Exceptional sets with respect to Lebesgue differentiation of functions in Sobolev spaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 1 (1974) no. 1-2, pp. 113-130.
@article{ASNSP_1974_4_1_1-2_113_0,
     author = {Marcus, Moshe},
     title = {Exceptional sets with respect to {Lebesgue} differentiation of functions in {Sobolev} spaces},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {113--130},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 1},
     number = {1-2},
     year = {1974},
     mrnumber = {376984},
     zbl = {0328.46031},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_1974_4_1_1-2_113_0/}
}
TY  - JOUR
AU  - Marcus, Moshe
TI  - Exceptional sets with respect to Lebesgue differentiation of functions in Sobolev spaces
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1974
SP  - 113
EP  - 130
VL  - 1
IS  - 1-2
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_1974_4_1_1-2_113_0/
LA  - en
ID  - ASNSP_1974_4_1_1-2_113_0
ER  - 
%0 Journal Article
%A Marcus, Moshe
%T Exceptional sets with respect to Lebesgue differentiation of functions in Sobolev spaces
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1974
%P 113-130
%V 1
%N 1-2
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_1974_4_1_1-2_113_0/
%G en
%F ASNSP_1974_4_1_1-2_113_0
Marcus, Moshe. Exceptional sets with respect to Lebesgue differentiation of functions in Sobolev spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 1 (1974) no. 1-2, pp. 113-130. http://archive.numdam.org/item/ASNSP_1974_4_1_1-2_113_0/

[1] C.P. Calderòn - E.B. Fabes - N.M. Riviere, Maximal smoothing operators Ind. Univ. Math. J., 23 (1974), pp. 889-898. | MR | Zbl

[2] N. Dunford - J.T. Schwartz, Linear operators, I, Interscience, New York. | Zbl

[3] H. Federer, Some properties of distributions whose partial derivatives are representable by integration, Bull. Am. Math. Soc., 74 (1968), pp. 183-186. | MR | Zbl

[4] H. Federer, Geometric measure theory, Springer-Verlag, Heidelberg and New York, 1969. | MR | Zbl

[5] H. Federer - W.P. Ziemer, The Lebesgμe set of a function whose distribution derivatives are p-th power summable, Ind. Univ. Math. J., 22 (1972), pp. 139-158. | Zbl

[6] E. Gagliardo, Proprietà di alcune classi di funzioni in più variabili, Richerche di Math., 7 (1958), pp. 102-137. | MR | Zbl

[7] C.B. Morrey, Functions of several variables and absolute continuity II, Duke Math. J., 6 (1940), pp. 187-215. | JFM | MR | Zbl

[8] C.B. Morrey, Multiple integrals in the calculus of variations, Springer-Verlag, Heidelberg and New York, 1966. | MR | Zbl