Euler-Poincaré index theory on Banach manifolds
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 2 (1975) no. 1, pp. 89-106.
@article{ASNSP_1975_4_2_1_89_0,
     author = {Tromba, A. J.},
     title = {Euler-Poincar\'e index theory on {Banach} manifolds},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {89--106},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 2},
     number = {1},
     year = {1975},
     mrnumber = {385913},
     zbl = {0315.58006},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_1975_4_2_1_89_0/}
}
TY  - JOUR
AU  - Tromba, A. J.
TI  - Euler-Poincaré index theory on Banach manifolds
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1975
SP  - 89
EP  - 106
VL  - 2
IS  - 1
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_1975_4_2_1_89_0/
LA  - en
ID  - ASNSP_1975_4_2_1_89_0
ER  - 
%0 Journal Article
%A Tromba, A. J.
%T Euler-Poincaré index theory on Banach manifolds
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1975
%P 89-106
%V 2
%N 1
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_1975_4_2_1_89_0/
%G en
%F ASNSP_1975_4_2_1_89_0
Tromba, A. J. Euler-Poincaré index theory on Banach manifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 2 (1975) no. 1, pp. 89-106. http://archive.numdam.org/item/ASNSP_1975_4_2_1_89_0/

[1] K.D. Elworthy - A.J. Tromba, Differential structures and Fredholm maps on Banach manifolds, Proc. Symp. on Global Analysis, Berkeley, 1968. | Zbl

[2] K.D. Elworthy - A.J. Tromba, Degree iheory on Banach manifolds, Proc. Symp. on Pure Math., 18; Amer. Math. Soc., Providence, R.I., 1970. | Zbl

[3] J Milnor, Topology from the Differentiable Viewpoint, Univ. of Virginia Press, Charlottesville, Va., 1965. | MR | Zbl

[4] R. Palais, Morse theory on Hilbert manifolds, Topology, 2 (1963), pp. 299-340. | MR | Zbl

[5] R. Palais, Lectures on the differential topology of infinite dimensional manifolds, Notes, Brandeis University, Waltham, Mass., 1964-65.

[6] R. Palais, On the homotopy of certain groups of operators, Topology, 3 (1965), pp. 271-279. | MR | Zbl

[7] S. Smale, An infinite dimensional version of Sard's theorem, Amer. J. Math., 87 (1965), pp. 861-866. | MR | Zbl

[8] S. Kobayashi - K. Nomizu, Foundations of Differential Geometry, Interscience. New York, 1963. | MR | Zbl