

ber max | aq|.
|a|=2b

10. Annali della Scuola Norm. Sup. - Pisa.
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Set

b—2 o
(3.1.2) ...R(x,y,v,t)=TI(xy—v,t)— G,(x,y,v,t)— zf; Gppy) (o, y,v,t)(b—_i_—m .

LEMMA 3.1.3. For 0 <<k < 2b — 2; Dy (R (#,9,, 1)) |,=o = 0. Also for

,, x — o\ _ntt
y>0,?J>0,|Dx_,,D,’fR(w,y,v,t)]£y;(ltllzl)w(l?/tlm I)t W .,

ProOF. Suppose first that k¥ = b. Then

D’,f R(x,y,0,t) = lim fo [I’(w, y—vt)— Gy(w,y, v, t)—

»— ot

b+1

— 2 Gu@y,vt)——|—1lim@G .
bHI<k v+ ¥, % )(b+l)! g k (&, ¥,y 0, 1)

Each limit on the right side of the above equality is a solution of the
equation, L (u)(x,y,t)=( X @ Dz yu — Dyu)(x,y,t) =0 for y > 0. Moreo-
|a|=2b

ver from the formula for Gyy; and by the definition of gj ;4 we see that
lim A~ D} (DR (w,v,0,t)=0,0<r<b—1, in L? (S7) for some p suf-
y—~ot

ficiently near one (co > p > 1). Hence the uniqueness theorem for constant

coefficients proved in [5], shows that DﬁR(w, ¥,0,t)=0. In the case k <(b
we have

DR (®,9,0,t) = (— 1) | Dy ' (2,9, t) —

Z 0/[11‘”" D@ —w,y, t— )Ty ;( lim A7 DI M(— ) (w,r) dw dr|.

v—ot

Once again by the uniqueness theorem in [5] we see that the function
inside the brackets in identically zero.
The estimates follow from 3.1.1 and the known estimates on I (see [7]).
‘We now consider a general parabolic operator L = X a «(®,9,8) Dy y — Dy.
lal =
We denote by R, ., ;(x,y,v,?) the function 3.1.2 constructed for the operator
Lz,u.s= Z%aa(z’ U, )Dw.y — D.

|a|=

B. Estimates for the solution of (3.1).
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LEMMA 3.1.4. For fe L? (R < (0, T)) set

t

J(f) (@ y,1) =/fo,y,t(R,,,,,,(w—z,y, v, t — 8)) f (2, v,8) dz dv ds.
on_u':H

Then for 1 < p << oo
Sup de,b_’(w Y )59y ) ”Lp(sl.)gw(T) SuP”dffb—y("?/)’)f('ay")”LP(,gT)
y>0 y>0

where w (T)— 0 as T'—> 0. (See § 2 for definition of y and d).

PrOOF: We will first prove the inequality with d, replaced by y and
then with d, seplaced by ¢'»/%,

y/2 2y oo ¢t

Jf (=, y, t)=f+f+f[ffo,y,,R,,v,,(w—z,y,v,t—s)f(z,v,s)dzds] v =
=J,f+ Iy f + Iy .

Using the fact that D:,R,,u',(w, y,0,t)=0 at v=0 for 0 <<1<<2b—2
and from the estimates in Lemma 3.1.3 we see that

y/2 ) (8—1/-2-5>
” Jif('iy") ”LP(ST)Sw(T)(f”f('?”; ')”Ll’(ST) Qﬂb_ld”) —_s—ds =
0 0

y/2
1 f
SW(T)FJ I/ ”r')”LP(sT)”zb_l dv.
0

Hence

v2b—y

y/2
1 ”f("va‘)“Lps)
VIS 90) e gp= @ (T) _y_r/ (87 o <
0

V1=

< o (T)sup [v*=7[|f(-,v,) ”LP(ST) I
v>0
Using only the estimates of lemma 3.1.3
|y — o]
2y ( y ( g1/2b
0

” sz('y Y°) ”LP(ST)S]“]‘.(')”! ) “LI’(ST) )ds dv where u > 0,

81+ (1—u)/2b
y[2
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depends only on the Hdolder continuity of the coefficients of L, , . Hence

Yy || Jof (439 ) ”LI’(ST) =

||
Y \size y \B— ”
Sf it 48 (7) S0 ) ey o <

y/2
1720 sap [v2=7 || £ (-, v, -) | <
/A/sl-Hl—p 2b v>0 T |Lp(ST)

b— . .
< w(T) §l>10p[02 y”f( ) )HLP(ST)]'

For J; we use once again the estimates from Lemma 3.1.3 to obtain

that
o [v]
’ kg 8]/2b
| J3f(‘;3/")”LP;ST)SCU(T)/“f(-,’vy-)”Lp(ST) — e ds | dv.
2 0

Hence

©o

1
¥ [ I3 (49, 0) ”LP(ST) =w(T) y2b—yfv_2m V[ (45 00) || p Ao
2y

So the estimate for J,f and hence for Jf follows with d, replaced by y.
We will now show the estimate with d, replaced by #'»/2b,

¢ o
19799l = [ (6= a2t [ (L2 L) 0,0 gy o
0 0

Since for any » > 0 y(u) << 0, u—"y, (u) we have

| JF (- 9, 2) “LP(R’”) =

|y — o]
'/’1( T1j2b ( ’

f ()0 7)) .
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Choosing 7 <1 so that » 4 u>>1, and using Hardy’s lemma ([11, I]) we
see that

(2b-—y

2b—y )
7
l AR/ ACE ) “LP(ST) =) sg? I £ (19, +) “Lp(sr)

2b —
provided y, —— %

To obtain the estlmate for d, (x,y,t) we write

1
+ < 1, which we have assumed.

f(@yt)=f(2y, )X(y<¢yp/2b) @, 9,0 +

+f(w7 Y, ] X(yzgrp/zm(w) Yy t) =fi +f2 )
where Xz denotes the characteristic function of E. Now we observe that
I dpzb—r Jf1 (9, ) ||LP(ST) <y | If, (+y ¥, *) HLP(ST) =
25— " (. . 2b— . .
gw(T)sg?y 7”]1( ) Y, ”LP(ST)<w( )2;1%) ”dzl, IS ACE'2 )”LP(ST)'

A similar inequality holds for Jf,.
Because of the Holder continuity of the highest order coefficients of
L, it is easy to see that J maps L? (R} < (0, T')) into itself continuously

for 1<p=<oo, and [[Jfxen llpmtiyg =2 O— | f2enlpamtry 0

where @(¢)—> 0 a8 e—> 0. (Actually thls last inequality holds when the coef-

ficients of order 2b are only uniformly continuous in R"+1 > [0, T] and for

1 < p < co0). Moreover J has the additional property that if f=0 for

s<<a then Jf=0 for s <a. It follows that (I —J) is invertible over

I? (B < (0, T)). In fact if fe L® (R < (0,T)) in order to find g€

€ L (R7_'|.+1M>< (0,T)) such that (I —J)g=f we proceed as follows: write
T

[o, T]= U [ax , b] Wwith 0 = a, < b, = ay, < by, = a3 <bz.... We choose

[ag o bi] sO that for g with support < R’ < [a, be, || T ||

L& Xy, 0y

g?“gﬂm(}ﬁ“x[ak . We can find g, with support c RY™ < [a, , b,]
such that (I —J)g, =f on R " > [a,, . We can find g, with support
c R < [a,, b,) such that (I —J)g, = f (I—J)g, on R < [a,, b,).

In general we choose g, with support C R '>< [ax , bi] such that (I —J)gr=
k—1 Myp

=f — E (I—J)g, on R%"[a;,by). The function g = 3 g5 has the pro-
=1

perty that IT—=Jd)g=1/.
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LEMMA (3.1.5). Suppose f€ L? (R < (0, T)), 1 < p < oo. Then

I a2 (I — Sy (Y ”LP(S y =0 sup K RO )”LP(ST)

ProoF : For simplicity let us assume that we are able to write
(I—J)1f=9=g9,+9, as described above. Then R" < [0,T]= R" <
> @y, b ]U B X< [ag, by] = 8; + 8, -

” d2b—-yg ) y’ “LP(ST) S ” dzb 4 gi )?/7 ¢ ”LP(SI) + ” d2b 792( 7:'/’ * ”LP(S,) .

On 8, g,=I—J) f-._ Z‘ Jk J. Hence by 3.1.4 if (b, —a,) is small
||d2b EACHE ”Lp(sl)gosup”d%-rf 1Yy ||I,p(s,) On 8, gp=I—J)~ (fXs,) —
—I—=J)tIT—J)g Xs,) Hence if (b, — a,) is small enough,

| 42=7 gy (-3 9 ) llppgsy <

= OSUP L8277 f ot ) sy TN TT =) g (439 °) [lppey ] <
=C 3‘;%) [l df,b-yf(" Y+) ||Lp(s,) + | @1 (I —dJ) gy (+y9, ) ”LP(ST)]'
Again using 3.1.4 and remembering that suppt g, € R"++1 > [ay , by],
102~ (T —7) 9, %y ) | gogsy =<
=C sup | 220=7 g, (-3 9y ) |l posy =< € sup 1 42=7 £ (0 4 ) gy -
This finishes the proof of 3.1.5.

LEMMA (3.1.6). For fe L? (R < (0, T)), 1 < p < oo, set

¢
u (2,9, 1) "_"'f f R, ,s(@®—2yv,t—3)f(203) dz dv ds.
0 Rr_ti_+1
Then
sup 3 [ &1 D5, (Dy A7 u) (4,9, ) ey +

>0 [ a| <2b—1
<k<b—1

+ ” (d,z,b—1 D, A7 (- Y, ) ”LP(ST) <w(T) :g? ” (d;b_yf) (*r9 ) ”Lp(,gz,) .
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ProOF: As in the proof of lemma (3.1.4) it is sufficient to prove our

estimate first with d, replaced by y and then with it replaced by /™ We
will do the case k = 0. The other k’s and the term D;A~!wu are handled
in exactly the same manner.

For |«|>0

Dy, y u (@, 9, 1) =

yl2 2y o
=f+/+][’/"/‘D;,sz,v,,(w—-z,y,’v,t—s)f(z,v,s)dZd8 dv =

0 y[2 2y 0 R"

= uf (@, 9, t) ug (x, 9y, t) + ug (@, ¥, t).

For ! we use the fact that D! Dz y Ry u,s (8,4, 0,0) [smo =0 for 0<C1<C
<< 2b — 2 (see 3.1.3) and the estimates of 3.1.3 to obtain

¢

/2 y (:W)
| ug (-5 9,+) o8y = cf’vzb_l £y 2y0) “LP(ST) sl+lalfzb ds| dv<

0 0
y/2 P (852")
SW(T)f”2b—l ”f(.’v,.)”Lp(ST) st dv <<
] 0
y[2

<o (@121 [ 70,0, a0

0
Hence

ylelflug(yy,0) ”Lp(sT> < o(T) 225’ Lo IO “Lp(sz.) .

For u; we again use the estimates of 3.1.3 and that D! Dy R, us
at v=10 equals 0 for 0 <<1<<2b — |a|— 2 if |a|<2b — 2 to obtain

F =D
y— v
1 2y A |
a 2b—1— | a| t‘U( sz )
”uz('?%')”LP(ST)Sc al | v If (-5, .)||Lp(ST) — ‘ds|dv
0 y/2 0

= a’(T)f‘”fl 7 |y /G525 ) lzags gy

25— .
w(T)T;%”’ 4 FACE )”LP(ST)‘
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In like manner as for ug we have

1 =]
1
| us(+y 9, +) “LP(ST)gw(T)fdl./‘“f(., v, +) ”LP(ST) p2b—1—|a| mdv.
0 2y

Hence
oo 1
al
y'“'Ilug(-,y,->HLp(ST)sw(T)y'al(fv lal =147 ly—_—mvdv)f;lg)02”‘7”]”(-,71,-)||LP(ST).
2y 0

Now observe that
oo 1
f;;—lal—lﬂ (fly— |~ dl)dvgcy—l‘*l.
2y 0

We have proved the estimate in the case k=0 and |« | > 0 with d,
replaced by y. To obtain the estimate with d, replaced by &'?/2 we first
note that for |« | =0

ly — o]
a Y (t_s)llzb
105 w3 9 Ollgman < | | G gyrersim 17C 2 8) lopam, @ ds.

(U]

We multiply both sides by ¢le17? anq proceed as in the similar situation
in lemma 3.1.4.
To finish the case ¥ = 0 we must show that

” w (" Y+) ”14”(311) = (T) :;1(? y%—y ”f(’ Yy °) ”Lp(,gl,) .
Again we write

1{/2 2y o ¢t X
“(W,.%t):/+f+f[//Rz,v,s(W—z;?/al',t——s)f(z,v,s)dzds dv

0 y[2 2y 0 R"
== Uy + Uy + ug.

u, and u, are handled exactly in the corresponding case for |a | > 0. For
ug (#, y,t) we consider two cases, first when y =1 and then when y <1.
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Ify>1,

lus (-5 9, ) ||Lp(s1,) =o(T) f“f(" Y*) ”LP(ST)
2

oo

1
< o™ [0 mp #1568 ey
2

If y<<1 we first write

2 o t
u,,(w,y,t):f—l—- /[ffRz,,,_,,(w—z,y,v,t—s)f(z,v,s)dzds] av =131 4 u3, 2.
2y 2

2 0 R®

The estimate for uy , follows the same argument for u; when y = 1. Once
again

T
(!?/—lvl
8]/2b

” ug, 1(+, 9, ) ”LI’(ST) = cfdlf'v?b-l ”f(" v ) HLP(ST) ds | dv
0 %

0

" (ly—1]
y—
12
, v V’( 125 )
<cw(T)[ ?}g%) v || f (Y, ) ”LP(ST)]f =7 s1F7[20 ds
0 2y 0

where 0 < p” < y.
Hence

2 1

av al
[l us,1(,9,+) HLP(ST) =o(l)] ig? Ll VAR ”L”(ST)]_[ pl—7 (,/|.'/-— v |y> )
0

2y

Now note that since 0 <<y’ <<y the integral in the above inequality is
bounded by a constant independent of y for y << 1. The case for k = 0 is
now complete.

Recall now from 3.1.4 the operator

t
Jf(x,y,t)=ffo,y,t 20,8 (& — 2, Y, 0, T — 8) f(2, v, 8) dz dv ds.

0 th_—l—-l
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THEOREM (3.1.7). Suppose f€ L¥ (R%™ < (0,T) for some p,, 1< p,< oo,
and set

u (e, y,t) = — fRz,,,,,(x—z,y,v,t—s)(I——J)—lf(z,v,s)dzdv ds.

0 pntl
By

Then i) u€ L%, (R > (0, 7)) and Lu = f,
ii) for 1 < p << oo,

la] o —k nk 25—
|a|f§b—1 “ dpa -Dz.y (/1 -Dy ) (” Y, ') ”LP(ST) Zw (T) sl>10p ” dp yf(';?/} ') ”LI’(ST)
0sSksb-—1

iii) for 0 <k<<b—1, lim (4™ D} u)(w,v,t) exists in L (Sp).
y—+0
The function o (T') depends only on the bounds of a,, the Holder con-
tinuity of the highest order coefficients, and on the parameter of parabolicity
of L= 23 a,(9,t Dgy— D;.
|a| <2b

PROOF : Set

W1(w7?/7t)= Fz,v,s(w—z,y—0,t—s)g(z,v,s)dzdvds,
OR’V_A;I-I

¢
2b—3
Wz(w’ W)= ff [ng'”,s)(x — 29,9t —8) + zgo Gg{’l'g'a)(w — 2, Y, vt —38)-
0 g+l -
o+

'(—b—:i—_-—l)—! g(z,’v,s)dsz)ds

where g€ L™ (Rﬁ."’1 > (0,T)), 1 <p,< oco. It is known (see [3]) that W,¢
[+
L, (B < (0, T)) and

o
mzs 2 1 D=0 W ”L%(R’i""xm. p HIDWy “LP°<R'ZL+]><(0, 1= Onllg “L"l’(Rﬁrhx(o, )’
Moreover LW, = — g 4 J, (9) where

t
J,(9) = Loyt Lyos@®—2,y—uvt—Ss)g(zvs8) dedvds.
0R1_||_+1
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From the estimates of 3.1.1 we have for |« | < 2b,

t
” D;,y Wz('7 *y t) ”LI’O(Rﬁ_'H) = Of(t - 8)_|a|/2b ” g9 ('7 ) 3) ”Lpo(R?’j-l) ds
0

and hence

a
| Dz,y Wy ”Lpo(Rv_ti_ﬁx(o_ ry = Ollg ”Lpo(Rr_»I_HX(O’T)) .

For |a|=2b and again using the estimates of 3.1.1 we have

=]

o y+v
1'”( S1/20 )

511

” D;.y Wz(': Y ')”Lpo(sT)g 0[ Tg/zb—ds “9('?"’7')“1’,1’0(51.)(1”-

0 0
Hence

o

a 1
| D,y Wz("3/;’)”1,190(,91,)S Ofmi|9('1”")||LPo(sT)-

0

By Hardy’s lemma,

a
| Dz.y We “LPO(R'_‘,'_“x(o,T)) =0lly ”LPO & 0, 1)

A similar estimate holds for D; W,. Also LW, =J,g where

t
T, (9) @9, 1) =f f Lw,y.t[aé""'” @ — 29,00 — 5)

0 n-4-1
By

2b—2 (@ ,8)
+ 2z Gy (@ — 29,0t —

oo+
8) Wl—)—! g (2, v, 8) dz dv ds.

From the above discussion of W, and W, we conclude that since

J=J, +J2,u6i§’b°,1(R1+l>< O, TYand Lu =(I—J) 1 f—J I —J) 1 f=
=T —J){I —J)y!f=f The estimates in lemmas 3.1.5 and 3.1.6 im-

o
mediately imply part (ii). Since w€ L& (R < (0,T)) it is easy to

see

that D u (x,y, t) converges in L?(Sz) as y— 0+ ,0<<k<b— 1. Hence

A47* D,’f u (x, y, t) converges in L#(Sr) as y — 0 4.
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3.2. The case Lu =0, u(x,y,0) =0, and given lateral data.
For a given function & (w, t) € L?(Sy) and for j=0,..,b —1 set

t
(T D (%, 9, 1) =f f An—i—1 I){; I'yo,s(@—2,y,t— s) D (2, 5)dzds,
0 gn

and
(3.2.1)  ..uj(w,y,t) = (T; D) (&, v, t) +
t
-+ R, v s@—2z,y,0,t—8)(I—J)" L (LT D) (2, v,8)dz dv ds

0 pntl
L

(Again L= 3 a4 (»y,t) Dzy— D).

la|<2b

THEOREM (3.2.2). Assume & € L»(S7),1 < p, < co. Then

1) for each 8> 0 w;€ L (B > (3, 00) < (0, T)) and Lu;=0 in
REH15< (0, T)

2) =yl Dey (A Dyw) (-, 90 || g
la|<2b—1 S1)
0sSksb—1

= CPo” @ ”LPO(ST)aJnd

3) lim A~* Dyuj(@,y, )= (Si; + Jx;) (D) in L»(Sz), when Jy, ;€J
y—-0+4
and S ; is the p.s.i.o whose symbol is given by

2b—j—k—1 ikt
o8y (2 850, 8) =P —it) * 4, : (inlC) + it

ag.

(The contour integral is taken over a closed contour in the lower-half-plane
enclosing all roots (in {) in this plane of 4, , s(ix, i) 4 it =0). Op, depends
on the Hoélder norm of the coefficients of highest order and on the para-
meter of parabolicity of L.

ProOF: We will first assume that any derivative of the coefflcients
of L is bounded in R x [0, 7] and that & € OF° (B < (0, 00)). In this
cage it is easy to see that ujeifb",l (R’_‘;H < (0, 7). From theorem (3.1.7) we
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have Luj= L(T;®) — L(T; $)=0(y > 0). Moreover for 0 <<k <<b—1

S ylel||Dsy (AF Dy — Ty (D) (4 g, =<
lal<2b—1 L (8p)

< o (T) sup || y?—7 (LT; D) (-
y>0

54 e
— s)if — gy
| L(T; D) (%, 9, 8) | < t i — (tu %) | D (2,5) | de ds
s)zb"'zﬁ

where u > 0 depends on the Holder exponent of the coefficients of order
2b. Hence by taking y =<wu we have ?/1;%) || 92> (LT @)(-,y,-)HLm(ST)g
< Op,|| @ ||y sy - Finally we see that A7 D} (uj— T D) (v, y, t) — Ji) @
as y—» 04 in L™ (Sr) where Ji)€J. In [5] it was shown that A~ DY(T; D) (w,y,t)
converges in L™(Sy) as y— 0 4 to (S, ; + Jk,,) @ where J(Z) €Y and 8, ;
is the p.s.i.o described in (3).

To obtain theorem 3.2.2 when the coefficients are only Holder con-
tinuous in R} < [0, 7] and &€ €5 (R" < (0,00)) we consider sequences
{ai™), where for |a|= 20, a™ belongs to the same Holder class as a, with
norm bounded by the norm of a,, and a(™ — a_ pointwise and boundedly

as m—>oco. Set A™ (2,u,8, &)= 3 a<m) (2, u, )(i&)“
|a| =20

Y+) ”Lpo )

L (@, yy t) = Fe (exp A™ (2, u, 85 £) 1) (x, 9),

t
™ (P) = f [ A2=i1 DI T (p— 2,9, t — 8) D (2, 3) dz ds,
0 1;375
and
L (2, 9,1) = T}” (?) 4+ f fRZ.v.c(‘D —2y,vt—8 I —J)1
0

BP
(LT{"(D)) (2, v,8) dz dv ds.

It is easy to see that LT}’”’(@)ELP“ (R™H 5 (0, T)) and that «{™e L |
(RYT >< (0, T')). Moreover Lu, =0 for y > 0. Now let ¢ (y) € C=[0, o)
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with ¢ (y) =0 for y near zero and equal to 1 for y near infinity. Then

I ulr @ “L"" "'H(xo.T) < 0| L ("}m) ?) |l 20 (R:_+1)((0,1’)) .

From the estimates in part (2) of 3.2.2 for u we conclude that this last
norm is bounded independent of m. Hence {um} converges weakly in
L 1 (R < (8, 00) < (0, T)) to u;j(x,y, t) € Ly  (R™ < (8, o0) < (0, T) for each
0> 0. Clearly Lu;j= 0. Since Tj(m)(é) — Tj(®) in L% (Sr) and since
sup y?-r || L (Tj(m)QD —T; D) (+,9,) ||Ln0(s1,,—+0 as m — oo, it follows
y>0

that u; has the representation 3.2.1. By approximating L (Sy) with
0;” (R™ < (0, o)), the general result follows for @ € L™ (Sr).

The matrix of symbols (o(Si ;) (2,8;,¢) has an inverse for each
(2, 8 ; 2, t) with (»,1) 3=(0,0), and we can write (o (S, ;) (z, $; .')o 1))~ = (o (T, )

2,8;x,t) where T} ; is a p.s.i.o (see [8]. Now set g; = 2‘ 1;,, D; (k=0,..

o yb — 1) where D, ... (15,,_1 are given functions in LPO (ST) Finally set

(“k ('”) Y, t) == Tk (gk) (w7 Yy t) +j fRZ, v,B(w—z7y7”7t_8) (I_J)—](L(Tkgk))(z’v?s)'

0 Rni1
+
b—1
dzdvds and w= 3 u.
k=0
THEOREM (3.2.3). For each 6 > 0 u € L}y ; (R" < (8, 00) < (0, T)), 1 < p, <<

< oo, and Lu =0 in R > (0, T). Moreover,

a a —k Dk . .
o for 1<p=oo, = ylD;, A7 Dyulsyy)lloe sy, =
k=b—1

b—1

Cp kgo H Dy, HLI’(ST) .
O, depends on p, the Holder norm of the coefficients of L of highest order,
and the parameter of parabolicity.

b) lim A—* D; u(w,y,t) = (I + Ji) D in Lr(S7) with Ji €Y.

y—0

ProoF : All the statements in 3.2.3 are corollaries of 3.2.2 except for
the estimate in (a) with p=oco. For 0<|a|< 20— 1 one can check
that

a s1/2
3/'“'”Dw.ka(gk)(';ﬁ‘/y')”Lw(ST) s(y""[w SiFTal ds) >} ” QJHLOO(ST)
0

= OJEO ” P; “L°°(ST) :
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What is then left to show is that for 0 <<1<<b— 1

_ ! b—1
‘A lDy(kfoTk (gk)> 9, t ‘S 02 | J“L°°(ST)
‘We first write
t
T D (x,t) = A, (2, ) D (x, t)—|—f ka',-(w,t;w— 2yt — 8) D (2, 8) dz ds.
0
Then

A=Y DYy (Tr gi) (@, 9, 8) =

b—l
= f fA?b—l—k—l Dty o @ — 2,9, ¢ — 8) [As, j(x, ) Dj(2, 8) +

+f ka,(w,t 2 — w, s — r) Dj(w, r)dw dr] dz ds + Z' T (B;) ) (%, Y, t).
R®

Let

TS (D)) (2,8) = Ay, j(M,7) D; (2, 9) +ff Te; (M, 752 —w,8—1) O;(w,r) dw dr.

0 gn
Hence
-1 1 [T bt (l)
4 DV(ZTkgk)(xyy’t)‘_—' 2 Ik (D)) (@ 9,0) +
k=0 k, j=0
"_1 2b—1—k—1 z+k
kj 4 Iy, (@ —2,y,¢ — 8) (T, j(x’t)) (Dj)(2, 8) dz ds.
_o
Now set

b——l
W) (2, g, 1 f fA““""‘ DEF Ty (0 — 2,3,t— 8)(TE5 ) (9 (2, 5) de ds.

The estimate we seek for p = oo will be complete once we show that
|5 (@, 9, ) | < C| B l|geo (s, Where C is independent of (M, 7) and y > 0.
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We leave the proof of this to the Appendix (A.2.1). This completes the
proof of 3.2.3.

(3.3) The initial-value problem.

In this section we will briefly review some known results for the
initial value problem,

Lu(»,y,t)= [I IZ; ﬂ?u (2, y, t)D:.y—Dt]“(w) Y,1)=0,(z,y)€ R"+J9 u(x,y,0) = g(x,y).

To construct a solution we use a fundamental solution for this problem con-
structed in the manner of Pogorzelski in [9[. We denote this function by
W(x,y,t: 2,v,8) and it has the following properties :

1) Wz, y,t;2,0,8) = I —2,y—0v,t —8) 4

t
Iy, r(@e— M,y —u,t — ) D (M, u, r; 2,0, s) dM du dr,

0 Rn+1

and for t >s D (»,y,1t;2,v,s) satisfies the integral identity

Ly y ¢ [ L% s@—2,y —v,t —8)] = — D (x,y,t;2,,8) +
t
Ly y o [T m,u,r(x— Myy — u, t — r)] @ (M, u, r;2,0,8) dM du dr.

& pni1
Here

Ly y = 2 aq(x, Y, t)D:,y—Dt'
la]=2b

2) For t > s, Ly 4, ¢(W (2,9, 1; 2,0, 8)) = 0.
3) For |a|<<2b—1 and t>s,

lz—2]\ (ly—2]
k4 ((t__s)2/3b L4 (t-——s)lﬂ”)

(t — s)m+1/20 + [alf2b ’

v — 2| ly—7]|
® ((t— 5112 Y (t — syl
(— syt i—a

lD:,y Wz, 9,520, s)lé

and

| @ (2,9, t; 2,0, 8) < >;0<M£1-

(u depends on the Holder continuity of the highest order coefficients of L).
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Now set

(3.3.1) o U (2,9, t)=fW(w, ¥, t;2,9,0)9 (2 v)dz dv.

g1

t

fl’z,v, (@—2,y—2,0) 9( )dzdv+[f1“uw(w—z,y——v,t—r (9)(2,v,7) dzdv dr
g1 0 R‘n—l—l

where

 (9) (2,9, ) = f (5, y, ¢ M, w, 0) g (M, v) A d.

R"+1

THEOREM (3.2.2). If g € L? (R™), 1 < p < oo, then
4) u(z,y, )€ Lh 1 (B" X< (0, T)) W 0,0 <a<T.
5) Lu=0
6) for 1 < p << oo,
> ||t7p|a|/2b (A—"D u) (- s Yye )“LP(ST < Gllg“Lp(Rn+1)

o =201
<b—1

(C depends only on the Hoblder continuity of the coefficients of order 2b
of L, on the bounds of all the coefficients, and on the parameter of parabo-
licity).

7) for 1 <p < oo, hm A*DE y w(x,y,t) exists in L? (Sr). The limit exists
pointwise if p = oo. Uing

8) If1<p<007”u(' t)_g ”Lp(RyH-])'_)'O as t'—‘>0+
If g is bounded and uniformly continuous in R then
lw(ey -t —g(,-) ”LOO(Rﬂ-*-l) —0as t— 0.

ProoF: 4) and 5): The estimate in three together with the results in
[3] imply that for p, near one if g€ L# (R*™) we L%y, ; (R"! x (a4, T)) and
Lu = 0. Now if ge L? (R™™") we take g € €3 (R*™"), g —> ¢ in L? as &k — oo.
The first estimate in 3 (for |« | = 0) implies that for

U = f W (@, ;52 v) gr(2,v) dz dv, || “k”LP(Rn+1) = 0“9“Lp(1e"+1)-
Rn+l

11. Annali della Scuola Norm. Sup. - Pisa.
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By multiplying u; by a fixed function ¢ (¢) € 0y (0, co) we see that the se-

quence f{uz} is bounded in Iy, (R”+ X (a, T)) M a, 0 < a < T. In fact since

@ (8) u (@, y, )EL” b, l(R""'1 > (0, T)), the results in [4] show that pu; =
t

I'(x — 2,y —v,t —8) T (L (eux)) (2, v, 8) dz dv ds with 717 a bounded ope-

0 pn+1
rator on L» (R*t!>< (0, T)) and I the usual fundamental solution of the
operator (—)* 42 4+ D;. Hence

| ‘P“’CHLP.ZM @0, 7)) = Ol ¢ w ||Lp(1cn+1><(0, ) = ol gk”LP(R’H‘l) .

Hence u; converges weakly in Lj , (R""'1 X< (ay, TN a,0, << a<<T, to a
function, which must be wu since wu; converges to w in L? (R”“'l X (@, T')).
To show 6-8 we first write

A7E Df wu(x, ¥, t)=fA"‘ D; Iyoo)®— 2,y —v,t) g (2 0) dz do+
R’n-l—l

+ | | A7 DE Ty 0, v (0 — M,y — v, t— 1) B(g)(M,v, v) AM dv dr.
0 g1
where

& (9) (@, v, t)=fd><w,y,t;M, 0, 0) g (M, v) A d.

R"+1

The first term in the above equality is easily seen to satisfy the desired
estimate. Denoting the second term by wu, (x,y,?) we have

D2, (4~ Drug) (-, 0 lle(Rn)Sf(t—s e | D(g) (-, )|, b, g

From the conditions on y, and y we see that

|| #2120 D:,y(/l_kpzuz)("?/7‘)”1,17(51.)3 || 8" @i @ (g)”Lp(R”“"lx(o. '

Using the estimate (3) for @ (x,y,t; 2, v, 0),

“ (D(g)(', 'yt)”Lp( 'n+l gt]—,qu”g”Lp(R
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and since for 0 <<y << pu, 1 — u/2b — (2b — »/2b) y, < 1/p, we conclude the
desired estimate for w, (z,y, ).

Again the first term in the expression for A~* D,’,‘u(x, y,t) is easily
seen to converge in L? (Sp), 1 < p < oo, a8 y—> 0 ++. For g€ O° (R™™) it
is not difficult to see that A_kl)z u, converges pointwise as y — 0 -} and
since it is bounded, uniformly in y, by a function in L2 (87) it follows
that /1—"1){;1%2 converges in L? (Sr) as y— 0 4+ when ¢ is smooth. By a
density argument the L?-convergence follows for any g€ L” (R”"'l), 1<<p<<oo.
The pointwise convergence of (4a~* D,’,‘ u) (%, ¥, t) when p = oo is immediate
by Lebesque’s Dominated convergence theorem.

(3.4) General problem in the half space.

‘We will now construet a solution to the following initial-boundary-value
problem. Fix a number p, 1 <<p < co. Assume we are given functions
f @y t), By @ t)y ..., Doy (%, ), and g (9 with feL¥ R < (0, 1)),
®;€ L* (Sg), j =0, ...,b — 1, and g (z, y) € L (R%). Find u (x, y, ) such that,

1) uEL”zb,l'loc(R'flx (0, 7)) and Lu = f for y >0

2) for j=0,...,0 —1, | A7 DJu(-,9,-) — Bi(+,+)l|pn s, —> 0 a8 y—>0.
(3.4.1)
3) |w(yt)—g(, ')“LP(R”"")_*O ag t— 0 4 for any 6 > 0.

We recall that L= I a,(x,v,t) D, — D, and that a, is bounded for
| o] <2b

all « and uniformly Hélder continuous for |a|= 2b.
Set

uy (@, 9, ) = /Rz,v,,(w—z,y, v,t— 8T —J)1f(2,v,8dzdvds
0 pnt1
(3.4.2) o
“2(‘”7.’/71“):[ W (2, 9,15 2,v,0) g (z,v) de dv
R’_‘I_'*'l

b—1
Uy (2, Y, 8) = kzo [Tk (9%) (%, 9, ) +

|2
+/fRz,,,I,(x——z,y,v,t—s)(I—-J)—l (L (T gx)) dz do ds
6Rn+1
+
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where

b—1 .
gk (@, t) =j£o Ty, i (I —J) (D5 — A7 (D] (g + uy) (+, 0, ) (x, ¥).

THEOREM (3.4.3). Assume the coefficients of L= 3 a,(x,y,t) Dz, — D,
|a| <2b

are bounded for all « and uniformly Hélder continuous for |« |= 2b. The

function w = u, + u, + u; described in 3.4.2 is a solution of the problem
3.4.1 in R'_'I."'] >< (0, T'). Moreover there is a y, 0 <<y < 1, and constants
depending only on the structure of L such that for 1 <p < oo,

|al e —k pk
Ialjssf‘;b_ln dy, D,y (4 .Dy u)(+, 9, ) ”L?(ST) =
—1

b—1
2b—-y . . .
() ™" L (s 93) llzagsyy + O[jfo | Psllzogsgy + 19 !|Lp<ze'5r+n] .

PROOF : That u is a solution follows from 3.1.7, 3.2.3, and 3.3.2. Also
from these results the left side of the above inequality is bounded by

b—1
w(T) 3‘;10) [ H dzb"yLu(-, Y, °)HLP(ST) +k§0 “ d;b "L (T 90 (-, 9y+) ”LP(ST)] +

b—1 . .
-] J
Y [J'=20 ” (pj (a, t) — A7 Dy (wy + “2) (2, 0, 1) ”L”(ST) + ” g9 ”LI’(RT'I)] .
Now

| 4~ DJ (ug + ug)(+,0,+) ”LP(ST) =

20—y
w (T) 3‘;%’ | dy ™" Lu(-,9,-) HLP(ST) +0llg ”Lp(R"_'i:"l) .

It is not too difficult to see that

IL(Tk gr) (%, Y, 1) | =

i) =)
b—1 — q\l/2b —_ b i i
5 b P | @y(ey )|+ | 4 D (g ug) (.0, 12

j=0 (t — 8)n/2b+2—/4/2b
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where u > 0. Therefore

v I df,b"" L(Ty gx) (-9, +) ||1,p(szv) =

b—1 . .
0 jfo ( ” @j “LP(ST) + “ A—’ Dl} (ui + “2) (') 01 ') ”LP(ST))'

The inequality now follows.

THEOREM (3.4.4). Suppose u € L% 1 (R%™ < (0, T)), 1 <p < co. Then
u has the representation u = u, | u, 4 uz with u,, u,, u, given by (3.4.2).

PROOF : When the coefficients of L are 0% (R} > [0,T]) and when
weCy (R”+2) then u = w, + u, -} us, for in this case u and (u, 4 u, 4 u3) €
€ L%, 1 (R%<(0,T))(for some p>>1) and their difference satisfies the initial-Diri-
chlet-problem with homogeneous data. To obtain the result for general u € L ;
we first approximate w in L%, , (R'.‘,."'1 < (0, T)) by u, € Cs° (R*?). We also
regularize the coefficients of I denoting the new operator by L". Then
Up =ub + w2+ ud. Since L"w,—> Lu in L (R} > (0, T)) and since
(A7 Df wy) (@, 0,8) — A7 (D] w) (%, 0,¢) in L? (R" < (0, T)), it easily follows
that ), — u; (t=1,2,3) pointwise a.e. in Rt (0, T'). Since u,—>u in
L%y 1 (R < (0, T)) it follows that w = u, 4 u, + ug.

THEOREM (3.4.5). Suppose wu E]oip‘zb,l(Rfi."'l < (0, 7)) for some p,,
1 < p; << oo, Then under the assumptions of 3.4.3, for 1 << p << oo,

|a| o —k Rk . . 2b—y . .
"’k's%"f‘y | Doy (A7 Dyu(-y9s) l|ppsy =< @ (T) Sup y (| Lu(-,y, )Hmsr)

b—1 ;
+C j§0 l 4~ Dju(-,0,-) ”LP(ST) .

PrROOF: From 3.4.4 u is of the form u, 4 ;. The proofs of 3.1.7 and
3.2.3 now give the above estimate.

(3.5) Estimates away from t=0.
THEOREM (3.5.1). For each a, 0 << a < T, any function

w€ L% (R < (0,T)), 1< p,< oo,

satisfies the following inequality over S; r= R" X (a,T) for 1 <p << oo,
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b—1
la| pa . . —ipi, (. .
|a|£zb—1” (dp”" Dg,y w) (-, 9, )”LP(S‘,, ) +j£) | 47 Dy w(-,y, )”1,19(,3%1.)S

 (T) sup || (df,b—’ Lu) (-, 9, ) “LP(ST) +
y>0

b—1 :
O 3 || A7 Dfu(,0,) |ppspy + Callu (-, -, 0)|

Pl 7 R’_‘I_'l'l) .

PROOF : Again we write u = u, 4 u, + u; as in 3.4.2. For u, the left
side of the inequality is bounded by w (7)sup || (dzb—VLu)(- )Yy
y>0

Recall that

) ’ ILp(ST) :

b—1
ug (2, ¥, t) = IEO Ty (9x) +

t

+ff Rios (@ — 29,7, — 8) (I — J)= (L (Te gu) 2 v, 8) dz do ds

0 Rn++1
where
9 (@, t) = :f_: Th i (T — )7 (A7 Df (0 — g — ) (-, 0, -)) (@, ¥).
Set
k1 (2, 8) = :i‘_: Ty, i (I — Jj)—l (A_j D,,j (w —uy) (+,0,:) (2,8

and g (@, t) = gx, 1 (2, t) — g, o (,t). We correspondingly write u; = w3 ; — Ug 5.
Hence w, 4 w3 = u3 ; 4 (uy — us, ;). For uz , the left side of the inequality
is bounded by

b—1 o
Ca ,_Z;) [l A—ijj“(" 0,-) ”LP(ST) + | 47 Djuy (-, 0

= ’°) ”LP(,S'_T)]

b—1 L
<0, P I A~ Dy’ u(-,0,-) ”LP(ST) + o (T) sup || d;b_y(')y")L“("y")“LP(ST)J'
J=0 y>0

(ug — ug, 5) (4, 9, t) = f.‘](z, o) [W (2,9, t; 200 — W, (xyt; e v)de dp,
R’_‘|_+1
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where
b—1

W, (@, 9,t; z}”)=’£0 Ti(gr,a (- 52 9) (®9,0) +

t
+ijM.u,s(W—M’%“,t—8) (I_J)_IL(Tk(gk,z('; '§2’,’0)))(M,u,8) aM duw ds

0 pntl
Ey

and
b—1
G @ t52,0)= 3 To;(L—J) " (A7 D)W (-, 0,-520,0) @1

J=0

The formula for W, (x,y, t; 2, v) shows that for (2, v) € R’_'|_+1 fixed, W, (x,y,t;2,v)
satisfies (see 3.2.3):

1) W, (@9, t;20)€ L,  (R* X (8, 00) X (0, T)) for each &> 0 and
for all p, 1 <p < oo.

2) Ly,yt Wy (29,05 2, v) = (l %;21)“0-(“'73/’ ?) D:.y— Dt)W1 (w,9,t; 2,0) =0, y > 0.

3) A D) W,(+,0,52,0)(@,8) = A" Dy W (-,0, 52,0, 0) (@, 1), 0<<k=<<b—1.
LEMMA. Set
Vx,y, t)=[W(x,yt;200) —W, (@yt;209)

For 1 < p << oo,

b—1 s
2 NG DL V0 ) s, 2147 DIV o) g, g < Cas

|a| s2b—1
with O, independent of z, v, y.

ProOF : Let ¢, (t) denote a O >-function such that ¢, (t)=0 for ¢t < a/4
and =1 for t>=a/2. For 1<k<b—1,

- — k
1475 @)V (09 ) lgas, o=l 47 Dy (V (@e) (95 °) llzagsyy +
—k
+ 47Dy V(A — @) (5 9,-) “Lp(s“'_,l.) .
Since (1 — ¢,) = 0 for ¢ = a/2 it is not difficult to show that

1A Dy V(L — @) (39, ) o, = Oall 47Dy V(, 9, ) lzas
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with ¢ > 1 but as near to 1 as we wish. For ¢ near 1
“ A7 DI; W9, 52 0,0) “Lq(sT) =,
O independent of (z,v) and y. Using (3.4.5)

I A7F D: Wi(y9,52,0) “LQ(ST) =

b—1 L ’ b—1 .
Clim ¥ H 4 jD;l/j W,(-,9,- §z7"7)”Lq'ST)S Y 2 ” A_ijj Wi(,0,-; z)”’O)”Lq(sT

8—0 j=0 N j=0 )
< 0, O independent of z, v.

From these observations we see that the left side of the inequality in the
lemma is bounded by

la| o
(3.5.2) IaISZ‘Z:b—l “ d, -Da;,y (Vea) (-, Y) ”LP(ST) +

b—1
+ 2147 DiV 90 (39 ) oy + Ca-

For 1<p,<<oo Vgu€ L%, (R (8,00) % (0, T) W8>0 and
A7 D) (Vo) (,y,t) converges in L™ (Sy) to

y—0
0 R™

t
lim ff/l—f (@ — w0, t — 8) [4(8) — @q (8)] D,,j V(w,y,s) dw ds.

Writing D V= gup D) V4 (1 — ¢u) D} V' we can see that the L?norm
over S, r of this last function is bounded by

b—1 :
C.+ C, jé‘o [ 47 D) (Vas) (+,9,-) ”LPI(ST)

1 1

where % = o + - 1 and r, is any number > 1 for which | A~ (x,?)|t€
1 1

€ L (8r). Using this and 3.4.3 it follows that the above norm on Vo, is

smaller than

20—y '
0“[3‘;%) ” dp V('yy")(pa(')”LP(ST)+

b—1
. L
Jm 2 (A7 DV gap) (45 8,°) [lpaqsy) + Ca
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V(9 )ea ”LP(ST)S Cal|(V Cap) (9, *) “z,?(ST)S Cal| AP=1(V Oape) (-5 ¥s *) ”Lp:(sT)

where

1
p
€ L™ (Sr).
Set dp, (y) = min (y, 777/, Then from 3.4.3

1
=—14 . -+ rl and r,>1 is any number such that A=2+1(x,?)€
2 2

d:,':_l (y) ” Azb—l (V<Pal2) (" y’ °) ”pr(sr) S
Ca || ao ™ (13 4, ) A%V @aps) (3 9y ) sy =<

Oy [ Sl;%’ ” d;l;—y(" Yy ) (Vpap) (<195 +) ”Lp’\ST) +
y

b~—1
: - ni
+ VEI&_ jfo ” A7 Dy (V¢a12) (»95+) HLW(ST)]'

We may choose r, =r, and 80 p;, = p, .
What we have shown is that

b—1
|al -ini
?/I;IO) |a[szzb—1” (4" D,y (V @a)] (+5 9, ')“LP(ST) + jfo | A7 Dy (Va) (-9, ')“LP(ST)

< constant depending only on a plus a constant times the same expression
with p replaced by p,; and a replaced by «/2. This means that once we
have found a p, 1 < p < co, for which 3.5.2 is bounded independent of 2,
v, it then holds for all finite p>1 and also by the above reduction for
p = oo.

For p near 1, (3.5.2) with V replaced by W(=,¥,¢; 2,9, 0) is bounded
by a constant independent of 2, v, y.

Now

b—1 )
| |£2b 1“ dL“l_D;:ywi(}a(.,y’.;:z, v)”LP(sT) +jf;) !IA_jDJ(Wiw)(-,%- 527”)”1,10(,91,)

b—1
=0C| 2 |]dL“ID;,y(W10a)(., Y*5 %) ||Lp(s1.)+ji l 47 D] W9 5% ”)“LP(ST)

| o] <2b—1
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b—1 . :
=0, lim X | A—]D; Wi(59-52

Y — 04 j=0 v) ”L” (S7)

b—1 :
= O“EO | A~ D, W(-,0,-;20,0) ooy = Ca )

independent of 2, v provided p is near 1. This concludes the proof of 3.5.1.

In the next result £= 3 a,(»y) Dy, denotes a strongly elliptic
|a| =<2b

operator in Rﬁ."’l, i,e. Re( I a,(2y) (&%) < — C|E&|®, 0> 0 and inde-

la|=2b
pendent of (#,y). The coefficients are assumed bounded and measurable
for all « and uniformly Hélder continuous in R’_’,.""l for || =2b. For 1<
p << oo again set d,(y) = min (y, T72/?),
THEOREM (3.5.3). Suppose u € LI (R}
for 1 << p << oo,

) for some p,, 1 < p, < co. Then

b—1
Ll . i
s;;lz |a|§2b—ldp (?/)”Dm,y“("?/)“[,if(gn)‘|“j£; | G5 (Dyw) ( ;?/)”Lp(m)}

b—1
= 0[21;1‘; dp (= | Eu (3 9) [ 1o gom) +j=20 I Gi(szu'('}0))”LP(Rn)+II“”L1(R’:»|_+1)]

Proo¥: Set L =C — D,. L is parabolic and by 3.5.1,

T
1jp
[ > ”D:-y“(',y)”Lp(En) ([[min (v, tVP/2b)][alp dt)
|a| <2b—1 7

b—1
—5 /i
+j=20 ” 4 (Dy '“’) ('a y,') “I‘p('gl’/z,z') ]
T .
'
< Osup||Cu(-,y) ”Lp(Rn) (f[min (y, t7PI20)|2b—7)p dt)
y>0
0

b .
+ ijl 147 Dy u (e, 0,) [l s, + ofuuupw,w).

Recall d,(y) = min (y, T'71?%), 1t is easy to check that there exists a constant
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C > 0 such that

T
La W) e! TUr < { | [min (y, t"P/2Y)]lalp ]lp< od, () * TP
c? y Yy )] < Cd, (y) .

T2

The same inequality holds when |o| is replaced by 2b —y and the inte.
gral from T/2 to T by the integral from 0 to 7. Therefore

b—1 s
sup[ >3 dp(y)lalHDw,y“(‘9y)||Lp(R")+j_2_(; “A—jD.v;“(U?/;')”Lp(szv/2 T)]

y>0 [|a| =20—1
b—1
= 01'[ :gy dp (Y207 || Eu(-,y) ”LP(R”)+1,§0” A_ijj“(" 0) ”LP(ST)+ [|w “LI(R'-';I'I) l

To conclude the proof we note that in the appendix (A.2) it is proved
that there are constants C and Cr such that for f(x)€ L? (R"), 1 << p< oo,

” A—k (f) ('7') ||LP(S’T) S 0” Gk(f) (') ”Lp(Rn) S 01’” A—k‘(f)('f) ”LP(Sle’_T) .

4, Parabolic estimates and the initial-Dirichlet problem.

(4.1) Case of zero initial data.

Throughout the remainder of this paper 2 will denote a bounded do-
main in R"t! whose boundary, 0£2, is assumed to be in the class (21,
We recall from section 1.2 that there is a positive number J, such that

each point x€Q with d(z)= dist. (E, 88) < 46, can be uniquely written

a8 ¥ =rNo-+ Q with Q€9Q, 0 <r < 4d,, and Ng denoting the unit inner-
normal at Q. We set Q7= 0 < (0,T) and Q7= 62 < (0, T).

THEOREM (4.1.1). As usual we assume the coefficients of L are boun-
ded and measurable for all « and uniformly Hélder continuous in 7 for

| o | = 2b. If ue 25,'1(911) with 1 < p < co and satisfies Lu = 0 in Qr, then

su S rlel||D%u rNg,t
r<£ la|=26—1 103 (@ +rNe, )”I‘P(a”’—")—‘_

b—1 b—1
2 147D 0 Q47N Dl 50y |< O Z[1 47 Dgu) (@ 0 llz2 50y

(Dirgu (@ + rNg) = D5 (u(Q +Ng)) (r))-
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PROOF' We recall the finite open covering {U;} of ﬁ\ggo (25 =

(w€Q: d(x) > d)) deseribed in section 1.2 the partition of unity, (@, sub-
ordinate to it, the diffeomorphism F;: B — U; (Bf = {(w, yeRY | af 4
y®* < ri)), and finally the sequence, {y;, with the property that ;€ 0o (Ty)

and y; =1 in a neighborhood of the support of @;. In Q\ Dy, % (x,?) =
S (uepi) (@, t). Set u; = ug;.
3

The left side of the inequality in 4.1.1 applied to u; is dominated by
a constant times

lal
(4.1.2) %‘S;glgll lsz%_ly 1Dz, (w0 B (92 | 0.5y +

b 47" D;(ui ° i)('}?/")”LP(ST)]'

The function ;o F; (z,9,) belongs to L3 I(R”"'l > (0, T)). Also there
exists a parabolic operator Li= X a,(»,y,t) Ds, — D, satisfying

|a|_<.2b

i) af are bounded and measurable in R} >< (0, T), and for |a|=2b
are uniformly Hélder continuous in Rf',.'“ > [0, T'],

ii) Li(uwo Fy)o Fi (5, t) = Lu (%, t), € U; N L.

From theorem 3.4.5 there is a y, 0 <<y <1, such that 4.1.2 is bounded by
: S A=
cx w(T)Supy%-y“L‘(ui °Fi)(‘,yy‘)”Lp(ST)+ 2 ” i .Dy (uiOFg)(-, 0,-) “LP(ST) .
i y>0 Jj=0

Now
A7 D) (w0 Fy) = vw; A7 (g D (wo F)] + (1 — wi) A7 [@i D] (w o F)]

3 A7 (D! gD (o Fy).
o<i<j

Hence 4.1.2 is bounded by a constant times

3| o(T)sup r®=7 || L(w)(Q + rNo, 8) I35 50, T

t r<2d0

Eo | A7 D} (wi o F) (,0,1) Mipwp |+ 2 | A7 (Dkgu) (@, ) 2o z0p -

Now set || u]|r,, equal to the left side of the inequality in theorem (4.1.1).
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Since 0 < y <1 by picking a positive number 6 small enough the above
inequality implies that
4.1.3 U, < Clw(T) su = Deu rNg, t
( ) ” “TP ( 260>rl;6 a| 2251 ” (Q + Q) )”LI’(QQT) +
S A=i D S A1 1
-+ ]_5:) “ At D]NQ U (Q’ t) ”Lﬂ 02 + ?}50 “ A Dy (ui o .Ft) (.’I/‘, 09 t) ”LP(ST) .

Set
“““B,p___' sup 2 “ Dau(Q—‘_TNQ’t)”LP(SQT)-{_

20>r>6 |a|=<2b—1

b=1 :
+sup3 3 || A7 D) (w; 0 F) (=, v,

t .
y>0 i j=0 )”LP(ST)

At this point we will point out that we have also shown that 4.1.3
remains true with p = co. This observation will be used in theorem 4.1.5.

LEMMA. Given &> 0 there exists a constant (, such that for all
o
w€ L}, | (Qr) with Lu = 0,

b—1 .
Kz ”B-P <elu|r,+ 081,50 “ A7 Dlj\’Q“ (@, ”LP(bQT) 1<p < oo)

PRrROOF : If not then there exists ;>0 and a sequence {ug}, ;€ IQ,Z’;,I (L21)
such that

b—1 : .
Lug =0, ||t |l3,p =1, and 1> & || s |lz.p +k 2 [| 47 Divg s (@) ) 22 oy -

-]
In our new notation the inequality 4.1.3 implies that for u€ L3, {(27), with
Lu =0,

b—1 .
@14)  wfullz,=0 (a) (@) || ulls.s + 2 | 47 Dkg ||L,,(b,,T)) .

Now, |||

T gl . We claim that in any domain Q* with ©2* c Q the se-
Ip 80

quence {uz] is bounded in L ,(R%). In fact if ¢ (x)€ 05°(Q) with p=1
on £; then

” U @ ”L;;’I/QT)S c ” L(uk (P) ”1;21;’. l(nT)S 0‘?” Uk HT-P'

\
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Hence a subsequence, which we again denote by {u}, converges weakly in
p— o
L}, | (2%), 9* any domain with Q*c Q, to a function u € L , (2F).
Clearly Lu = 0. Moreover by 4.1.4

b—1 . .
” U = “l“'—";P = O( ” U — “l”B,P +j=2'; “A_] DJJVQ(“k—'“l) “LP(bQT)) .

The second term converges to zero as k, [—>co since lim || 477 D}}Q (ue)||ze o
k

= 0. For the moment let us assume || u; — wu|p pﬁo ag k,1—co. We
will prove this at the end of the discussion. Then || uz — u; ||z,,—>0 a8 k, l—co.
This immediately implies that || g — u||z,p—>0 a8 k—>co and that for
0<j<<b—1, lim A7/ (Digu) (@ + Ng,t) exists in L? (327) and equals

r-+0

lim A~ (Dl{rQ ui) (@, t) which exists since || ux — wi||r,,—>0 as k, I — co. Be-

k—oo

cause of the presence of w (T) in 4.1.3 it is not difficult to see that 4.1.3
implies that there exists 7, such that for 7' < T,,, the inequality in (4.1.1)

holds. In fact taking ¢ ()€ Gy (Q) with ¢ =1 in £; we have that

su z Deu rNg,t =
260>P>6 la|=<2b—1 I (@ + e, )”Lp('mf)

= 26?;1};& |a|sz2b—1“Da (up) (@+7Ng, 1) ||LP(OQT)£0” L(“‘p)”LP(QT)SO“u”T,P'

Also

b—1 . . .
jfo | 47 D (s S F) (- 0I5 5y < @ (T) | A7 Dy (s o ) (5, 0,4) || 5, -

By taking 7' small enough the last two inequalities imply that 4.1.2 is
bounded by

b—1 . .
0%‘ w (T) sup =7 || L (w;) (Q47rNg, t) ”LP(bgT) + jé‘o I A_]DJ]VQ (u) ”LP(bgT) .

This implies that for 7< 7T,, 4.1.3 holds without the last summation.
b _
Finally for T<<T, || u||r,<< C’j=21 | A7 Dy (@, %) lzp gy, - This implies

that for the above w, which is the weak limit of [uz}, || |/z,,, =0 and so
u=0 in (2\ Q). But then we L} ; (Qr) and u(x,t) i8 zero in a neigh-
borhood of the boundary (¢t << T,). Hence u =0 in £g,. Now consider the

- 21 o
function wg, = u(x,t+4T,). Once again ||u1-0||To,pg0j§0||A_’D1{rQ (um) ”LP(D.QTO) .
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Since u =0 for ¢< Ty, A~ Dk (un)(Q,9)= 47" Dy (w)(Q,t + T;). Hence
147 D ) llzp gy = |- 477 Divg (@) |10 30,y =<
< lim || 47 (Dirg () |11 g, 7y = O-

So ur, =0 in Qp—u=0 in 2,7, Hence u=0 in Q7. It will follow
from the proof of the fact that | ux — wi|lgp— 0 as &k, I — co that
| ||p,p—> || % ||B,» 88 & —> co. Hence || u|lpp=1, a contradiction.

With the lemma, of course, we conclude the proof of the inequality
in (4.1.1). For the completion of the lemma we need to show :

SUBLEMMA : If || ux||r,p << C and || uz||p,p << C for all k, then there is
a subsequence, again called {wux}, such that || wz — wi||p,,—> 0 as k, 1 — co.

ProOF : First consider su DZ (uy — *No,t .
260>r1;6 I - (u ) (@ + 7N, )“Lp(b.QT)

Take @€ 0" (), p =1 in £2;. The above norm is bounded by

Ol (ux — w) @ ”L;;;.I(QT) < O|| L [(ur — w) ] ”LP(.QT) <

c 2z D (ug, —
= Ialszb—xll (1 — 20 “Lp(ﬂqfv)

where Q¢ c £. Since || uz II,» < 0, C independent of k, a subsequence
2,1

©@p
can be chosen so that the above sum tends to zero as % and ! tend to co.
b—1 : :
Now consider sup 3 3 || A7 D) (pjux o Fi) (-, 9,) 225y, A8 a function of
y>0 i =0
y the above norm is continuous in [0, co) and is zero for y = R, R inde-
pendent of k. So there exists y; € [0, B] such that

sup || A7V DY (giur o FY) (-, 9,) ”Lp(s1)
y>0

is attained at gy . Set f (z, t) = A7 D] (¢ wx o Fy) (&, yi, 7). The function g; uy o F;
has support contained in Dy where D is a bounded open set in R" which
does not depend on %. Let v (x)€ C;° (R" with y =1 in a neighborhood of
D. Now fi=vyfi + (1 — ) fi=gr -+ h. Since |||z, and | u||s, are
bounded in k, || fi|ps,,< C independent of k.



532 E. B. Fases and N. M. Riviere : L?-FEstimates near

CrLAIM : A subsequence of A~! (k) converges in L?(S8y).
Since || fi ||p (s, =< C» independent of k, a subsequence of the {fi} con-

verges weakly in L?(Sz). We again call this subsequence f; . It is not dif-
ficult to see that this implies that the sequence {k;} is a bounded sequence
in L?(Sy) and L*(Sr) and that h;— h pointwise in Sy. By Young’s ine-
quality || A= (hy — R) ||Lp__a ) < O for some 6 > 0 and small.

f[A—l(h,,-—h)]P= f|A—1(hk-—-h)|P+ f|/1—1(hk—h)|1’.
St $1 A7 hg—h) | > & 1A= g—n) | <

The last term is bounded by & || A~ (b — h) ||’};‘ia @)

of k. The first term is bounded by

< 0 ¢% O independent

[ A (e — 1) [|Zoo (g | {1 A7 (e — B) [ > 6]

For ¢ fixed this converges to 0 as ¥k — co. Hence we have shown that
| 471 (e — 1) || p 5,y —> O 88 & —> 0.

CrAmM : A subsequence of A—1(g;) converges in L? (Sy).

The support of g, is contained in Ar= 4 > (0, 7') where A is a boun-
ded open subset of R" Again a subsequence, which we call {gz}, converges
weakly in L? (Sy). Let 0 (x)€ €7 (R*) with 6 (x) = 1 on a neighborhood of A.
The sequence 0 (x) A1 (gx)(x,t) converges in L?(Sz). On the other hand
(1 — 6) A1 (g,) converges pointwise and is bounded by

7’ ! 1 1
v ay 8| gl 5 < F 57 =

|1—6(x)] | A= (x—y, t—s)
/]

This in turn is bounded by e—°!#! gince 1 — 0 (x) = 0 in a neighborhood
of A. Hence by Lebesque’s dominated convergence theorem (1 — 6(x)) A~ (gx)
converges in L2 (Sy).

We have now completed the proof of 4.1.1.

THEOREM (4.1.5) Assume u¢€ Kf’l< i"zb,l(QT) and satisfies Lu= 0. Then
p<Loo

su > rlel _Dfu *No. t
r<§: la]=2b—1 I 2 (@ +rNe, )I|L°°(991v)+

b—1 _ . b—1 —k ok
+kfo | A7 D} u@+ NGt |l o0 ap| = C ,ﬁo”/l Dig (@) |00 5.0,
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PrOOF : We recall from the observation early in the proof of 4.1.1 that
4.1.3 or what is the same that 4.1.4 holds with p = co. (v needed only to

belong to L™,;(L27) for some p,, 1< p, < o). This means that

b—1 o
8l O (I ullne + 2 1| 47 Dhg (@ Ollm pap )
However for ¢ large (1 < q < o),

su =z Dar r*Nog, t)|, 00 c
260>)I‘)>(5 |a|52b~1”( =) (@4 rNg, )”L (SQT)S I W”Lq%,ﬂﬂm)

where @ € 05 (2) and ¢ =1 on £;. Once again

199 s, g = OII L9 sz 0y < Ol 2
Using 4.1.1,
b—1 .
|| ]|z, < ijo | A~ DJJVQ“ (@0 ”LQ(;;.QT) .
For 1 <<j<b—1,

A7 D (s o By = A7 (i o Fi) D (u o Fi)) + §1rﬂpuwomuﬁ4momn
o<i<j
Hence <=

b—1 . b—1 :
3 2| A7 D] (wie F)(@, 0, 1) pon 5y < Co ijHA "Dl u (@, 9100 50y

i+ j=0

b—1 ;
+%§MIWWNQMW

where ¢ is taken to be sufficiently large. Since the last summation on the
right side is bounded by | u ||, 4 it follows from the lemma in 4.1.1 that
for any ¢ > 0

b—1
—F j
| wllsoe<<ellwlzq + Ce ]io |4 ? DNQ u(Q, 1) ”L‘I(QQT)

b—1 . .
<e ” u “1’,00 + Oej—%;) ” A_] DA(’Q“ (Q, t) ”L°°(9.QT)'

THEOREM (4.16) Suppose P, .., Pp_1 € L? (527, 1<p < oo. Then
there exists a unique u(—a;, t) satisfying:

12. Annali della Scuola Norm. Sup. - Pisa.
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i) for any subdomain Q* with Q*c Q, u¢ 1031’2;,,1 (82* )
ii) Lu =0 in .QT

i) lim+<A"'vaQu> (@ + rNg, t) = &;(Q, 1) in L7 (3Qy).
r—0

Moreover this solution satisfies the inequality

b—1
a 2 . —i i
srg)o IaIbe—lﬂ |”Dxu(Q+7’NQ)t)“LP(3,QT) ‘!‘jf(; |4 DNQM(Q—I—qu,t)“Lp(aQT)

b—1
< Cpa jfo | @ “LP(QQT)'
PRrOOF :

Existence. Let {(D}")(Q,t)} be a sequence of functions each in €y (§2><(0,00))
such that 45;") — @; in L? (9f1) a8 k—>oco. We can find u; (;, t) EE%M (L2
satisfying (ii) and (iii) with &; replaced by &. (See [10]. Actually
Uy € lo}” 25,1(@7) for all p,1 < p < oo). Take any function w(i) € 0y (£2). Then

8 4

<C 2 D- y) (D= u, .

Z%0,1(9p) 181>0 1Dz ) (D3 ) ”LP(QT)
|81+ 7 |=<2b

” L4 (';)“k(;; ) “

This last estimate together with 4.1.1 shows that in any subdomain Q*
with Q*c Q the sequence {u;) is a Cauchy sequence in L%, ; (2*z). We
let w (x, t) denote that function which is the limit of u; in L%, ;(2*7) for
any Q* (Q*c Q).

Clearly u(E, t) satisfies (ii). To see that condition (iii) is satisfied we
first observe from 4.1.1 that

b—1 o b1
—i i _ (®) _ gplm)
Eg}") ;YOIIA Dyg (uz “m)(Q'H‘NQ’t)”Lp(ggT)S0],5;” ;" — @, ”LI’(QQT)‘

Now letting m — co we conclude that

b1
sup ,20 | 477 Dy (we—u) (@ + *Ng, )| p 50,y —> 0 88 k—> 0.
r<dy j=

It is easy to see now that A_j-D]iju (@ + rNg,t) — @;(Q,¢) in L? (§2r)
as r— 0.
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Uniqueness. This is immediate consequence of the inequality in 4.1.1
applied to w in the cylinder (£,;)r for § sufficiently small, and then let-
ting 6 — 0 4.

In much the same manner using 4.1.5 instead of 4.1.1, one obtains
the theorem

THEOREM (4.1.7). Suppose D, ... , Py_1€ (92 < [0,T]) with &;(Q, 0) =0
for 0 <<j<Cb— 1. Then there exists unique u (;, t) satisfying:

p— o
3 * e p #
i) for all Q* Q cQ,uEKzf;\QOL (2%
ii) Lu =0 in Qp
iii lim || w (-, ¢ 00 = (0
) z-»o+” (59 || zoe ()

-1 N
. . — j . .
iv) rl—l-I(!Jl+ ji'o | A~ Dy u(Q + rNg, t) — D;(Q, 1) ”L°°(b.{)1v) = 0.

Moreover this solution satisfies the inequality

sup| 3 rlel|| D2 w(Q 4+ rNe, ¥ [|ze0 3o, +

r<d ||a|=<20—1

b—1 b—1
—ind
+j§0 | 4~3Dg w(Q + Ny 1) |00 popy| < Co j__z_o 1 5|00 2

PRrOOF: As we pointed out above the existence of u satisfying i, ii,
and iv follows the exact lines of proof as 4.1.6 using 4.1.5 instead of 4.1.1.
To check condition (iii) we observe first that the indicated argument
shows that

[| % (':t)HLoo @ 95) <[ w(yt) —w(-,?) ||L°°(Q\950) + [l ux (- 7) ”L°° (@\25)?

and this implies ||u(-,t)||L°°(Q\%)—>0 as t— 0 4. Since
0’

-]
N L. (R it foll that li 5 1) |00 0.
we, N B51( Q) it follows that lim [l (-, 9,

(24,) =
(4.2) Non-zero initial data

THEOREM (4.2.1). Suppose u € L}, ;(27), 1 < p < oo, satisfies Lu = 0 in
Q7. There exists y,0 <y < 1, depending only on L, such that
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lal @ _
r<in [Ialsz;b—l” %" (@ 4 Vo, ) D5 w (@ + 1N, 0 llzrpax o,z

b .
+j§1 I A"DJ]VQ“ (@ +rNg,?) ”Lp(D.QX(O.T)] =

b : —
< Gpa| 2 1 47Dk u(@ Dllm om0 1y + 145 0 oo

PRrOOF: We may assume the coefficients of L are defined in all of
Rnt1 >< [0, T] are bounded and measurable and that the coefficients of

highest order are uniformly Hélder continuous. We let W @,t;M, s) denote
a fundamental solution for the initial-value problem of L as constructed
in section (3.3). More precisely :

W (@, t; M,s) = Iy, (x — M, ¢t — ) —|—f fl’w,,(-.;—w,t—fr) D(w,r; M, s)dw dr

0 pgntl
where for ¢t > 8 P (w, r; M, s) satisfies the integral identity

L; Tua(m Mit—s8) =— P (x,¢; M,s)+

2
+/ fL;_t(I’w,, (®— w,t — 1)) D(w, r; M, s) dw dr.

8 pntl

Here L. ,= 3 a,(%1)D;— D;.
la| =<2

We let W2 (2),0<a<1, 1< p<oo, denote the space of functions
f (@) defined on Q such that 7€ L?(Q) and f 1O =@ i dy < oo,

2 b |;__Z/|n+l+ap
Since w € L}, | (Qy) it belongs to L3, (2g) for 1 < g < p. It is known that
u(;, 0)€ Wq 2b (Q),%—}-qi,: 1. Since we may assume ¢ is near 1 and
'y

hence 2—’,’— < 1, it is not difficult to see that we can extend u(a—r, 0) to a
q

function having compact support in R»+1, belonging to Wq 2 (B*t1), and

’

whose L?-norm over R"+! is dominated by a constant times the L?-norm
over £ of u(;, 0). We will denote the extension also by u (x, 0).
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Now set u, (x, t)=fW(;,t; M, 0)u (M, 0)dM. For q near 1, u, € Ly 4

Rrn+1
(R*+ %< (0, T)). Clearly Lu, (,t)=0 and

” uy (-y8) —u(-,0) ”Lq(ﬂ)__) 0 as t—0.

The function » — u, eigb,l(g < (0, T)). We leave it to the reader to
verify that there is a y,0 <<y <1 such that

lal|/2by, pa
sup > t ?D>u, (@ + rNg,t +
r<i lal<sh 1|| z 1 ( @ )”LP(OQT)

b—1
+j£0||11"11)1’v9u1(Q-l—"NQ,t)lle(aaT) =

< Cq ||u (@, 0) |5 g and thatrlilzl_’_ A= Dfu,(Q 4 rNe, 1) exists in L?(32x).

With w given in Lj, ,(27) the latter limit also exists for u. Since 1 << ¢<<
<p lim A~ Dhy(u — u,) (Q + rNg,) exists in L?n L (§2q).

r—-04
So by the uniqueness of 4.1.6, u — u, = u, satisfies the condition of 4.1.6

for p. The estimate in 4.2.1 follows from the estimate for u, given in
4.1.6. and from the above estimates on w, .

THEOREM (4.2.2) Suppose &P,,.. P,_; are given function in L?(§«2y),
1< p< oo, and h(.;)ELP(.Q) Then there is a unique u(;, t) satisfying,

a) u (;, t) € Ly, 1,100 (21)
b) Lu= 0 in .QT

9 lim lim 3 || 4~ Dhylu(-y+ )(Q + rNo, 8 —

r—04+ e—»04+ j=0

— D;(@, t) [|Lp(agT_.) =0

d) for each subdomain Q*, *c Q,‘ li(I)I-li_ || % (@, &) — h (@) lz? @4 = 0.
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Moreover, for the same y as in 4.2.1, this solution satisfies the inequality

sup
r<dy

> lH (@1 Dz u) (@ + rNg» 9 lzp o0,y +

la|<2b—

b—1 o

b—1 : —
= 0o 2| 47 D (@, 8 s pagy + 11 101

PRrROOF :
Existence: By extension we may again assume that the coefficients of L
are defined in all of R*t!>< [0, T], are bounded and measurable there, and

that those of highest order are uniformly Holder continuous. Let W (a;, t, M, s)
again denote a fundamental solution as described in the proof of 4.1.7.
Let {hy (x)} denote asequence of functions with hy € 05 (£2) and hy — h in

L7 () as k—> co. Set uy (@ ) = f W (@,t; M, 0) hx (M) dM. By theorem
2
41.4 there exists a unique wu) satisfying conditions (i)-(iii) of 4.1.6
with @; replaced by &;(Q,t) — A~ D}VQ uy, 1 (Q, %) Set up = ug x + uy, i -
(o] —_—
For p, near 1, tu; € L3 ; (R*H! < (0, T)) and since L (uy, z) = 0, tu, (2, t) =
t

= A= (E-— M, t — 8)(T (uy,5) (M, 8) dM ds where T is a bounded ope-
0 Rn+1
rator on LP(RT'I), and A—2 (x,t)= F: (e~ 1€ 1°°t) () (see [4]). Since u; —> Uy =

= f W (x, t; M,0)h(M)dM in L?(R*! < (0,T)) as k— oo we conclude
2

that u;,x converges in Lg { (B*t! < (a, T)) for all a,0 <<a < T, to u, (70, t).
Moreover

b—1 o

SZI; _20” i -Dl{’Q (w1, — u1,0) (@ + rNg, 1) ”Ll’(bQT) =0 ” b — I ”LP(_Q) .
r o )=

Hence for each 0 <<r <d,, A~ D’ij (u1,x) (Q + rMg,t) converges in L?(58r)

as k— oo for 0 <{j=<<b — 1. Also this limit equals A~ (Df,u,) (@ + 7N, ,)
which we will shortly see belongs to L2#(6£2 < (0, T)) and which itself

equals lim X, 7y A7 Df, (u, (P + rNp, s + ) (¢, #), the limit taken in
e—0
L?(9L27) .We accept this last statement for the moment.
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o
As in the proof of 4.1.6. the sequence {uj, ¢} converges in L (97)
for each Q* Q*c Q. Moreover for r <,

S || dlel(Q + rNg) D2 ug,x (Q-l-”NQ»t)HLp(aQT)"'

la|=2b—1

b—1 .
+ ﬁ(‘)l Vi Dl{’Q“O.k(Q + rNg, 1) ”L?(a_qz,) =
b . j
=0 Jix | @5— A7 Divgtis k[0 pax 0. =

b
=C j£1 H qji“:,?@gx(o‘r)) + “ ha HLP(_Q) .

Hence the same inequality holds for u, with h replaced by h.
Now set u =ty + 1, , 1€ L% 1,100 (27) and

|| 47 Dirguq (@ + rNg, t) — (B — A7 Dirgu) (@, 1) [ 55, —>0 88 70+

From this fact and the above statements on u, we see that u satisfies con-
dition (c). _ _

For the function u, we already noted that || %y (, t)—h("")”m’(g) —0
as t — 0 4. However for the function wu,(x, t) we can only say that for
each Q*, Q*c Q, ¢EI;]+ || o (@, t) ”LP(Q*) =0.

This completes the existence proof of theorem 4.2.2 together with the
estimate except that we must show now that for j<<b—1,

A7 Dhyu, (Q + rNe, 9 € L (62 < (0, T))

and = Tim A7 Dy (uy (-, - 4 ) (@ + Ve, ) Xo, 19 ()

§—>0
the limit taken in L? (9 < (0, T)). This follows from the following lemma.

LEMMA. Suppose f(Q,t)€L? (82 X (o, T)) Va, 0<a<< T, and for
some k < 2b

£(Q,t) 7 ¢ L? (32 < (0, T)), 1<p< oo.

1 2b 1
Recall 1 — — <————(l——) if 1< oo and o,=1).
( p<7p % — 7 7 r< 4
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Then A—*feL? (952 ><(0,T)) and“A_kf”Lp(agx 0, 1) = o tYPklzbf”LP LX(0, T)) *
Also for 1 <<p oo, A7Ff= hm A7 (f(Py s + &) (@, t) X, 17— () in
L7 (3Q > (0, T).

PROOF : By use of a partition of unity to show A—*feL? (82 < (0,T))

it suffices to show this in the case of Sy= R" > (0, T'). So now f=f(x,?)¢€
€ L? (8, 1), for 0 < a < T, and 72 fe L? (Sy).

| A=* 1 (- HLP (R™ S[ s)l—k /20 £ ”LP(R") ds

120
S_/ ——k/2b ypk/2b(sy / lf (- ”LP(R")) ds.

From the conditions on y, it is easy to see by Hardy’s lemma that

k/2b

|47 Fllmsyy < 107 Fllgoisy -

For the second part of the lemma we observe that for ¢t << T — ¢,

A7F(f(Pys + &) (@, 1) = (47" f) (@, t + &) + E. (f) (@, ) Where

R (1)@ 0 =2 wu(@) f f A=t (0t 8) (9if o ) (2 5) dz ds (@ = F (@)
0 R"
Now

|| R (f) (@) ||LP(bnT_.)

£ I—s¢

dt 1p
=¢ «2[ ( .[(t + e—s)(l—k/%)z') [wif) o Fi- 9) ”L"(R")) o
0 0

e 1 k[20
=0 ?f (6 — )\ JP—HED gryHfeD $? (@i o F) (5 8) || oam) 98

Now by Holder’s inequality and the condition on y,, || B.(

J) lleagx(o, 1—e) >0
as ¢— 0 4.



the Boundary for Solutions etc. 541

This completes the proof of the lemma. The application to u, (x, ) is
immediate once one observes that

> ” typlallzb

|a] <20—1

D;; uy (@ + rNg, 1) ”Lz’(ng(o, T)) =Y ” h ”LP(,Q) .

Uniqueness. We consider the problem as described in a — d with zero
data. In the cylinder £, < (0, T — &), % (%, t - &) € L*y, ;. From 4.2.1

,g}goﬂ w(Q 4 rNo, t+ &l 1opax0, 7—e

b—1 : —
<0 z | 47 D (w(-y - + ) (Q 4 0N¢, 9 |popa,_, + 1@ &) [l ingy)| -

Now let e—> 04 and then 6—> 0-, and we conclude that =20 in
Q5,0 2)x(0,T) (2 = complement of £). By extending u to be zero

outside Q we then have u € L%y 1 (R"™ < (a, T)) for all a, 0 < a < T and
satisfying the conditions Lw = 0 in Rl > (0, T) and || u(-,?) ||L,,(m—> 0

as t—0. So for 0 <<t T —, u(.;,t-{—e)=fW(;,t+e;M,0)u(M,e)dM.

R1
Letting ¢ — 0 we see that w = 0 in R"+! > (0, T).

THEOREM (4.2.3). Suppose u € 1<ﬁ< L%y (Qr) and satisfies Lu = 0.
p<Loo
Then

lal p*
sup MSZ%_I | (e’ D7) (@ + rNe,y ¥) [|1oop0p

b—1 .
—I——jﬁ || 4 jDz’vQ“(Q + rN¢» ) [l zopag

b—1
— j —
é O.Q _750 ” A ]—DNQ w (Q} t) ”Lm(bﬂT) + ” u (wi 0) ”Loo(g) .

ProoF: From the uniqueness part of 4.2.2 and from the existence
proof in that theorem, w (z,t) = wu,(x,t) 4 u, (x,t) where u, (x,1) =

= f W (x,t; M, 0) u (M, 0)dM. It is not difficult to see that u, satisfies the
e

above estimate with right-hand side including only | u (=, 0)||L,,°(Q) . The
function u, (x,t) satisfies the conditions of (4.1.5) on (£2,)r for each 4, 0 <
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<8 < 48,. We now apply the estimate in 4.1.5 to u, with Qr replaced by

(2s)r and then let d— 0 4. Since for 0 <<j <<b —1, 11"’1)&Q uy (@ + 0Ng, ?)

= A~ D];rQ (v — uy) (Q + 8Ng, 1) we pave that the L*-norm of thg left side

over 92y is dominated by Oy [][A_’Dl{rQu(Q—}-éNQ, t)”L°°(b.QT) + || (=, O)HLm(m].

Since u € < ﬂ< L} | (2r) the first term converges as &—> 0 + to
p<oo

I A_jDz’;rQu(Q: t) “L°°(bar_p)' This completes the proof of 4.2.3.

THEOREM (4.2.4). Suppose D,,.., D,_; are functions belonging to
C (692 [0, T]) and & (x) belongs to O (2). Assume h(Q) = D,(Q,0), Q€ 2,

and that &, (Q,0)=0, 1<<k<_b— 1. Then there exists a unique wu (,?)
satisfying :

@) w(@t)e N Lh 1 (2r) and Lu=0 in O,

b) lim lim | A7* Dy (u (s 4+ ) (@ +7Ng , ) — Pe (Q,8) [l g0, , =0

0<<k<<b—1,
o Jim [l (5,8 —h@)|zmg = 0.

Moreover this solution satisfies the inequality,

sup| I |[(ak! D:; u)(Q +rNg, 1) ”L°°(69T)

r<do [|a]<20—1
s O A,y
+ kfo | A7 Dyyu(Q +7Nq, t) “Lm(bgT)}
b—1 .
< o | Mlgmiay + 2. || B lmonp|

PROOF: The uniqueness follows from the uniqueness in 4.2.2 for if
(a)-(c) of 4.2.3 hold then (a)(d) of 4.2.2 hold for any p, 1 < p << oo.

We begin the existence proof by again extending the coefficients of I
to all of R*H > [0, T] as in 4.2.2, and we again let W (v,t; M, s) denote
the fundamental solution described there. We extend h(E) so that h(x)€
€ C, (RrH),

Set u, (x, t)=fW (,t; M, 0) 1 (M) dM. u, (w,?) is continuous on Rm+1<[0,T']

_ Bt _ —
and w, (¢, 0)="h(x). Since w, (»,t) is uniformly continuous on £ < [0, T'],
[ oy (-yt) — B () ”L°°(Q) —0 as t— 0 4.
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For €2 n Q (825, = E"1\_£,,) and for 1 <<k<b — 1 we can write

A7* Dy, (@, 1) =fh(M) Wi (@, t ; M, 0)

R+1
where

Wi (2,85 M, 0) = A" (D} (W (P + rNp, 55 M, 0) (Q, 1), 2= Q + rNg.

The following properties of W (x, t; M, o) are easily verified. (1<<k<<b—1)

|2 — M|

i)IWk(;at;lmo)ISlP( T )t—<n+nl2b

ii) fWk(E,t;M, 0)dM\—+0 as t— 0+ uniformly for x € Qj n Q.

r+1

With properties i and ii it follows that for 1<<k<b—1,|A™" vaQ U, (@, )| —> 0
as ¢ — 0 4+ uniformly for x € 2 n Q.

Now set wi (@ t)= A" Dyyu,(Q,t) 0<k<b—1. From Theorem
(4.1.7) there exists wu, (.;, t) satisfying the conclusion of (4.1.7) with data
D (@, 1) — v (@ 1), k=10, ..., b — 1. (Note D, (@, 0) = h (Q) =y, (@, 0)). The
function u (z, t) = u, (&, f) + u, (x, ) i our desired function.

5. The elliptic estimate.

In this section we let = 3 a, () D:l and we assume that € is
|a| =20

strongly elliptic, i. e. £ — D, is parabolic in the sense of Petrovsky. About
the coefficients we again assume that @, is bounded and measurable in £

and that for |a|=2b a, is Holder continuous in Q.

THEOREM 5.1. Suppose u € L%y (£2), 1 < p < oo, satisfies Cu = 0. Then

b—1
lal || pa (i
§1<1£ |a|5.22‘b—1 r ” Da—:“ (Q + TNQ) “Lp(bg) +j50 “ G] (DNQ“) (Q + TNQ) ||LP(OQ)]

b—1
= 00| 311 6Dho )@ oy + 1 g

PROOF: The proof follows the same line of argument as 4.1.1 except
that the half space estimate used is (3.5.3). If we proceed in this manner
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we arrive at the conclusion that the left side of 5.1 above is bounded by
a constant times the right side plus the term

5.2) ..C 8 2 D rN
(5.2) @ 2r)o>u7'1;6 la] 5211—1“ @ v (@+ ) ”I’p\bg) +

b—1 N
+2 31 @i D 0 F) @0 lgagn

(us = piu).
Now suppose ¢ (x)€ Cp° (2) with ¢ =1 in £, . Then since Cu=0

sup z Dg u(Q + rNy) ”Lp(bm

200>r>0 |a | < 20—1

= su z D? (pu rN,
r<2£ lalszb_1” a:((p )@+ “?)”L"(bﬂ)S

< Ol 9ulm, 0 < OLIE @D gy + [0 ]lpg) < (s0e 2]

Ces > 8Dk N, C,
= 1'2}: IalS?b—lr “ z M(Q—I—T Q) ”LP(OQ) + ” u ”L‘(Q)

&

Denote by || u||o,, the left side of (5.1), and set

b—1 .
“ w ”B-P == sup 2 ,2 ” Grj Dy’ (w; o Fy) (@, y) ”Lp(gn) .
y>0 1 j=0

We have shown that
b—1 :
“ u ”-Qvl‘ = Oq jfo ” Gj DJJVQ u (@) ”Ll’(b[)) + ” u ”1;1(9) + “ " ”B,p :

LEMMA. Given ¢>> 0 there exists C, > 0 such that for all ue€ L% 2 (£2)
with €u = 0 in Q we have ” u ”B,p <e ” u ”Q'p —l— C, ” u ||L1(Q) .

PROOF : Assume that the lemma is false. Then there exists & > 0 and
a sequence of functions {uz} € Lfy (2) such that Luz =0 in Q and 1>
= ¢ || wr llao + K || i [|za -

Take ¢ (z)€ 0;°(2) with p =1 in £,,. Then

“ Ur ¢ ”Lpzb(g) = 0[ ” ¢ (uz ‘7’) ”Ll'm) ‘l' ” Ug ’lLl(Q}] (see [2])

< Cs, [ || w |2, p + || e |le)) < O, independent of k.
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Hence a subsequence of the u; which we again call u; converges weakly

in L%,(2* for all Q* with Q*c Q to a function u (x). For each Q* as
above, || ux |[zex —> || % ||z@y. So || ||me+ = 0 and hence u =0 in L. But
in the same manner as in 4.1.1 we can show that if || u|lo,» + || % |5 p
is bounded independent of & then there is a subsequence, u;, such that
|| x — ||, — 0. However this implies ||ux — % ||p,—> 0 as k—> co and
hence || % ||3, =1, a contradiction since u =0 in Q.

THEOREM (5.3). Suppose u € 1<f)< L?, (Q) satisfies Cu =0 in 0. Then

b—1 .
sup 3 rlel || Dru(Q 4 rNy) ”L°°(D.Q) + j§o || &; DI{rQ u(Q+ rNg) ”L°°(D.Q)}

r<dp || a]| <2b—1
b—1 j
< 02| 2 1|6 Do (@ lyspey + | 41| -

Proor: We first observe that 5.2 holds when p = oo and then to
finish we proceed as in 4.1.5.

APPENDIX

(A.1). Estimates on the parametriz.

Let L= 2 a,,DZ,y — D, be a parabolic operator with constant coef-
|a| =20
ficients. Set A ()= I a,(t£)* and I (x,y,t) = F: (eA®)t)(x, y). Finally set
|a|=2b

¢
k(x,y,v,t) = f f AT DE D (@ — 2,y,t — 8) T(A™ DJI')(z,— v,s)dz ds where
0 gpn
T is a (translation-invariant) p.s.i.o. and 0 <j<<b—1, 0 <k <b—1.
From known estimates on the derivatives of I" (see [7]) it is tedious
but not difficult to show,

THEOREM (A.1.1). For y >0 and v > 0,

D%y, DK t 2]y, (¥ v )
| Dz,y,» Di K @,9,00) | <v|um ) ¥ 7w | ¥ 7w .
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Recall that
b—1

Go(@,y,058) = 3 f f AP EDE M@ — 2,9, t — 8) Ta (A7 DiI)(2,— v, 8)dzds.

k, j=0

An immediate corollary of A.l.1 is.

THEOREM (A.1.2) Estimate in A.1.1 holds for @G, (x,y,v,1).
Recall now that for 0 <<j<<b—1,

gip (@, t)=1im 4 JDJ[hmD (L@, y—v,t)— Go(x,y,7,1))].

y -0+ v — 04

THEOREM (A.1.3).

- I
|Dth gj,b(wy t)|Sw(t1/2b) ¢ ® ‘

ProoF: The function lim A'ij[lim DY (=, — v, t)] satisfies the
y -0+ v—>0
estimates of (A.1.3). From the formula for &,

lim 4 ’D,,(hmD @, (%, ¥, v, t) = lim (—1)» 4™ DI’ '@, — v, 1)
y—0+4 204

and hence satisfies the estimate in (A.1.3).
Now that A.1.3 is established it is straightforward to prove.

THEOREM (A.l.4). For v > 0,

D? Dl[' 1. le L t_n+l+2?)+| l—l.
| Dz, » De[gj,v% Dy (=)@ t) [ < ame | ¥\ e

Now recall that

@00 = 2 f [ AP DE a2, y,t— )T (050 +

k, j=0

D¥I(, — v, +) (2, 8) de ds.
From A.1.4 we have,

THEOREM (A.1.5) For y > 0, v> 0,

n+1+b+ lal
a 1 x y v -|-l>
| Dz,y,0 Dt Go(@,9,v,1)| < v (Ll/?llz) L4 (p/?b) ¥ <t1/2b)t
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Finally recall that by induction on /,0 <1< 2b— 2, and for j=0,...,b—1,
we defined

95,041 (%, ) =lim 477 D} lim D}V (I’(x, y—0,t) —
y— 04 v—» 0+

-1 oo+
— Gy(z, y,v,8) — 2 Goyr (@, 9, v, 1) T !)
and

b—-l

Gori(@yy, v,t)= . 0_[_[ 2b—l_kD y (@ — 2,y,t — r) T}, j(g;, bl *
j—

*DX (-, — v,4) (2, 8) dz ds.

THEOREM (A.1.6). The estimates in A.1.3. and A.1.5 with b replaced
by b4-1 hold for gj 34 (%, t) and Gy(x, y, v,t) respectively.

PRrROOF: We proceed by induction on I. A.1.3 and A.1.5 form the
case | = 0.

9,41 = C lim A7 DT M@,y t)— lim A~ D]1im D @, (&, y, v, 1)
y—~0+ y—0+4 v — 04

-1
— 2 lim A7 D} 1im D™ Gy (2,9, v, 1)

k=0y— 0+ v—»o

= Clim A7 D™ M@, y,t)— © 11m A7 DY M (@, — v, 1)

y—0
gy 20—1
— 3 lim Dy g5, 045 Dy I'(— ) (&, 1)].
k=0 v—~0+
So the estimates follow for g; »4:(x,t). Same argument will prove that A.1.4
now holds with b everywhere replaced by b -4 . With this established
the desired estimate for Gy4i(x,y, v, ?) follows.

(A.2) Poisson kernels.

In this section, as in (A.l), we consider a constant coefficient para-

bolic operator L= S a, Dj
|a|=2b

tion I'(v,y,t) as defined in (A.1).
Set

— D;. We will use the fundamental solu-

b—1
w (@, y, t) =k§0ffA2b“l_k_l Df,"'k (@ —z,y,t — 8) Tk ; (D) (2,8) dz ds

0 gn
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where T}, ; is the p.s.i.o defined through the symbol relation,

(0 (T, 5) (2, 1)~1 = (0 (8, 5) (%, 1))
and

6 (Sk, j (&, t) = (| |0 — it)—i—k—D)[20 (]5 :@—C)Ij—j— ac (see 3.2.2).
I Y Aiw, iC) + it '
Here 0 <<k<b—1and 0<j<<b—1.

THEOREM (A.2.1). |u (2, y,1)| < O || D; ||L°°(ST), C independent of y > 0.

PROOF : May assume P;€ 05 (R" < (0, co)).

Fo,s (W (2, 9y 8) (%, 1) = H (2, y, t) F(D;) (, ?)

where
2b—1—k—1 (_ ic)l'l-k e'—i!lc

b—1
H (z,y, t)=£0(|wlzb —if) ¥ A iz, i) F i ds o (T, ;) (=, t)

(A.2.1) will be complete once we show the following :

LEMMA (A.2.2). H(2,y,t) = F, s (k(2,y,8)) with f fl (& (2, 9,7%) | de dt << C,

Zo gn
C independent of y > 0.
PROOF :
flk(w,y,t)[dwdt= f | & (2, y, t) | de dt 4 f | (x,y, )| de dt
|z 4+t <y 2|+t >y

=14 I

I <y»+? | | H(x,y,1)|dedt. It is not difficult to see that |H(z,y,t)|<<

< Ae—cU=I+1t1""y  Hence I < C independent of y > 0.
To handle the second integral let us first assume that we can find
numbers p and % satisfying 1 <<p<2, k= 2bm, m a positive, integer,

and ~ p2b<k<ﬁ_‘£ﬁ+1. Then

—kp\1/p 1 1
tr( [ ol 1o )T I 900 iy e =1

P
Il 41 e1/2 >y
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So by Riesz’s Theorem [11,11]

nt2 .
II<0y* [ —Zzbm”D:H(w’ Yt) HLP(RM-I) + Di" H (z,y, 1) ”L?(R”"‘l)]'

la]

a "t
We will show that || Dz H(+,9,) [|pgnty,<<Cy *? , |a|=1k The term
involving differentiation in ¢ is handled in the same manner. Now

(f |D§H(x,y,t)|1’dwdt)1/1"£0( f (|w|+|t|1/2b)—kﬁ)l/ps

Jo i+ > 1)y lz|+ 1t >1py
p o
<Cy P, (Recall kp > n 4 2b).

Since H (v, 0,t) = 6;,;, we have

b—1 2—1—j—1 (— ity [e—wt —1]
ot j— * 20 g 20
D H (w, y, t) kfo D, <( |2 it) A (iw, i) + it

Hence if |x| + |t|?<y~!, then |D;H (z,y,t)| < Cy(|x]|-4|¢[/2)~F+
and therefore

ds G(Tk,]’) ({t, t)) ¢

1p 2%
( f |D§H(w,y,t)|1’dwdt) —0yy "7 since k—1< T2,
Vo |41t <)y
We conclude that II << C, independent of y > 0.
Our proof is complete once we show the existence of k = 2bm and p,
n -+ 2b n -+ 2b
4; <k< ————; 1.
First write n=2br +s, 0 <<s < 2b. We want to find m and p such
8 8
r+ 1)+ 55 r+D+355
r14 % r414 %
————— . Then 1<<p, <2 and ——
r+1 o Py

1 < p < 2, satisfying

Take m = (r +1). Set p, =

rtltg
=r—|—1<—————p~—~ % Now take p=gp, + ¢ for ¢ >0 and small
1
r-l—l-{—gb— r+1—|—£b— 1
enough so that ——p—< rl1l<—4——

P 2b °
(A.3). Relation between G and A% .

13. Annali della Scuola Norm. Sup. - Pisa.
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THEOREM (A.3.1). Suppose f(r)€ C;  (R"). Then for 1< p << oo,
” Ak (f) (w7 t) ”LP(ST) = 01 ” Gk (f) “LP(Rn) . (FOI‘ T< a, OTS Cu)-

PRrOOF : The result is obvious for k= 0. For k> 1,

; —|x|2b3
Fu(47* (1) @, B) (0) = ( f e ds) F(f) @)

0

Let ¢ (x) € 05" (R") with ¢ (#) =1 for |#|<<1 and =0 for |»|=2.

[ — 2|2
Fo(ATE(S)) 2, 1)) () = (1+lw12)"/2f ° T2 dS]qo(w) F(Gr f) () +

si—
0

r _|“|2b3

+ a4+ [x|2)k/2/%‘72b_ds](l—q)(w))?7((h(f))(w)=
) 0

= H, (x, t) +- H, (x, 1).

It is easy to check that H, (x,t) = F (¥, (2, t)) (x) with f |y (2,t)| de<<Cr(t<T).
y

Now set y () =1 — @ (x). Then

2

1\ 1 \*2 2 and
Hz(x,t)=0(l+w) 'P(-”)“‘(l'l"w—lé) Wv)f premvAl

t|x|2b
1 \¥2 1 \k2 7 e
‘|w|2b
e—‘
- S1I—F2 ds.
tl‘”l?b

The function [(1 -+ I—wl—l—2>k/2y) () — 1] = F(k) () where k ()€ L (R").
Set

H, (2) =[ o ds. F (Hy (28112)) () = t—2 F (Hy) (—{:— 1/2b) .

g1—k[2b
| % i%
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So to show that H (wt!/?) = F, (k3 (x,t)) with f | g (2, t) | d&e << O, it is suf-
R"

ficient to show that H, (x) = F (k;) () with f | kg (%) | dw << oo. Since Hj € L',

| k3| dr << 1. By Riesz’s theorem, for 1 < p < 2,

jo| =<1
1 \i»
[ite=o( [ oo 2 19 Bl
17]=1 1% =1 =
For |z|=1 |D“Hs(w)|ge—°|”l2b, and since |a|=mn,
for |x| <1 | D> Hy (@) |<<c¢ ||t~ Hence for |oa|=mn,

D* H, € L? for p near 1.

THEOREM (A.3.2). Suppose f€ 0 (R"). Then for 1<<p=<<oo, || G+(f)||5» zn
< Co, 1| 47*(f) ”LP(Sa, » where 0 << a < T. (8, r= E" < (a, T')).

PROOF : Again may assume %k > 0.

1 1 _
F (G (f)) (@) =m?:)m F(f) (@) = Hw.0) (L [« PJE F (AT*(f) (2, 2)) ()
where
tlm|2b
e—u 120 e
H(z,t) = — i ———ds = | |—k/ 8_IT/%ds.
Set ’
lim (H (z, t) (1 + |« |**?) =[ i 48 =C0>0.
|@|— o0

0

It is not difficult to check that for 0 < a<<t<<T, H(x,t)= C,, r when
|#| <1 and that | DF H (x,t) | < Ca,q,2(1 + |@[)E+I2D2. Now set @ (x,¢) =
= [H (%, %) (L +|=*)¥?]~" . For each t€[a, T| G (v, t)€ 0= (E") and “/¢€[a, T

| D2 G (@, 1) | < Caya,z(1 4 | 2y '" .

Let ¢ (#) € O5° (R") with ¢ (#) =1 for |2|<1 and set y () = (1 — @ («)).
Then G (x,t) = ¢ (%) @ (¥,1) + v (@) G (¥, 1) = G+ G5. Gy (@,t)=F(k; (%)) (@)
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and f| ky (%, t) | @ < C4, ¢ provided 0 < a<<t<<T. G, (v, t) vanishes for |¢|<1
Rﬂ
and lim @G, (z,t)=1/c.

le——oo
CrAamM. G, (x,t) — 1/c = F(k, (2, t)) (x) where f | kg (@, t)| dw << O,, 1 prov-
"

ided 0 < a<t<T.

Ca,
PROOF : For |x|=1, |k, (x,t |g (a<<t<T), and sof|k (2,t)| doe <<

RM

ln+l

< C4, 7. By Riesz’s theorem for 1 < p < 2,

1 1/p N
[lmotass( [ ] 2 1 6

=n—
lz| <1 || =<1

For |#|<1and |a|=n—1,|D; Gy (x,t)| < C4 r|a |+ and for |a|>1,
|2

| Dz [Gy (@, t) — 1/c] | < Cu, r| x|~ (To see this write @, (v, t) = a—m

t| |20
et —1
( f pye ds) ) Hence

0
near 1.

| E 1” Dz Gy(-,1) HLp(Rn)S C,, r provided p is
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