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On the Trace of Potentials.

JAAK PEETRE (*)

0. - Introduction.

Much work has been devoted to the study of the trace of various classes
of differentiable functions in Rn on submanifolds of dimension  n. The

trace of the Sobolev class W~ on a hypersurface was completely determined
by Aronszajn [4] and Babic-Slobodeckij [6] if p = 2 and by Gagliardo [12]
if p general. The case of the space of (Bessel) potentials Z~ was treated by
Stein [20]. In a recent paper [1] Adams has initiated the study of the trace

- 

of L§§ on an arbitrary closed set F in Rn. E.g. he showed that if F carries a
b-dimensional measure v (see def. 3.1) then for u c 4’ holds

The same problem has been approached from a somewhat different angle
by Jonsson [15] (see also Wallin [21], Sj6din[19], Blomquist-Jonsson [7] for
earlier work along these lines). In particular Jonsson obtained the limiting
case p = ~ of (0.1) ([15], th. 2). In [2] Adams gives a simplified proof of
estimates of the type (0.1).

In 1966 we wrote a paper [16] where we systematically applied the theory
oi interpolation spaces to some classical operators: Hilbert transform,
potential transform etc. It is the purpose of this note to show how these
methods can be used in connection with the results of Adams and Jonsson.

The basic tool from interpolation space theory is the relatively simple th. 1.3.
With some imagination one can say that it is implicit in [16]. Although
no genuinely new results are obtained, we do hope that the present note
will serve to clarify several points, in particular the precise interrelation
between the results of Adams and Jonsson.

The organization of the note is as follows. Section 1 is devoted to a

(*) Department of Mathematics, Lund Institute of Technology.
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quick review of some abstract interpolation theorems, of which thus th. 1.3
is the result which will be used here. In Section 2 we prove estimates for

general integral operators acting in L~ spaces. In Section 3 the latter are

then applied in the special case of the (Riesz) potential. (Whether we use
Riesz potentials or Bessel potentials here is to some extent immaterial.)

1. - Abstract interpolation theorems.

By a Banach couple we mean an entity A = ~Ao , A,l consisting of two
Banach spaces Ao and A, both continuously embedded in one and the same
Hausdorff topological vector space, say, ~. With a Banach couple
A = ~Ao, A,l one can associate certain spaces (« K-spaces ») Aoa = (Ao, 
where 0 and q are parameters, 0 C 8 C 1, which are also all con-

tinuously embedded in A.
The basic property of K-spaces is the following interpolation theorem.

(For more information see [16], Section 1; a complete treatment can be
found e.g. in [8], chap. 3).

THEOREM 1.1. Let there be given two Banach couples A = ~Ao, A,l and
B = ~Bo , B,l and denote by T a linear operator. Then holds:

Moreover for the operator norms involved holds the convexity inequality:

PROOF. Use the inequality

(1.1) K(t, Ta; B)  a; A) (with Mi = = ol 1))

and the definition of the K-spaces.
As has been pointed out in [17], considering the « operator couple &#x3E;&#x3E;

C(f4, B) Bo), C(A1, B,)I, one can generalize th. 1.1 as follows:

(1) If A is a Banach space continuously embedded in A and B a Banach space
continuously embedded in 93 (which is the Hausdorff topological vector space cor-
responding to B) T E B) means that the restriction of T to A maps A con-
tinuously into B.
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THEOREM 1.2. We have :

In this note we shall however need the following variant of these results.

THEOREM 1.3. we have:

PROOF. Let w be a fixed number ~ 1. That T E (C(Ao, Bo), C(Al, 
signifies that we have

Let From (1.1), with Mi - (i = 0, 1), follows

Therefore since we get

It is readily seen that (1.2) implies Ta E Booo.

2. - Estimates for integral operators.

Let X and Y be spaces equiped with positive measures p and v. Let

.Lp = L~ and La = L§ be the corresponding Lebesgue spaces. More generally, y
let L(E) = LLp(E) and = La (.E’) be the corresponding Lebesgue spaces
in the vector valued case, .E denoting any Banach space. Similarly .Lpr and L,,,
are the Lorentz spaces (see [16]). Consider the integral operator

where the kernel k is assumed to be (,u, v)-measurable. Our first result is

presumably classical.
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THEOREM 2.1. Assume that

Then

Also

PROOF. From (2.1) using Holder’s inequality we get T E L~).
Similarly using Minkowsky’s inequality (conveniently viewed as a sort of
dual of Holder’s inequality) (2.2) gives Z’ E C(Ll, .L$) . By the M. Riesz

interpolation theorem interpolation between these endpoint results clearly
yields (2.3) and (2.4). See Fig. 2.1 below

Figure 2.1

We now sharpen th. 2.1 as follows.

(2) Here and in what follows p’ is the conjugate power of p, lip -E- 1.



37

THEOREM 2.2. Assume that

Then

PROOF. Consider the sets

and define kj and Tj by

Then clearly Moreover we also have for any r and "8

for we have

Here, for is the projection on X of and simi-

larly, for the projection on Y n {(~y Y}. Choose Po, P1,
ro, rl, 80’ si such that with some 0  0  1 holds



38

(This is possible in view of (2.6). The reader might want to contemplate
fig. 2.1 again.) Then follows from (2.4) that (take r = ri, 8 = Si)

This we can rewrite, with as

It is now plain that th. 1.3 (or rather its proof) can be applied. Since

we get T E Another interpolation now yields the desired con-
clusion (2.10).

REMARK 2.1. For convolution operators th. 2.1 and 2.2 are essentially
the inequalities of Young and O’Neil (see [16]). Th. 2.2 is substantially [2],
cor. of th. A. (It would not have been difficult to cover also [2], th. A itself
in full.) An alternative proof of th. 2.2 (not using th. 1.3) could have been
based on the Lorentz version of th. 2.1.

Now we consider the extremal case p = q. Since then 1

we must have r = s = 1. (Note that in any case r/p’+ s/q = 1 implies
p c q. ) In other words (2.7) is violated so anyhow th. 2.2 does not apply.
Th. 2.1 gives us however the following classical result:

REMARK 2.2. Indeed, the matrix version of (2.9), with p = 2 at least,
goes back to Frobenius [11] (1909) and Schur [18] (1911). This is related

to Frobenius’ theorem on positive matrices but also to Hilbert’s double

series theorem (see Hardy-Littlewood-Polya [14], chap. 9). A continuous
version, also with p = 2, appears in Carleman [9] (1923), who refers to

Holmgren. The same argument appears also in the proof of the Kolmo-

goror-Seliverstov-Plessner theorem in the theory of orthogonal series (1928)
(see e.g. [3]).

Now we want to give an extension of (2.9).

THEOREM 2.3. Assume that
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Then

Also

PROOF. It suffices to estimate the integral

where We rewrite it as

Then Holder’s inequality clearly yields

which is all we have to verify.
Using interpolation (the argument of the proof of th. 2.2) we also readily

obtain.

THEOREM 2.4. Assume

and also (2.7). Then

Finally we also consider the case q  p. (This will not be used in Sec-
tion 3.) The proof is by an easy adaptation of the argument of the proof
of th. 2.3.

THEOREM 2.5. Assume
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Then we have

Also

REMARK 2.3. Condition (2.19) originates from Aronszajn (see Aronszajn-
mulla-Szeptycki [5], see also Gagliardo [13] ) .

The interpolated version of th. 2.5 (if there is any) is left as an excercise
for the reader.

3. - Application to potentials.

We want to apply the results of Section 2 with X = Y = k(y, x) _
(0  a  n). Besides a (the order of differentiation) we also

use d = n - a which has an obvious interpretation as dimension.

DEFINITION 3.1. A positive measure ,u in Rn is termed a-dimensional

(0  a  n) if we have for any ball of radius r the estimate

with C depending only on p.

EXAMPLE 3.1. If ~===1~ thus will do.

Given p we also denote by (0  a  n) the space of functions u
which can be represented in the form

with f E .Lp(,u). Then we have

THEOREM 3.1. Let u be a-dimensional, v b-dimensional. Then

REMARK 3.1. This is Adams [1], th. 2, if a == n, !-t = Lebesgue measure.
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PROOF. Apply th. 2.1 in conjunction with the following

LEMMA 3.1. Let ,u be a-dimensional. Then k = E if d = a/r.

PROOF. It suffices to estimate the measure of the set where ~, c k C 2~,,
i.e. the annulus (2Â)-1/d  By (3.1) this measure is  ;..-ald. We

get 
We have also

THEOREM 3.2. Assume again pa-dimensional, v b-dimensional. Then

REMARK 3.2. This is Adams [l~, th. 3, if a = n, fl = Lebesgue measure.

PROOF. We now apply instead

LEMMA 3.2. Let It be a-dimensional. Then 1 = lh Ix + 
if d -+- 1 ~ a/r ~ d. Moreover 0  #  1.

PROOF. It suffices to consider the case Ihl = 1. That the restriction

of I belongs to follows from lemma 3.1. That its restric-

tion to 2} is in follows in the same way if we use the estimate

z = 0( )r)~~*~ ~), r - 00.
More generally we have

THEOREM 3.3. Let again be a-dimensional, v b-dimensional. Then

PROOF. Analogous to the case of th. 3.2.
Finally we consider the limiting case q = p.

(3) Here denotes the N-th tensorial derivative of u and hN. DN its scalar

product with the N-th tensorial product of h.
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THEOREM 3.4. Let again Iz be a-dimensional, v b-dimensional. Then

REMARK 3.2. This is Jonsson [15], th. 2 if a === n, !-l = Lebesgue measure.
PROOF. Same as for th. 3.2 but we use now th. 2.3.

We also discuss some variants of th. 3.4.

1) Let us introduce the (Besov spaces &#x3E;&#x3E; by setting

(If fl = Lebesgue measure, these spaces are known to coincide with the

usual Besov of Lipschitz spaces (cf. e.g. [15]).) A simple interpolation
argument now shows that (3.5) can be sharpened into

2) By interpolation we can also prove that

Indeed from (3.1) follows (using (3.5))

It is now plain that th. 1.3 can be applied. We get (3.9) with in

place of Another interpolation leads to (3.9) in full.

REMARK 3.3. The same type of argument can be applied in a manifold
of situations, e.g. in proving Flett [10], th. 1 (which result incidentally is
used to prove certain theorems of Hardy-Littlewood).

If a == n, fl == Lebesgue measure, b == integer  n, v = the induced measure
on a b-dimensional submanifold, we now recognize the Aronszajn-Babic-
Slobodeckij-Gagliardo-Stein necessary and sufficient condition for the trace
(cf. Introduction). It is tempting to conjecture that this is a necessary and
sufficient condition also for more general (not too big) subsets with fl may
be an equilibrium measure.
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