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LP-ESTIMATES NEAR THE BOUNDARY

FOR SOLUTIONS OF THE DIRICHLET PROBLEM

by E. B. FABES and N. M. RIVIERE
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Introduction.

In this paper we consider solutions of the initial-Dirichlet boundary
value problem in the cylinder, S~ x (0, T), for parabolic equations of order
2b, and solutions of the Dirichlet problem in the domain Q for strongly
elliptic equations of order 2b. (b is any integer &#x3E; 1). The coefficients of

each operator in question are assumed to be bounded and measurable and
in addition those of highest order are taken to be Holder continuous in the
closure of the domain of definition.

For the parabolic case we estimate the LP.norm (1  ~ of the

solution, u (x, t), over all lateral surfaces near and parallel to aS~ X (0, T)
= boundary of S~) by a constant times the sum of the LP-norm over

S~ of the initial value, u (x, 0), the LP-norm over aD X (0, T) of u, and

certain  negative &#x3E;&#x3E; norms over aSZ X (07 T) of the remaining Dirichlet data.
In the elliptic case we estimate the .Lp-norm of the solution, u (x), over

any surface near and parallel to aS~ by a constant times the sum of the

Pervenuto alla Redazione il 28 Gennaio 1970.
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-L.P-norm of u over negative » norms over aS~ of the remaining Dirich-
let data, and the Li-norm over S~ of u. (See statement of theorems in sec-

tion 2). For elliptic operators one of the inequalities we state (theorem 5.3)
was announced by Agmon in [11 but there the coefficients of highest order
were assumed to have derivatives up to that order continuous in S~.

The estimates in the parabolic case allow us to prove existence and

uniqueness results for the initial-Dirichlet problem when the restriction of

the solution bolongs only to ~~ (theorems 4.1.6, 4.1.7, 4.2.2, 4.2.3).
Section 1 of this paper is concerned with defining the type of opera-

tors which will be used in the statements and proofs of the results in this
work. Section 2 states the main results of the paper. These results are

proved in sections 4 and 5. In section 3 we examine the problem in the

half-space and obtain the necessary estimates for sections 4 and 5.

1. Basic definitions.

(1.1) Definition of parabolic singular integral operator, symbol, and the
operators A-k , 2 on Rn X (0, T).

In this section and elsewhere we will denote points in Rn by x, z, or

w and positive real numbers by t or s. If f and g are measurable functions
defined in some Euclidean space we denote by f * g the convolution of f
with g and by ~’( f ) the Fourier transform of f. For a = (L-t 1 ... , 2 a7t), aa

non-negative integer, we set and

DEFINITION. A parabolic singular integral operator (p. s. i. o.) has the

form

where a (x, t) is bounded, uniformly continuous on ST, and k (x, t ; z, s) satisfies

satisfies
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means Fourier transform only in ~)

with ~.a and Ba depending only on a, and

where lim OJa (b) = 0. 
’

8 -. 0 -~-
Under the above assumptions on the kernel the limit in 1.1.1 is known

to exist in LP (ST) 1  p  oo. In this paper the functions a (x, t) which
arise will satisfy a uniform Holder-continuity condition in 8r and cva (8) ~

by where y is a fixed number satisfying 0  y  1.

(1.1.2) DEFINITION. We will denote by gp (ST) (1 oo) the class
of operators J mapping LP (ST) --~ .Lp (ST) and satisfying for any a ~ 0 ; if

X(a, b) denotes the characteristic function of (a, b), then

where

uniformly in

If an operator S is of the form 1.1.1 we define the « symbol of 
denoted by o (S) (x, t ; z~ s) to be the function.

the above limit existing for (x, t) E ST and (z, s) # (0, 0).
Throughout this paper we will rely on the results in ([4], [8]) relating

the notions of a parabolic singular integral operator, its symbol, and the
operators gp (ST).

In this section we also want to define an operator (k &#x3E; 0) which
will act as a  fractional &#x3E;&#x3E; integration operator for functions defined on ST.
We will also define its inverse, denoted by A7’.

We begin by using the fundamental solution of (- 1)6 Lib -~- Dt (A =

= ~ Dx~) defined by T(s, t) = ~’ (e- Z 12bt) (x) for t &#x3E; 0 and 0 for t s 0.
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~1.1.4) For k &#x3E; 0 set where 7’ ( .) is the

gamma function.

It is not difficult to see that A-k (x, t) E cS’ = space of tempered
distributions on and that for k a positive integer ~ 2b, the Fourier

transform of in the distribution sense is ( ~ X 12b - it)-kl2b (see [5]).
For a given g E Lp (ST), 1 S ~  oo, we set

We define ~1° to be the identity. The function u (x, t) = d-k (g) (x, t) has
the property that for 9 E LP (8T), 1  p  oo, Dx u (x, t) E LP ST) for a 
and Dt (u) E LP (ST). In fact this last statement characterizes those

functions u (x, t) E .Lp (ST) for which u (x, t) = A-k (g) for some g E LP (ST)
(1  p  00). (See [5]).

Now for k a positive integer S 2 b we define the inverse to the ope-
rator A-k, denoted by by

where K4 is the p. s. i. o. with I and

is the homogeneous polynomial of degree 2b - k defined by
The operator ~.k is well defined on functions

(= space of rapidly decreasing functions on which vanish for t C 0.
For such functions f it is easy to see that

(1.2) Definitions of and A k on aD X (0. T).
Throughout this paper Q will denote a bounded, smooth domain in

Rn+l. More precisely we assume there is a number 60 &#x3E; 0 such that if

Dð = (x E Q : dist (x7 &#x3E; 61 then the compact set S~ can be covered

by a finite number of open sets Ui, with the property that Ui, can be

mapped in a 1 -1 manner onto the closure of the hemisphere B± = ((X, y) :
&#x3E; 0), 0  ri  1, in (n +1) space, with Uin 8Q mapping

onto the flat part of the hemisphere. We assume that the mapping toge-
ther with its inverse, which we will denote by Fi, are assumed to have

continuous and bounded derivatives up to order 2b + 1. Moreover, we can
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choose the mapping so that Dy F; (x, y) = NQ where Q = F, (x, 0) E aD and
NQ denotes the unit inner normal to aD at Q. We also assume that 

and that each can be uniquely written as

x= Q+rNQ, with Q E and 0 ~ r S 4ðo.
We set X (0, T), &#x26;QT = aS? X (0, T). We let denote a (fixed)

partition of unity subordinate to the cover of Q B D6,, , and we denote
by a sequence of functions for which 1f’i E and = 1 in a

neighborhood of the support of 
If u (Q, t) E L~ (aQx), 1 oo, and k is a non-negative integer ~ 2b,

we define

Also for

define

which is zero for t near zero we

As we have described in the parentheses above, the operators d-k , 9
~lk which appear in the summations of 1.2.1 and 1.2.2 are those operators
on 8r described in the previous section. We have used the same notation
for the corresponding operators on since in context there should be

no confusion.

~lk is not the identity on functions f (Q, t) E X (0, T ]) which
vanish near t = 0, but it is invertible in this class. One way of seeing
this is to observe that A k is an invertible p.s.i.o on as defined

in [6] which maps the above class into itself. We have chosen not to go

through the somewhat lengthy details of this result as we feel it is not

an integral part of the techniques of this paper.
As in the case of if we define

where Gk (X) is defined on Rn and

is the familiar Bessel potential of f.
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2. Summary of Main Results.

We set and we assume L

is parabolic in the Petrovsky sense, i. e. Re

where $ E (0) and C &#x3E; 0 and independent of (x, t) E About the coef-

ficients we will assume that a,a (x, t) is bounded and measurable for all a

and that for a = is Holder continuous in ii X [0, T]. 
-

For a given p, 1 p ~ oo~ and given y, 0  y  1, set dp (x, t) =
and for is any number  1

for which

denotes the space of functions u (x, t) defined on QT for which

, and We set

denotes those for which in

is the space of functions u on S~T for which D’- u and Dt u E
z

We will now list the theorems in this paper which we consider to be

the main results. These theorems are proved in sections 4 and 5 and the

numbers appearing here by the theorem correspond to the number of the

same theorem in the appropriate section.

THEOREM (4.1.2). If
Dp, then

and satisfies .L~ = 0 in
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THEOREM (4.1.5) Assume and satisfies Lu = 0 in S~T.

Then u satisfies the inequality of 4.1.2 with p = oo.

THEOREM (4.1.6) Suppose Then

there exists a unique u (x, t) satisfying:
for any subdomain with

Moreover this solution satisfies the inequality

THEOREM (4.1.7) Suppose with I

for 0  b - 1. Then there exists unique u (x, t) satisfying :

Moreover, this solution satisfies the inequality of 4.1.6 with p 
= oo.

THEOREM (4.2.1) Suppose 1  p  00, and satisfies .Lu = 0

in DT. There exists a y, 0  y  1, depending only on L such that
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THEOREM (4.2.2) Suppose and
Then there exists a unique u (x, t) satisfying:

iv) for each subdomain

Moreover with the same y as in (4.2.1) this solution satisfies the ine
quality,

THEOREM (4.2.3) Suppose and satisfies .Lu = 0. Then
u satisfies the inequality of with is to be replaced by a 00).

THEOREM (4.2.4) Suppose E C X [0, T]) and h (x) E 
Assume h (Q) _ 1:!~~-j- b - 1. Then
there exists a unique u (x, t) satisfying :

Moreover this solution satisfies the inequality of 4.2.2 with p = oo.
In the final two results to be stated here the operator

is assumed to be strongly elliptic in Q, i.e. E - Dt is parabolic in the Pe-
trovsky sense. The coefficients are assumed to be bounded and measurable
for all a and for = 2b Holder continuous in 03A9.
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THEOREM (5.1). Suppose 1  ~  oo~ and satisfies êu = 0
in S~. Then

THEOREM (5.3) Suppose u E fl satisfies (f u = 0 in Q. Then
1p00

u satisfies the inequality in (5.1) with p = oo.

3. Estimates for the Half-Space.

For any 6 ~ 0 we set X (6, oo). For we will also use

the notation R+ 1. A point in will be generally denoted by (x, y)
where and y &#x3E; 0. For 1  p  (Rn+l X (0, T )) denotes the

space of function u (x, y, t) for which ~ 2b, and Dt u belong to

6 X (0, T)). Again we define

denotes the space of functions

such that U = lim uk , the limit taken in the space

with

The parabolic operator we consider now has the form .L =
and again we assume

(~ ~ 0), with C &#x3E; 0 and independent of (x, y, t).
For a given number y, 0  y  1, and for 1 oo, set dp (x, y, t) ===

min (y, tYp/2b) where again =1 and for 1  ~  oo, yp is any number sati-

sfying

3.1. Lu = f, u (x, y, 0) = 0 and ~ almost » zero data at y = 0.

A. The parametrix.
Let
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We will construct a function ul satisfying :

exists in

(d) For

where w (T ) -+ 0 as T -+ 0+. (Condition (d) expresses the meaning of « almost &#x3E;&#x3E;
zero data at y = 0).

We will begin by constructing a parametrix for a fundamental solu-

tion to the above problem. To do this we first consider a homogeneous

parabolic operator .L D2,y - Dt with constant coefficients, and we
[d [ =2b

begin our development by considering the function Q’a (x, y, v, t) which as

a function of (x, y, t) satisfies

3) b -1,

Here d-k is taken in the variables (x, t). We will set

In [5] it is shown that there is a b X b matrix of parabolic singular
integral operators, for which



501

Forj = 0, ... , b -- I set

The inner limit, i.e. the limit in v, is a point-wise limit, and the limit in
y exists in LP for some p &#x3E; 1. Now define ; $

By induction on l, 0 ~ l  b - 2, and for j = 0, ..., b -1, set

and

if b =1 we take Gb+1 = 0).
The proof the following lemma appears in the appendix.

LEMMA 3.1.1. For y &#x3E; 0 and v &#x3E; 0.

In this estimate and whenever used tp (r) is a function of the form e-,,r 7
r ~ 0, and depends only on the parameter of parabolicity and on the num.
ber m ax I aa I.

|a|=2b

10. Annali della Scuola Norm. Sup. - Pisa.
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Set

LEMMA 3.1.3. For Also for

PROOF. Suppose first that Then

Each limit on the right side of the above equality is a solution of the

equation, for y &#x3E; 0. Moreo-
I I 

-

ver from the formula for Gb+l and by the definition of gj, b+l we see that

for some p suf-

ficiently near one (oo ] p ) 1). Hence the uniqueness theorem for constant

coefficients, proved in [5], shows that Dv R (x, y, 0, t) = 0. In the case k  b

we have

Once again by the uniqueness theorem in [5] we see that the function
inside the brackets in identically zero.

The estimates follow from 3.1.1 and the known estimates on r (see [7]).
We now consider a general parabolic operator.

We denote by the function 3.1.2 constructed for the operator

B. Estimates for the solution of (3.1).
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LEMMA 3.1.4. For set

Then for cKJ

where w (T) --~ 0 as T - 0. (See § 2 for definition of y and d.).

PROOF : We will first prove the inequality with dp replaced by y and
then with dp seplaced by 

Using the fact that w Rz, u, 8 ~x, y, v, t) = 0 at v = 0 for
and from the estimates in Lemma 3.1.3 we see that

Hence

Using only the estimates of lemma 3.1.3
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depends only on the Holder continuity of the coefficients of Hence

For J. we use once again the estimates from Lemma 3.1.3 to obtain
that

Hence

So the estimate for J3 f and hence for Jf follows with dp replaced by y.
We will now show the estimate with dp replaced by tIpl2b.

Since for any we have
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Choosing r  1 so that r &#x3E; 1, and using Hardy’s lemma (~11, I]) we
see that

provided which we have assumed.

To obtain the estimate for d. (x, y, t) we write

where XE denotes the characteristic function of E. Now we observe that

A similar inequality holds for Jf2.
Because of the Holder continuity of the highest order coefficients of

L, it is easy to see that J maps LP X (0, T)) into itself continuously
and

where 0 as 8-+0+. (Actually this last inequality holds when the coef-

ficients of order 2b are only uniformly continuous in X [0, T] and for
1  p  oo). Moreover J has the additional property that if f = 0 for

s  a then Jf = 0 for s  a. It follows that (I - J) is invertible over

In fact if in order to find g E
such that we proceed as follows : write

with 0 We choose

so that for g with support

We can find g1 with support

such that We can find g2 with support
such that

In general we choose gk with support such that 1

on The function has the pro-

perty that
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LEMMA (3.1.5). Suppose ~ 81 Then

PROOF : For simplicity let us assume that we are able to write

as described above. Then

Hence by 3.1.4 if (b2 is small

On,

Hence if (b2 - a2) is small enough

Again using 3.1.4 and remembering that suppt

This finishes the proof of 3.1.5.

LEMMA (3.1.6). For set

Then
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PROOF: As in the proof of lemma (3.1.4) it is sufficient to prove our

estimate first with dp replaced by y and then with it replaced We

will do the case lc = 0. The other k’s and the term Dt A-’ u are handled
in exactly the same manner.

For 

For ui we use the fact that
(see 3.1.3) and the estimates of 3.1.3 to obtain

Hence

For u2a we again use the estimates of 3.1.3 and that 

at v = 0 equals 0 for 0~~2&#x26;2013~20132 if I (X S 2b - 2 to obtain
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In like manner as for u2 we have

Hence

Now observe that

We have proved the estimate in the case k = 0 and en ) ) 0 with dp
replaced by y. To obtain the estimate with dp replaced by t’YP/2b we first
note that for I z I ¿ 0

We multiply both sides by tl a I Yp/2b and proceed as in the similar situation
in lemma 3.1.4.

To finish the case k = 0 we must show that

Again we write

ui and it2 are handled exactly in the corresponding case for ] 0. For
1ta (x, y, t) we consider two cases, first when y &#x3E; 1 and then when y  1.
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If y &#x3E; 1,

If y  1 we first write

The estimate for ’lt3,2 follows the same argument for u3 when y &#x3E; 1. Once
again

where 0  y’  y.
Hence

Now note that since 0  y’  y the integral in the above inequality is
bounded by a constant independent of y for y  1. The case for k = 0 is

now complete.
Recall now from 3.1.4 the operator
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THEOREM (3.1.7). Suppose
and set

for some

exists in

The function w (T) depends only on the bounds of aa , the Holder con-
tinuity of the highest order coefficient, and on the parameter of parabolicity

PROOF : Set

where It is known (see [3]) that E

and

Moreover where
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From the estimates of 3.1.1 we have for I ex  2b,

and hence

For = 2b and again using the estimates of 3.1.1 we have

Hence

By Hardy’s lemma,

A similar estimate holds for Dt W2 . Also where

dz dv ds.

From the above discussion of W1 and W2 we conclude that since

and

The estimates in lemmas 3.1.5 and 3.1.6 im-

mediately imply part (ii). Since it is easy to see

that . converges in Hence

converges in
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3.2. The case Lu = 0, u (x, y, 0) = 0, and given lateral data.

For a given function 0 (x, t) E LP(ST) and f or j = 0, ... , b -1 set

and

(Again

THEOREM (3.2.2). Assume Then

1) for each and 0 in

and

and Sk,j is the p.s.i.o whose symbol is given by

(The contour integral is taken over a closed contour in the lower-half plane
enclosing all roots (in C) in this plane of Az, o, s (ix, iC) + it = 0). Gpo depends
on the Holder norm of the coefficients of highest order and on the para-
meter of parabolicity of L.

PROOF : We will first assume that any derivative of the coefficients

of L is bounded in and that In this

case it is easy to see that From theorem (3.1.7) we
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have Moreover for

where u &#x3E; 0 depends on the Holder exponent of the coefficients of order

2b. Hence by taking y  u we have sup

Finally we see that

where In [5] it was shown that
converges in were I and

is the p.s.i.o described in (3).
To obtain theorem 3.2.2 when the coefficients are only Holder con-

tinuous in and we consider sequences
where for a = 2b, belongs to the same Holder class as aca with

norm bounded by the norm of a(J.’ and pointwise and boundedly

and

It is easy to see that . -’ and that

Moreover Now let
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with 99 (y) = 0 for y near zero and equal to 1 for y near infinity. Then

From the estimates in part (2) of 3.2.2 for tiT we conclude that this last
norm is bounded independent of m. Hence lujm). converges weakly in

to for each

Clearly Since in and since

as ~ / it follows

that uj has the representation 3.2.1. By approximating LPo (ST) with

Co (Rn x (0, oo)), the general result follows for 0 E 
The matrix of symbols has an inverse for each

with (x~ t) ~ (0, 0), and we can write

where is a p.s.i.o (see [8]). Now set I
where 4Yb-1 are given functions in

f
Finally set

dz dro ds and

THEOREM (3.2.3). For each

Cp depends on p, the Holder norm of the coefficients of .L of highest order,
and the parameter of parabolicity.

PROOF : All the statements in 3.2.3 are corollaries of 3.2.2 except for
the estimate in (a) with p = oo. For 0  I ex S 2b -1 one can check
that 

-
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What is then left to show is that for b - 1

We first write

Then

Let

Hence

Now set

The estimate we seek for p = oo will be complete once we show that
where C is independent of (M, or) and y &#x3E; 0.
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We leave the proof of this to the Appendix (A.2.1). This completes the
proof of 3.2.3.

(3.3) The initial-value problem.
In this section we will briefly review some known results for the

initial value problem,

To construct a solution we use a fundamental solution for this problem con-
structed in the manner of Pogorzelski in [9[. We denote this function by
W (x, y, t : z, v, s) and it has the following properties :

and for satisfies the integral identity

Here

and

(p depends on the Holder continuity of the highest order coefficients of L).



517

Now set

where

THEOREM (3.2.2). If then

(C depends only on the Holder continuity of the coefficients of order 2b
of L, on the bounds of all the coefficients, and on the parameter of parabo-
licity).

exists in Lp (ST). The limit exists
pointwise if p = oo.

If g is bounded and uniformly continuous in Rn+l then

PROOF : 4) and 5) : The estimate in three together with the results in

[3] imply that for p, near one if and

Now if we take

The first estimate in 3 (for a I = 0) implies that for

11. Annali della Scuola Norm. Sup. - · Pisa.
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By multiplying uk by a fixed function (t) E Co (0, oo~ we see that the se.

quence [Uk) is bounded in In fact since

the results in [4] show that

ds with T a bounded ope-

rator on

operator

and F the usual fundamental solution of the

Hence

Hence uk converges weakly in to a

function, which must be u since uk converges to u in

To show 6-8 we first write

where

The first term in the above equality is easily seen to satisfy the desired
estimate. Denoting the second term by u2 (x, y, t) we have

From the conditions on yp and y we see that

Using the estimate (3) for
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and since for 0  y ~ ,u, I - p/2b - (2b - y/2b) yp  we conclude the

desired estimate for 1’2 (x, y, t).
Again the first term in the expression for t) is easily

seen to converge in L’ (ST), 1  p  oo, as y - 0 +. For g E Co it

is not difficult to see that converges pointwise as y -+ 0 + and
since it is bounded, uniformly in y, by a function in Ep (ST) it follows

that converges in LP (ST) as y -+ 0 + when g is smooth. By a
density argument the .Lp-convergence follows for any g E .Lr 1  p  oo.

The pointwise convergence of (A -k Dyk u) (x, y, t) when p == oo is immediate

by Lebesque’s Dominated convergence theorem.

(3.4) General problem in the half space.

We will now construct a solution to the following initial-boundary-value
problem. Fix a number p, 1  p  oo. Assume we are given functions

and g (x, y) with

and Find u (x, y, t) such that,

We recall that and that aa is bounded for

all a and uniformly Holder continuous for
Set
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where

THEOREM (3.4.3). Assume the coefficients of

are bounded for all a and uniformly Holder continuous for I (X = 2b. The
function u = 1£. + u. + u., described in 3.4.2 is a solution of the problem
3.4.1 in X (Oy T). Moreover there is a y, 0  y ~ 1 ~ and constants

depending only on the structure of L such that for 1  p S oo,

PROOF : That u is a solution follows from 3.1.7, 3.2.3, and 3.3.2. Also

from these results the left side of the above inequality is bounded by

Now

It is not too difficult to see that
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where ft &#x3E; 0. Therefore

The inequality now follows.

THEOREM (3.4.4). Suppose Then

u has the representation given by

PROOF : When the coefficients of L are and when

then +u 2 + U3 I for in this case u and

(for some and their difference satisfies the initial-Diri-

chlet-problem with homogeneous data. To obtain the result for general u E 
we first approximate u in We also

regularize the coefficients of .L denoting the new operator by Then

Since in and since

it easily follows
that pointwise a. e. in Since un-u in

it follows that

THEOREM (3.4.5). Suppose for some p1, y
Then under the assumptions of

PROOF : From 3.4.4 M is of the U3. The proofs of 3.1.7 and
3.2.3 now give the above estimate.

(3.5) .Estimates away from t = 0.

THEOREM (3.5.1). For each a, 0  a  T, any function

satisfies the following inequality over ~Sa, T = Rn X (a, T) for 1 [ ~ ~ oo,
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PROOF : Again we write as in 3.4.2. For u1 the left
side of the inequality is bounded by
Recall that

where

Set

and We correspondingly write
Hence For 113, 1 the left side of the inequality
is bounded by
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where

and

The formula for W, (x, y, t ; z, v) shows that for (z, v) E R++l fixed,
satisfies (see 3.2.3):

LEMMA. Set

with Ca independent of z, v, y.
PROOF : Let qJa (t) denote a C °°-function such that qJa (t) = 0 for t ~ a/4

and =1 for t h a/2. For 1 S k ~ b - 1,

Since (1- = 0 for t ~ a/2 it is not difficult to show that
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with q &#x3E; 1 but as near to 1 as we wish. For q near 1

C independent of (z, v) and y. Using (3.4.5)

s; C, C independent of z, v.

From these observations we see that the left side of the inequality in the
lemma is bounded by

and

converges in

Writing we can see that the LP-norm
over Sal2, T of this last function is bounded by

where and ri is any number &#x3E; 1 for which 
Using this and 3.4.3 it follows that the above norm on V (j’a is

smaller than
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where and r 2 &#x3E; 1 is any number such that

Set d~9 (y) ~ min Then from 3.4.3

We may choose r1= r2 and so Pi = p2 .
What we have shown is that

~ constant depending only on a plus a constant times the same expression
with p replaced by and a replaced by a/2. This means that once we

have found a p, 1  p  oo, for which 3.5.2 is bounded independent of z,

V7 it then holds for all finite p &#x3E; 1 and also by the above reduction for

~ = oo.

For p near 1, (3.5.2) with V replaced by W (x, y, t ; z, v, 0) is bounded

by a constant independent of z, v, y.
Now
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independent of z, v provided p is near 1. This concludes the proof of 3.5.1.
In the next result denotes a strongly elliptic

operator in i. e. Re I and inde-

pendent of (x, y). The coefficients are assumed bounded and measurable

for all a and uniformly Holder continuous in For

again set dp (y) = min

THEOREM (3.5.3). Suppose
for 1  p  oo,

for some Then

PROOF: Set is parabolic and by 3.5.1,

Recall dp (y) = min (y, It is easy to check that there exists a constant
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0 &#x3E; 0 such that

The same inequality holds when I is replaced by 2b - y and the inte.

gral from T/2 to T by the integral from 0 to T. Therefore

To conclude the proof we note that in the appendix (A.2) it is proved
that there are constants C and CT such that for f (x) E LP (Rn), 1 ~ p S oo,

4. Parabolic estimates and the initial-Dirichlet problem.

(4.1) Case of zero initial data.

Throughout the remainder of this paper D will denote a bounded do-

main in whose boundary, is assumed to be in the class C2b+1.

We recall from section 1.2 that there is a positive number 60 such that

each point x E 0 with d (x) = dist. (x,  460 can be uniquely written

as x = rNQ + Q with Q E aD, 0  r  4ðo, y and NQ denoting the unit inner-
normal at Q. We set X (09 T ) and X (0, T).

THEOREM (4.1.1). As usual we assume the coefficients of .L are boun-

ded and measurable for all « and uniformly Holder continuous in lip for
o ,cx = 2b. If u E L2 ,1 with 1  p  oo and satisfies Lu = 0 in Dp, then
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PROOF : We recall the finite open covering (Qa =

(x E Q : d (x) ) 8)) described in section 1.2 the partition of unity, sub-

ordinate to it, the diffeomorphism
and finally the sequence, with the property that

and Vi « I in a neighborhood of the support of cp,. In

The left side of the inequality in 4.1.1 applied to ui is dominated by
a constant times

The function ui o Fi (x, y, t) belongs to Also there

exists a parabolic operator - satisfying

i) aa are bounded and measurable in and for

are uniformly Holder continuous in

From theorem 3.4.5 there is a y, 0  y  1, such that 4.1.2 is bounded by

Now

Hence 4.1.2 is bounded by a constant times

Now set 11 u JITV equal to the left side of the inequality in theorem (4.1.1).
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Since 0  7  1 by picking a positive number 6 small enough the above

inequality implies that

At this point we will point out that we have also shown that 4.1.3

remains true with p = oo. This observation will be used in theorem 4.1.5.

LEMMA. Given B ] 0 there exists a constant C~ such that for all

with Z~ = 0,

PROOF : If not then there exists Bo &#x3E; 0 and a sequence
such that

In our new notation the inequality 4.1.3 implies that for
lu = 0,

with

Now, We claim that in any domain S~’~ with ~2* c Q the se-

quence (uk) is bounded in

on S~ao then
In fact if with Q == 1
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Hence a subsequence, which we again denote by uk j, converges weakly in
- 0

L b,1 (1T), Qt any domain with to a function U ELp2(Qt).
Clearly Lu = 0. Moreover by 4.1.4

The second term converges to zero as k, 1-+oo since lim

= 0. For the moment let us assume as We

will prove this at the end of the discussion. Then

This immediately implies that and that for

exists in .Lp and equals

Jim which exists since

cause of the presence of in 4.1.3 it is not difficult to see that 4.1.3

implies that there exists To such that for the inequality in (4.1.1)
holds. In fact with g~ =1 in 92S we have that

Also

By taking T small enough the last two inequalities imply that 4.1.2 is

bounded by

This implies that for 4.1.3 holds without the last summation.

Finally for This implies

that for the above u, which is the weak limit of and so

But then and u (x, t) is zero in a neigh-
borhood of the bonndary Hence Now consider the

function Once again
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Since u = 0 for Hence

So uTo == 0 in S~To --~ u --- 0 in Q2Po’ Hence u « 0 in Dp. It will follow

from the proof of the fact that |||Uk - ui IB, p -&#x3E; 0 as k, I --&#x3E; oo that

|| uk IIB, p as k --&#x3E; oo. Hence ||I U I IB, p = 1, a contradiction.
With the lemma, of course, we conclude the proof of the inequality

in (4.1.1). For the completion of the lemma we need to show :

SUBLEMMA : If 11 Uk C  C for all k, then there is

a subsequence, again called such that as k, I - oo.

PROOF : First consider

Take The above norm is bounded by

where c S~. Since independent of k, a subsequence

can be chosen so that the above sum tends to zero as k and l tend to oo.

Now consider sup As a function of

y the above norm is continuous in [0, oo) and is zero for y ~ R, R inde-
pendent of k. So there exists yk E [0, .RJ such that

is attained at yk . Set , The function Qi Uk o Fi
has support contained in DT where D is a bounded open set in Rn which

does not depend on with y - I in a neighborhood of
Since and are

bounded in independent of k.
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CLAIM : A subsequence of (hk) converges in .Lr (ST)-
Since llfk IILP(Sp) C C, independent of k, a subsequence of the ( fk ) con-

verges weakly in LP(ST). We again call this subsequence fk. It is not dif
ficult to see that this implies that the sequence is a bounded sequence
in LP (ST) and Ll- (ST) and that hk ---+ h pointwise in By Young’s ine-
quality some 6 &#x3E; 0 and small.

The last term is bounded by independent
of k. The first term is bounded by

For 8 fixed this converges to 0 as k ~ oo. Hence we have shown that

CLAIM : A subsequence of (gk) converges in Lp (ST).
The support of gk is contained in AT = A &#x3E;C (0, T) where A is a boun-

ded open subset of Rn. Again a subsequence, which we call ~gk~, converges

weakly in LP (ST). Let 0 (x} E Co (Rn) with 0 (x) = 1 on a neighborhood of il.

The sequence 0 (x) (gk) (x, t) converges in LP (ST). On the other hand
(1 - 0) (gk) converges pointwise and is bounded by

This in turn is bounded by I since 1 - 0 (x) = 0 in a neighborhood
of A. Hence by Lebesque’s dominated convergence theorem (1- (gk)
converges in L~ (ST).

We have now completed the proof of 4.1.1.

THEOREM (4.1.5) Assume and satisfies Lu = 0. Then
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PROOF : We recall from the observation early in the proof of 4.1.1 that
4.1.3 or what is the same that 4.1.4 holds with p = oo. (u needed only to

0

belong to LP12b,l (Qp) for some p,, 1  pi  oo), This means that

However for q large (1  q  00),

where aiad p -1 on 926. Once again

Using 4.1.1 ~

For

Hence

where q is taken to be sufficiently large. Since the last summation on the

right side is bounded by it follows from the lemma in 4.1.1 that

for any e &#x3E; 0

THEOREM (4.16) Suppose Then

there exists a unique u (x, t) satisfying :

12. Annal’ delta Scuola Norm. Sup. - · Pua.
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i) for any subdomain D* with

Moreover this solution satisfies the inequality

PROOF :

.Existence. Let ~~k~(Q, t)~ be a sequence of functions each in 
such that in as We can (QT)
satisfying (ii) and (iii) with 03A6j replaced by (See [10]. Actually

uk E for all  p  00). Take any function 1p(x) E Co (Q). Then

This last estimate together with 4.1.1 shows that in any subdomain Q*

with Q*C Q the sequence (uk) is a Cauchy sequence in We

let u (x, t) denote that function which is the limit of uk in L’2b, 1 (~~r) for
any n. (D*c Q).

Clearly u (x, t) satisfies (ii). To see that condition (iii) is satisfied we

first observe from 4.1.1 that

Now letting m -~ oo we conclude that

It is easy to see now that

as ~2013~ ()-(-.
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ITn2queness. This is immediate consequence of the inequality in 4.1.1
applied to u in the cylinder for 6 sufficiently small, and then let-

ting 6 --~ 0 -~-.
In much the same manner using 4.1.5 instead of 4.1.1, one obtains

the theorem

THEOREM (4.1.7). Suppose
for 0 S b -1. Then there exists unique u (x, t) satisfying :

Moreover this solution satisfies the inequality

PROOF : As we pointed out above the existence of it satisfying i, ii,
and iv follows the exact lines of proof as 4.1.6 using 4.1.5 instead of 4.1.1.
To check condition (iii) we observe first that the indicated argument
shows that

and this implies Since

it follows that

(4.2) Non-zero initial data

THEOREM (4.2.1). Suppose u E .L ~,1 (S~T),1  p  00, satisfies Lu = 0 in

DT. There exists 7, 0  7,  1, depending only on .L~ such that
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PROOF : We may assume the coefficients of .L are defined in all of

T] are bounded and measurable and that the coefficients of

highest order are uniformly Holder continuous. We let W s) denote
a fundamental solution for the initial-value problem of .L as constructed
in section (3.3). More precisely:

where for satisfies the integral identity

Here

We let denote the space of functions

f (x) defined on S~ such that f E LP(Q) and

Since it belongs to for It is known that

Since we may assume q is near 1 and

hence it is not difficult to see that we can extend u (x, 0) to a
z

function having compact support in belonging to and

whose EP-norm over is dominated by a constant times the LP-norm

over of u (x, 0). We will denote the extension also by u (x, 0).
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Now set For q near

and

The function We leave it to the reader to

verify that there is a y, 0  y  1 such that

and that exists in

With u given in the latter limit also exists for u. Since’

exists in

So by the uniqueness of 4.1.6, 1¿ - 1t1 = Uo satisfies the condition of 4.1.6
for p. The estimate in 4.2.1 follows from the estimate for 2co given in
4.1.6. and from the above estimates on 

THEOREM (4.2.2) Suppose ~o , ... 4Sb-1 are given function in 

1  p  oo, and h (x) E LP(D) Then there is a unique u (x, t) satisfying,

d) for each subdomain
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Moreover, for the same y as in 4.2.1, this solution satisfies the inequality

PROOF :

.Existence : By extension we may again assume that the coefficients of L
are defined in all of X [0, T], are bounded and measurable there, and
that those of highest order are uniformly Holder continuous. Let W (x, t, M, 8)
again denote a fundamental solution as described in the proof of 4.1.7.

Let (hk (x)) denote a sequence of functions with hk E C1° (S~) and hk -+ h in

hk (M) dM. By theorem

4 1.4 there exists a unique uo, k satisfying conditions (i)-(iii) of 4.1.6

with Oj replaced by

For pi near and since

where T is a bounded ope-

rator on and.

we conclude

that ul, k converges in

Moreover

Hence for each converges in

as k -+ oo for 0 ~ j  b -1. Also this limit equals.
* - *,-

which we will shortly see belongs to x (0, T)) and which itself

equals the limit taken in

~ We accept this last statement for the moment.
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As in the proof of 4.1.6. the sequence (uo, k) converges in

for each Q*, 920 r- D. Moreover for r  60 7

Hence the same inequality holds for uo with hk replaced by h.

From this fact and the above statements on ui we see that u satisfies con-

dition (c). _ _

For the function u1 we already noted that

as t -~ 0 +. However for the function uo (x, t) we can only say that for

- -.

This completes the existence proof of theorem 4.2.2 together with the

estimate except that we must show now that for j ~ b - 1,

the limit taken in .L~ (&#x26;Q x (0, ~’)). This follows from the following lemma.

LEMMA. Suppose.
some k  2b

and for



540

PROOF : By use of a partition of unity to show
it suffices to show this in the case of So now.

for 0  a  T~ and

From the conditions on yp it is easy to see by Hardy’s lemma that

For the second part of the lemma we observe that for

Now

Now by Holder’s inequality and the condition on
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This completes the proof of the lemma. The application to ttt (x, t) is

immediate once one observes that

Uniqueness. We consider the problem as described in a - d with zero

data. In the cylinder From 4.2.1

Now let and then 8 --~ 0 -f -, and we conclude that u =-= 0 in

(S~~ = complement of D6,)). By extending u to be zero

outside S~ we then have
.. -

satisfying the conditions

Letting e - 0 we see that u

THEOREM (4.2.3). Suppose
Then

and satisfies .Lu = 0.

PROOF : From the uniqueness part of 4.2.2 and from the existence

proof in that theorem,

It is not difficult to see that U1 satisfies the

above estimate with right~hand side including only

function uo (x, t) satisfies the conditions of (4.1.5) on (-Q6)T for each 6, 0 
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 3  3~ . We now apply the estimate in 4.1.5 to uo with QT replaced by
(-Q6)T and then let ~2013~0-}-. Since for

we have that the L--norm of the left side

over aQT is dominated by

Since -~ the first term converges as

This completes the proof of 4.2.3.

THEOREM (4.2.4). Suppose 4Sb_1 are functions belonging to

and h (x) belongs to C (S~). Assume
and that

satisfying :
Then there exists a unique

and Lu = 0 in QT,

Moreover this solution satisfies the inequality,

PROOF : The uniqueness follows from the uniqueness in 4.2.2 for if

(a)-(c) of 4.2.3 hold then (a)-(d) of 4.2.2 hold for any p, 1 C p [ oo.
We begin the existence proof by again extending the coefficients of L

to all of X [0, T] as in 4.2.2, and we again let W (x7 t ; M, s) denote
the fundamental solution described there. We extend h (x) so that h (x) E

Set is continuous on

Since it, (x, t) is uniformly continuous on
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and for 1  k  b -1 we can write

where

The following properties of Wk (x, t ; M, o) are easily verified. ( I kb- 1 )

uniformly for

With properties i and ii it follows that for

Now set From Theorem

(4.1.7) there exists satisfying the conclusion of (4.1.7) with data

function i~ our desired function.

5. The elliptic estimate.

In this section we let and we assume that d is

strongly elliptic, i. e. (~ 2013 Dt is parabolic in the sense of Petrovsky. About
the coefficients we again assume that aa is bounded and measurable in Q

and that for = is Holder continuous in S~.

THEOREM 5.1. Suppose satisfies du = 0. Then

PROOF : The proof follows the same line of argument as 4.1.1 except
that the half space estimate used is (3.5.3). If we proceed in this manner
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we arrive at the conclusion that the left side of 5.1 above is bounded by
a constant times the right side plus the term

Now suppose with 99=1 in S~ao . Then since 

Denote by 11 u the left side of (5.1), and set

We have shown that

LEMMA. Given 8 &#x3E; 0 there exists 06 &#x3E; 0 such that for all
with ~u = 0 in D we have

PROOF : Assume that the lemma is false. Then there exists 80 ) 0 and
a sequence of functions C LP2b (Q) such that LUk = 0 in 0 and 1 h

II II - ..

Take with Then

(see [2]).

independent of k.
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Hence a subsequence of the uk which we again call Ilk converges weakly
in for all Q* with S~~ to a function u (x). For each (J* as

above, I uk u So 1/ U = 0 and hence u « 0 in Q. But

in the same manner as in 4.1.1 we can show that if 1/ Uk -~- 1B Uk 
is bounded independent of k then there is a subsequence, uk , such that

11 Uk - ui - 0. However this implies 11 Uk - U (B, p - 0 as k --~ 00 and
hence 1114 JIB,P _ 1, a contradiction since u « 0 in Q.

THEOREM (5.3). Suppose satisfies = 0 in 0. Then

PROOF : We first observe that 5.2 holds when p = oo and then to

finish we proceed as in 4.1.5.

APPENDIX

(A.1). Estimates on the parametrix.

Let be a parabolic operator with constant coef-

ficients. Set and Finally set

dz ds where

T is a (translation-invariant) p. s. i. o. and 0 --1, 0  k ~ b -l.
From known estimates on the derivatives of r (see [7]) it is tedious

but not difficult to show,

THEOREM (A.1.1). For y &#x3E; 0 and v &#x3E; 0,
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Recall that

An immediate corollary of A.1.1 is.

THEOREM (A.1.2) Estimate in A.1.1 holds for 
Recall now that for 0 ~  b -1,

THEOREM (A.1.3).

PROOF : The function satisfies the

estimates of (A.1.3). From the formula for Go,

and hence satisfies the estimate in (A.1.3).
Now that A.1.3 is established it is straightforward to prove.

THEOREM (A.1.4). For v &#x3E; 0,

Now recall that

From A.1.4 we have.

THEOREM (A.1.5) For y &#x3E; 0, v &#x3E; 0,
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Finally recall that by induction on 1, 0  1 2b - 2, and for J
we defined

and

THEOREM (A.1.6). The estimates in A.1.3. and A.1.5 with b replaced
by hold for gj, b+l (x, t) and y, v, t) respectively.

PROOF: We proceed by induction on l. A.1.3 and A.1.5 form the

case I = 0.

So the estimates follow for gi, b+l (x, t). Same argument will prove that A.1.4
now holds with b everywhere replaced by b -~- l. With this established

the desired estimate for Y, v, t) follows.

(A.2) Poisson kernels.

In this section, as in (A.1), we consider a constant coefficient para-

bolic operator We will use the fundamental solu-

tion as defined in (A. 1).
Set
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where is the p. s. i. o defined through the symbol relation,

and

Here and 

THEOREM independent of y &#x3E; 0.

PROOF : May assume

where

(A.2.1) will be complete once we show the following :

LEMMA

C independent of y &#x3E; 0.

PROOF:

It is not difficult to see that

Hence I  C independent of y &#x3E; 0.
To handle the second integral let us first assume that we can find

numbers p and k satisfying 1  p  2, k = 2b1n, m a positive, integer,
and Then
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So by Rieszls Theorem [11,II]

We will show that The term

involving differentiation in t is handled in the same manner. Now

Since we have

Hence if I x I + I t 11111  y-1, then

and therefore

We conclude that C, independent of y &#x3E; 0.
Our proof is complete once we show the existence of k = 2bm and p,

First write n = 2br -~- s, 0 ~ s  2b. We want to find m and p such

that

Take m = (r + 1). Set ,

Now take p = p1 ~- ~ for 8 &#x3E; 0 and small

enough so that

(A.3). Relation between Gk and A-k .

13. Annati della Scuola Norm. Sup. · Pisa.
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THEOREM (A.3.1). Suppose Then for

PROOF : The result is obvious for k = 0. For k &#x3E; 1,

It is easy to check that .

Now set Then

The function

Set
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So to show that with it is auf.

ficient to show that with . Since

By Riesz’s theorem, for

For

for

and since

Hence for

Da .~3 E LP for p near 1.

THEOREM (A.3.2). Suppose f E Co- Then for

PROOF : Again may assume k &#x3E; 0.

where

Set

It is not difficult to check that for when

and that
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and provided 0. vanishes for

ided

PROOF: For

By Riesz’s theorem for 1  p  27
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