Abschätzung nach unten für Lösungen nichtlinearer Differentialungleichungen
Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche, Série 3, Tome 27 (1973) no. 3, pp. 441-456.
@article{ASNSP_1973_3_27_3_441_0,
     author = {Redheffer, Ray},
     title = {Absch\"atzung nach unten f\"ur {L\"osungen} nichtlinearer {Differentialungleichungen}},
     journal = {Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche},
     pages = {441--456},
     publisher = {Scuola normale superiore},
     volume = {Ser. 3, 27},
     number = {3},
     year = {1973},
     zbl = {0302.35024},
     language = {de},
     url = {http://archive.numdam.org/item/ASNSP_1973_3_27_3_441_0/}
}
TY  - JOUR
AU  - Redheffer, Ray
TI  - Abschätzung nach unten für Lösungen nichtlinearer Differentialungleichungen
JO  - Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche
PY  - 1973
SP  - 441
EP  - 456
VL  - 27
IS  - 3
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_1973_3_27_3_441_0/
LA  - de
ID  - ASNSP_1973_3_27_3_441_0
ER  - 
%0 Journal Article
%A Redheffer, Ray
%T Abschätzung nach unten für Lösungen nichtlinearer Differentialungleichungen
%J Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche
%D 1973
%P 441-456
%V 27
%N 3
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_1973_3_27_3_441_0/
%G de
%F ASNSP_1973_3_27_3_441_0
Redheffer, Ray. Abschätzung nach unten für Lösungen nichtlinearer Differentialungleichungen. Annali della Scuola Normale Superiore di Pisa - Scienze Fisiche e Matematiche, Série 3, Tome 27 (1973) no. 3, pp. 441-456. http://archive.numdam.org/item/ASNSP_1973_3_27_3_441_0/

[1] Bony, J.M. Principe du maximum, inegalité de Harnack et unicité du probleme de Cauchy pour les opérateur elliptiques dégénérés. Ann. Inst. Fourier, Grenoble 19, 1 (1969), 277-304. | Numdam | MR | Zbl

[2] Dell, R., Redheffer, R. Sharp Lower Bounds for Solutions of Nonlinear Differential Inequalities. Math. Z. 127, 199-216 (1972). | MR | Zbl

[3] Habetha, K. Uber eine Integraldarstellung und das Phragmén-Lindelöfsche Prinzip bei elliptischen Differentialgleichungen. Math. Annalen 165, 91-110 (1966). | MR | Zbl

[4] Ladyzhenskaya, O.A., Ural'Tseva, N.N. Local estimates for gradients of solutions of nonuniformly elliptic and parabolic equations. Comm. Pure Appl. Math., XXII, 677-703 (1970). | MR | Zbl

[5] Moser, J. On Harnack's theorem for elliptic differential equations. Comm. Pure Appl. Math. 14, 577-591 (1961). | MR | Zbl

[6] Protter, M. Weinberger, H., Maximum principles in differential equations. Prentice, Hall, Englewood Cliffs, New Jersey (1967). | MR | Zbl

[7] Serrin, J. On the Harnack inequality for linear elliptic equations. Jour. d'Anal. Math. 4 292-308 (1956). | MR | Zbl

[8] Serrin, J. A Harnack inequality for nonlinear equations. Bull. Amer. Math. Soc., 69, 481-486 (1963). | MR | Zbl

[9] Serrin, J. The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. Phil. Trans. Roy. Soc. London 264, 413-496 (1969). | MR | Zbl

[10] Trudinger, Neil, S. On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. on Pure and Applied Math. XX, 721-747 (1967). | MR | Zbl