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On the Capillarity Problem with Constant Volume (*).

CLAUS GERHARDT (**)

0. - Introduction.

In this paper we shall discuss capillary problems which arise physically
when the equilibrium surface of a liquid of fixed volume in a cylinder is
analysed. The surface u is determined by the principle of virtual work
which leads to the variational problem

where S~ is the cross-section of the cylinder, x is the (nonnegative) capillarity
constant, the obstacle 1p represents the bottom of the cylinder, and V is the
prescribed volume. The is the cosine of the angle be-
tween the free surface and the bounding cylinder walls, is absolutely

, 

bounded by 1.
The solvability of the variational problem depends on estimating the

boundary integral by
aQ

where Q, is the boundary strip fx E D: dist(x,  el and c, a constant

depending on 8 and 8Q.

(*) During the preparation of this article the author was at the Universite de
Paris VI as a fellow of the Deutsche Forschungsgemeinschaft.

(**) Mathematishes I nstitut der Universitdt, Bonn, Wegelerstr. 10, D - 5300 B onn .
Pervenuto alia Redazione il 18 agosto 1974.
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The simplest and most far-reaching condition which we shall impose on aSZ,
in order that an estimate of this kind holds, is an interior sphere condi-
tion (ISC):

DEFINITION 0.1. S~ is said to satisfy an ISC of radius 1~, if for any boundary
point xo E êJQ there exists a ball B of radius .R such that B c Q and Xo E B.

REMARK 0.1. An equivalent statement is to say that every interior point
x E Q is contained in ball B of radius .R which lies entirely in Q.

The main theorem which we shall prove is the following

THEOREM 0.1..Let Q be a bounded domain of Rn, n &#x3E;- 2, with Lipschitz
.boundary aSZ satisfying an ISC of radius R, and let and

be given functions. Then the following results are valid

(i) The variational problem (0.1) has a 

provided that fl is bounded by

Moreover, u also solves the variational problem

where A is a suitable Lagrange multiplier.

(ii) If 1p is supposed to be of class H2~p(S2), n  p ,00, then u has the

same degree of smoothness locally, i. e.

(iii) In the case that x is strictly positive the solution is uniquely deter-
mined in BV(Q) and the preceding results are valid for any

with ~8 ~ ~ 1, and there exists a positive number V*

such that

provided that
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1. - A priori bounds for I u 1.

In the following, we shall consider a slightly more general variational
problem than the preceding one: Let and j : be

given functions such that

where a is some positive constant, and j satisfies a Caratheodory condition,
i. e. it is measurable in x (with respect to the (n -1 )-dimensional Hausdorff
measure on 9D) and continuous in the second variable. Furthermore, we
assume that for Jen-1 - a.e. j(x,) is a strict contraction, i. e.

where a is independent of x, that

is convex,

The functional I is contained in this general setting taking .H(x, t) = x ~ t
and j(x, t) _ -~(x) ~t. Furthermore, let us remark that

Then, we consider the functional

cp E L1( oQ), also satisfies the conditions imposed on j.
Under the preceding assumptions on Q, H, and j we can prove

LEMMA 1.1. Let u be a solution of the variational problem
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Then u can be estimated by

where the constant C1 depends on (p&#x3E;n), a, n, and

on a constant co which will be defined in the following.
Here, we denote by 11 - ll,,, q? 1, the norm in 
Before proving the lemma, let us mention a result which has been derived

in [7; Remark 2].

LEMMA 1. 2. Let Q be a bounded domain o f Rn, n -&#x3E;- 2, with Lipschitz boundary
satisfying an ISC of radius R. Then the following estimate is valid

where S~~ == fx E D: dist(x,  8}, c, depends on 8, R, and 3D, and E is any
positive number less than or equal to 

PROOF OF LEMMA 1.1. Let k be a positive number greater than 
n

and set Uk = min (u, k). Then Uk belongs to .K2 and from the minimum

property of ~c we get

Hence, using the notation A(k) = u(z) &#x3E; k} and supposing for a mo--
ment u to be smooth, we obtain

where I denotes the Lebesgue measure in ltn of A(k).
In view of the condition (1.2) the boundary integral can be estimated by

or, taking Lemma 1.2 into account, by

where we have set
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Furthermore, observing that

in view of the monotonicity of H(x, ~ ), we deduce from (1.10) and (1.12)
the inequality

which will also be valid for using an approximation argument
(cf. [7; Lemma A4]).

To estimate the integral we use the Hölder inequality,

where we denote by n* the conjugate exponent, lfn* = I - l fn.
Thus, using the Holder inequality again, we obtain from ( 1.14 )

Now, applying the Sobolev imbedding theorem and using the fact that

we derive from (1.16)

for where l~o and C2 depend on a, co , and known quantities.
Hence, we conclude

or finally
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From a lemma due to Stampacchia [13; Lemma 4.1] we now deduce

Though u is obviously bounded from below it would be worth
to get the sharper estimate (1.7), for by this we had also derived a bound for
solutions to the free problem

setting formally _ - oo .
In order to obtain the lower bound we insert ~ck = max (u, - k) in (1.9).

The proof of Lemma 1.1 can then be completed by similar considerations
as above.

2. - Existence and regularity of solutions to the variational problem.

Generally, y the functional J does not have a minimum in the convex
set unless we impose some growth condition on H. However, we can
prove a rather abstract existence theorem which will be very useful in the

following.

THEOREM 2.1. Let Q and J be as in Lemma 1.1, where we may assume

that j is only a contraction, i.e.

Let be convex and closed with respect to convergence in L1(,Q).
Furthermore, let v,, be a minimizing sequence for the variational problem

such that

and

uniformly in c. Then a subsequence of the Ve’S converges in L1(Q) to some

f unction u E B V (,S2 ) which minimizes J.
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PROOF. The theorem has more or less been demonstrated in [7; Ap-
pendix II], but for convenience we shall repeat the rather short proof.

From [12; Theorem XVI], the Sobolev imbedding theorem, and

[11; Theorem 2.1.3] we conclude from (2.4) that the we’s are precompact
in any Ll(,Q), Hence, let us suppose for simplicity that
ve - u in Assume by contradiction that J(u) is strictly greater than
lim J(Ve). Then, there exists a positive constant y and a number Eo such that

In view of (1.8) and (2.1) we have the estimate

where Qd is a boundary strip of width 6, and 6 is sufficiently small.
Thus, we deduce

If 8 tends to zero, then we obtain in view of the lower semicontinuity of the
integrals on the left side of (2.7) (cf. [8; formula (64)]

To complete the proof, we let 6 converge to zero which gives the con-
tradiction.

The interior regularity of solutions to the variational problem (1.6)
follows from the theorem below which has been proved in [8; Theorem 6-
and Lemma 4].
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THEOREM 2.2. Let w be a locally bounded solution in BV(Q) of the varia-
tional problem

where .~ E X R) satisfies alllat &#x3E; 0. Then w is locally Lipschitz in Q
provided that 1p E and we have the interior gradient estimate

-Furthermore, if we assume 1p to be of class H2oV(Q), n  p .00, then w belongs
to c Precisely, we have the estimate

where A is the minimal surface operator in divergence form.

3. - Existence of a Lagrange multiplier.

In this section we shall show the existence of a real number A such that

the variational problem

has a solution UA E K2 such that

where the volume V is prescribed. Thas, ui also solves

THEOREM 3.1. Suppose that Q, 1jJ, H and j satisfy the conditions stated in
Section 1. Then, the variational problem
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has a solution u E r1 for any prescribed volume 
u also solves the variational problem

where 2 is a suitable unique Lagrange multiplier. The mapping

are continuous and nondecreasing resp. nonincreasing. I’urthermore, is

supposed to be of class H2~~(S~), then u satisfies

PROOF. For E &#x3E; 0 set

Similarly, we define Je and

Then, for arbitrary p E R we shall demonstrate the following lemma.

LEMMA 3.1. Let E, 0  E  1, be given. Then, under the preceding assump-
tions, the variational problem

has a unique solution - &#x3E; such that the estimates

and

21 - Annali della Scuola Norm. Sup. di Pisa
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are valid, where the positive constants are independent from 8 and fl, and

lill denotes the Lebesgue measure of S2.

PROOF OF 3.1. In order to prove the existence of a solution to (3.11 )
let v, be a minimizing sequence of the variational problem. Then, taking
the estimates

and

into account we deduce from Lemma 1.2

where we have set Co = CRf2.
Thus, we conclude that the sequence

is uniformly bounded. Hence, the existence of a solution ue,, follows from
Theorem 2.1. Moreover, since the functional J~,,~ is strictly convex the
solution is unique. The Lipschitz regularity and the boundedness of 
are consequence of the Theorem 2.2 and Lemma 1.1.

To derive the estimate (3.12), we observe that the inequality (3.16) is

satisfied by too; hence the result.
On the other hand, r~ &#x3E; o, 0 be given. Then,

~a + 3q belongs to K2 and we obtain from the minimum property of u,,,,
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Therefore, we finally conclude that the inequality

is valid. Now, the estimate (3.13) follows from inserting 1 in the

preceding inequality.
Let us remark that we needed the assumption only for this estimate.

Thus, if we define for fixed s

we deduce from (3.12) and (3.13)

and

The existence of a Lagrange multiplier now follows from the fact that V
depends continuously on u.

3.2. Let the assumptions of Lemma 3.1 be satisfied. Then, for
fixed s, the mapping

is continuous.

PROOF OF LEMMA 3.2. Let p, be a convergent sequence, 
and let u,,, resp. be the solutions to the variational problem (3.11) }
with the respective functionals and Je,po. Then, the form a mini-

mizing sequence for the variational problem

such that the integrals
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are uniformly bounded (cf. formula (3.11)). The rest of the proof now follows
immediately in view of the Theorem 2.1 and the uniqueness of the solution.

Thus, for fixed c and V there exists a parameter Âe such that the solu-
tion of the variational problem

satisfies

Hence, we obtain

Moreover, from Lemma 3.1 and Lemma 1.1 we deduce that ~e and 
are uniformly bounded for fixed V. Hence, the integrals

are uniformly bounded.
Thus, letting s go to zero, a subsequence of the converges to some

real number Â. The respective solutions then form a minimizing sequence
for the variational problems

Hence, we conclude from Theorem 2.1 that a subsequence of the 

converges in to some function uÂEBV(Q) which solves both varia-
tional problems. Furthermore, the solution of the variational problem (3.32)
is uniquely determined in the class since the difference of two solu-

tions must be a constant, which has to be zero in view of the side conditions.
Thus, the first part of Theorem 3.1 is proved.

It remains to prove the properties of the mappings h, and h2, since the
interior regularity of u follows from the estimates for ue.ï.s.

First of all, let us observe that both mappings are continuous, y which
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follows from the fact that they are compact and the solution ~c as well as the

Lagrange multiplier Â are uniquely determined.
The monotonicity of hI and h2 will be a consequence of the following

lemma

LEMAIA 3.3. Let ut and u~* be solutions of the variational problem (3.33)
with respect to the data Â, 1p, j and 2*, 1p*, j*, where, in contrast to condition (1.2 y
j resp. j* are not forced to be strict contractions. They are only supposed to be
uniformly Lipschitz in t. Moreover, we assume that at least one of the solu-
tions uÂ* is unique. Then, obtain

provided that the relations

and

are valid, and where, furthermore, the - j~‘(x, - ) is supposed to
be nondecreasing a. e. in 3D, which can formally be written as

Suppose the lemma to be valid. Then, the solution U8 of the perturbed
problem

where we have replaced H by Ht(x, t) = H(x, t) -f- ~ ~ t, is unique. Further-

more, the solution coincides with the one of the variational problem

if Â is equal to the Lagrange multiplier Âs. For 0, let the function

describe the dependece between V and 1,, and define
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and

similarly.
Then, we deduce that h2.e is nonincreasing for has this property;

hence, nondecreasing.
In the limit case, 8 the functions and h2.e converge to the func-

tions h, and h2 which can be seen by using a compactness argument and the

uniqueness in of the solution to the variational problem (3.32).
Thus, to complete the proof of the Theorem 3.1, we have merely to

demonstrate Lemma 3.3.

PROOF oF LEMMA 3.3. Suppose that ui is the unique solution. Then,
we have

and

Combining these relations and using the fact that

or equivalently

which can easily be checked distinguishing the cases and &#x3E; 

in view of (3.37), we deduce from (3.43) that

hence the result.

REMARK 3.1. Let j(x, t) - it - I and j*(x, t) - it - gg*(x) I with

91* E LI(aSZ). Then, the condition (3.37) is satisfied provided that

for we have
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4. - The case where H satisfies a certain growth condition.

In this section we shall assume that besides the preceding conditions H
satisfies the relations

Then, we can prove the following generalization of Theorem 3.1.

THEOREM 4.1. Suppose that H satisfies the growth conditions (4.1 ) and (4.2).
Then, the results of Theorem 3.1 remain valid if we replace the !condition (1.2 )
by the more general assumption

Moreover, there exists a positive number V* such that a solution u E H1’I(Q)
of the variational problem

satisfies

provided that

PROOF. Let us remark that the solution u of the variational problem (3.4)
is absolutely bounded in terms of a, Â, and Tr (cf. Lemma 1.1), whereas 121
is estimated in terms of V (cf. Lemma 3.1 ) . Thus, to prove the first part of
Theorem 4.1, we have only to show that lul is bounded independently of a,
using an approximation argument afterwards (cf. Theorem 2 .1 ) .

LEMMA 4.1. Suppose that H satisfies the conditions (4.1 ) and (4.2), and
let uEH101(Q) be a solution of the variational problem (3.5). Then, u is ab-
solutely bounded by some constant m, which only depends on H, R, Â, n, and
sup max (y, 0).

92

PROOF OF LEMMA 4.1. We shall only show the existence of an upper
bound, since the lower bound could be established by similar considerations.
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First of all, let us assume that

Then, u belongs to and is a solution of the variational inequality

where A is the minimal surface operator and Q’ any compact subdomain
of Q. From (4.7) } and the regularity of u we immediately deduce

Now, let B~ be a ball of radius R such that and let

B Ro be a concentric ball of radius .Ro, where we assume

that the center of the balls lies in the origin. Let 30 be the lower hemisphere

Then, we have I ) and

Furthermore, let M be a positive constant such that

and

Then, satisfies the inequality

Combining the relations (4.8) and (4.13) we obtain
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On the other hand, we know that Iflul is uniformly bounded in Thus
we deduce

Since we have Ro still at our disposal, we choose l~o near 1~ such that

where v is the outward normal vector to aBR. *
Partial integration in (4.14) then leads to the desired result

in view of (4.16) and the strong monotonicity of the operator A + H(x, )-
Hence, we obtain

or finally

As Q satisfies an ISC of radius R, it can be completely covered by balls.
of radius R. Hence the estimate (4.19) holds uniformly in S~.

If 1p is merely Lipschitz, we approximate 1p by smooth functions 
Let us be the respective solutions of (3.5) which satisfy the estimate (4.19).
Then, since the solution u is unique., the converge uniformly on compact
subdomains of Q to u, hence the result.

REMARK 4.1. Concus and Finn [2] have been the first who used the ISC
to get a bound for the solution to the capillarity problem.

In order to prove the second part of Theorem 4.1, let us observe that
the free problem

has a solution uo e n as follows from the preceding considera-
tions (we may formally set 1p == - oo), provided that H satisfies the growth
conditions. Let be sufficiently large such that

Then we conclude from (3.6) that we may choose
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REMARK 4.2. The preceding results (except those in the first part of
Theorem 4.1) are also valid, if S~ is merely supposed to be a bounded Lipschitz
domain, provided that j satisfies the natural restriction

where

and L is a bound for the Lipschitz constants of the boundary representa-
tions of aS2 (cf. [7]).
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