Boundary values for Sobolev-spaces with weights. Density of D(Ω)inW p,γ 0 ,,γ r s (Ω)andinH p,γ 0 ,,γ r s (Ω) for s > 0 and r=s-1 p -
Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche, Série 3, Tome 27 (1973) no. 1, pp. 73-96.
@article{ASNSP_1973_3_27_1_73_0,
     author = {Triebel, Hans},
     title = {Boundary values for {Sobolev-spaces} with weights. {Density} of $D (\Omega ) \text{ in } W^s_{p, \gamma _0, \dots , \gamma _r} (\Omega ) \text{ and in } H^s_{p, \gamma _0, \dots , \gamma _r} (\Omega )$ for $s$ > $0$ and $r = \left[s - \frac{1}{p}\right]^-$},
     journal = {Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche},
     pages = {73--96},
     publisher = {Scuola normale superiore},
     volume = {Ser. 3, 27},
     number = {1},
     year = {1973},
     zbl = {0258.46033},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_1973_3_27_1_73_0/}
}
TY  - JOUR
AU  - Triebel, Hans
TI  - Boundary values for Sobolev-spaces with weights. Density of $D (\Omega ) \text{ in } W^s_{p, \gamma _0, \dots , \gamma _r} (\Omega ) \text{ and in } H^s_{p, \gamma _0, \dots , \gamma _r} (\Omega )$ for $s$ > $0$ and $r = \left[s - \frac{1}{p}\right]^-$
JO  - Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche
PY  - 1973
SP  - 73
EP  - 96
VL  - 27
IS  - 1
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_1973_3_27_1_73_0/
LA  - en
ID  - ASNSP_1973_3_27_1_73_0
ER  - 
%0 Journal Article
%A Triebel, Hans
%T Boundary values for Sobolev-spaces with weights. Density of $D (\Omega ) \text{ in } W^s_{p, \gamma _0, \dots , \gamma _r} (\Omega ) \text{ and in } H^s_{p, \gamma _0, \dots , \gamma _r} (\Omega )$ for $s$ > $0$ and $r = \left[s - \frac{1}{p}\right]^-$
%J Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche
%D 1973
%P 73-96
%V 27
%N 1
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_1973_3_27_1_73_0/
%G en
%F ASNSP_1973_3_27_1_73_0
Triebel, Hans. Boundary values for Sobolev-spaces with weights. Density of $D (\Omega ) \text{ in } W^s_{p, \gamma _0, \dots , \gamma _r} (\Omega ) \text{ and in } H^s_{p, \gamma _0, \dots , \gamma _r} (\Omega )$ for $s$ > $0$ and $r = \left[s - \frac{1}{p}\right]^-$. Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche, Série 3, Tome 27 (1973) no. 1, pp. 73-96. http://archive.numdam.org/item/ASNSP_1973_3_27_1_73_0/

[1] O.V. Besov, J. Kadlec, A. Kufner, ,Sonia properties for classes with weights. Dokl. akad. nauk SSSR 171 (1966), 514-516, [Russian]. | MR | Zbl

[2] P.L. Butzer, H. Berens, Senti-group8 of operators and approxirrzation, Springer, Ber lin 1967.

[3] P. Grisvard, Commutativé de deux foncteurs d'enterpolation et applications, Journ. Math. pures et appl. 45 (1966), 143-290. | MR | Zbl

[4] G.G. Hardy, D.E. Littlewood, G. Polya, Inequalities. Cambridge 1952. | MR | Zbl

[5] V.P. Il'In, Properties of some classes of differentiable functions of several variables in n-dimensvonal domains, Trudy mat inst. Steklova 66 (1962), 227-363. [Russian]. | MR

[6] J.L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications. vol. I. Dnnod, Paris 1968. | Zbl

[7] J.L. Lions, E. Magenes, Problèmes aux limites non homogèneS IV. Ann. scuol. norm. sup. Pisa 15 (1961), 311-326. | Numdam | MR | Zbl

[8] J.L. Lions, E. Magenes, Problemi ai limiti non omogenei V. Ann. scuol. norm. sup-Pisa 16 (1962), 1-44. | Numdam | MR | Zbl

[9] J.L. Lions, J. Peetre, Sur une classe d' éspaces d'interpotation. Inst. Hautes Études Sci, Publ. Math. 19 (1964), 5-68. | Numdam | MR | Zbl

[10] E. Magenes, Interpolation spaces and partial differential equations. Usp. mat. nauk 21 (1966), 169-218. [Russian]. | MR | Zbl

[11] T. Muramatu, On Besov spaces of functions defined in general regions. Publ. Res. Inst-Mathem. Sci., Kyoto Univ. 6 (1970/71), 515-543, | MR | Zbl

[12] S.M. Nikol'Skij, Approximation of functions of several variables and embedding theorarns. Nauka, Moskva 1969. [Russian].

[13] J. Peetre, Sur le nombre de paramètres dans la définition de oertain espaces d'anterpolation Ricerche Mat. 12 (1963), 248-261. | MR | Zbl

[14] E. Shanir, Une propriété des espaces Hs,p. Compt. Rend. Acad. Sci.(Paris) 255 (1962), 448-449. | Zbl

[15] S.L. Sobolev, Some applioations of functional analysis in mathematical physics. Leningrad, 1950. [Russian].

[16] H. Triebel, Allgemeine Legandresche Differentialoperateren I. Jonrn. Functional Anal. 6 (1970), 1-25. | MR | Zbl

[17] H. Triebel, Spaces of distributions of Besov type on Euclidean n-space. Dnality, interpolation Arkiv f. Matem. (to appear). | MR | Zbl

[18] H. Triebkl, Uber die Existeitz von Schauderbasen in Sobolev - Besov - Räumen. Isomorphiebeziehungen. Studia Math. (in Druck). | Zbl

[19] H. Triebel, Interpolation theory for function spaces of Besov type defined in domain8 I. Math. Nachrichten (to appear). | MR | Zbl

[20] Embedding theorenis and their applications. Papers of the symposium for embedding theorems in Baku 1966. Nauka, Moskva 1970. [Russian].