Operazioni di Brouwer e realizzabilità formalizzata
Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche, Série 3, Tome 25 (1971) no. 4, pp. 649-682.
@article{ASNSP_1971_3_25_4_649_0,
     author = {Cellucci, Carlo},
     title = {Operazioni di {Brouwer} e realizzabilit\`a formalizzata},
     journal = {Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche},
     pages = {649--682},
     publisher = {Scuola normale superiore},
     volume = {Ser. 3, 25},
     number = {4},
     year = {1971},
     mrnumber = {376309},
     zbl = {0242.02037},
     language = {it},
     url = {http://archive.numdam.org/item/ASNSP_1971_3_25_4_649_0/}
}
TY  - JOUR
AU  - Cellucci, Carlo
TI  - Operazioni di Brouwer e realizzabilità formalizzata
JO  - Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche
PY  - 1971
SP  - 649
EP  - 682
VL  - 25
IS  - 4
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_1971_3_25_4_649_0/
LA  - it
ID  - ASNSP_1971_3_25_4_649_0
ER  - 
%0 Journal Article
%A Cellucci, Carlo
%T Operazioni di Brouwer e realizzabilità formalizzata
%J Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche
%D 1971
%P 649-682
%V 25
%N 4
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_1971_3_25_4_649_0/
%G it
%F ASNSP_1971_3_25_4_649_0
Cellucci, Carlo. Operazioni di Brouwer e realizzabilità formalizzata. Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche, Série 3, Tome 25 (1971) no. 4, pp. 649-682. http://archive.numdam.org/item/ASNSP_1971_3_25_4_649_0/

[1] P. Bernays, Sur le platonisme dans les mathématiques, L'Enseignement Mathématique, vol. 34 (1935), pp. 52-69. | JFM | Zbl

[2] H.B. Curry, Foundations of mathematical logic, New York (Mc Graw-Hill) 1963, pp. xii + 408. | MR | Zbl

[3] N.D. Goodman, Intuitionistic arithmetic as a theory of constructions, tesi, Stanford University, 1968, pp. v + 111.

[4] A. Heyting, Blick von der intuitionistischen Warte, Dialectica, vol.12 (1958), pp. 332-345. | MR | Zbl

[5] S.C. Kleene, On, the interpretation of intuitionistic number theory, The Journal of Symbolic Logic, vol. 10 (1945), pp. 109-124. | MR | Zbl

[6] S.C. Kleene, Introduction to metamathematics, Amsterdam (North-Holland) e Groningen (Noordhoff) 1952, pp. x + 550. | MR | Zbl

[7] S.C. Kleene, Realizability and Shanin's algorithm for the constructive deciphering of mathematical sentences, Logique et Analyse, vol. 3 (1960), pp. 154-165. | MR

[8] S.C. Kleene, Classical extensions of intuitionistic mathematics, in Logic, methodology and philosophy of science II, Proceedings of the 1964 international congress, a cura, di Y. BAR-HILLEL, Amsterdam (North-Holland) 1965, pp. 31-44. | MR | Zbl

[9] S.C. Kleene, Formalized recursive functionals and formalized realizability, Memoirs of the American Mathematical Society, N. 89, Providence, R. I. (American Mathematical Society) 1969, pp. 106. | MR | Zbl

[10] S.C. Kleene R.E. Vesley, The foundations of intuitionistic mathematics, especially in relation to recursive functions, Amsterdam (North-Holland) 1965, pp. viii+ 206. | MR | Zbl

[11] G. Kreisel, Mathematical logic, in Lectures on modern mathematics, a cura di T. L. SAATY, vol. III, New York (Wiley) 1965, pp. 95-195. | MR | Zbl

[12] G. Kreisel, Lawless sequences of natural numbers. Compositio Mathematica, vol. 20 (1968), pp. 222-248. | Numdam | MR | Zbl

[13] G. Kreisel, Church's thesis : a kind of reducibility axiom for constructive mathematics, in Intuitionism and proof theory, Proceedings of the summer conference at Buffalo N. Y. 1968, a cura di A. Kino, J. Myhill e R.E. Vesiley, Amsterdam (North-Holland) 1970, pp. viii + 516. | MR | Zbl

[14] G. Kreisel A.S. Troelstra, Formal Systems for some branches of intuitionistic analysis, Annals of Mathematical Logic, vol. 1 (1970), pp. 229-387. | MR | Zbl

[15] D. Prawitz, Natural deduction. A proof-theoretical study, Stockholm (Almqvist & Wiksell) 1965, pp. 113. | MR | Zbl

[16] C. Spector, Provably recursive functionals of analysis: a consistency proof of analysis by an extension of principles formulated in current intuitioniatics mathematics, in Recursive function theory, Proceedings of symposia in pure mathematics, vol. 5, a cura di J.C.E. Derker, Providence, R. I. (American Mathematical Society) 1962, pp. 1-27. | MR | Zbl

[17] A.S. Troelstra, The theory of choice sequences, in Logic, methodology and philosophy of science III, Proceedings of the third international congress, a cura di B. VAN ROOTSELAAR e J. F. STAAL, Amsterdam (North-Holland) 1968, pp. 201-223. | MR | Zbl

[18] A.S. Troelstra, Notions of realizability for intuitionistic arithmetic in all finite types, in Proceedings of the Second Scandinavian Logic Symposium, a cura di J.E. Fenstad, in corso di pubblicazione. | Zbl