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Quasiharmonic L?-Functions on Riemannian Manifolds (*).

LUNG OCK CHUNG - LEO SARIO - CECILIA WANG

Let @ be the class of quasiharmonic functions ¢, defined by Ag¢=1,
with A= dd +d0d the Laplace-Beltrami operator. Denote by P, B, D, C
the classes of functions which are positive, bounded, Dirichlet finite, or
bounded Dirichlet finite, respectively. For X =P, B, D, C, let O} be the
classes of Riemannian N-manifolds, N >2, for which QX =Q N X = @. These
classes are known to be related by the strict inclusion relations

for each N, whereas there is no inclusion between 0§y and O[3, 5].

In the present paper we introduce the class @L» of quasiharmonic func-
tions in L#, with 1<p < oco; the value p = oo will be excluded since 0},
is nothing but 0Y,. If OV signifies the complement of OY with respect to
the totality of Riemannian N-manifolds, then we shall show that
0¥, N 0Y,# 0, 0Y,,Nn 0¥ +0, 0%,Nn0Y,+0 for p>1, X =P, B, D, C;
0%, N 0Y, 0 for p>1, X = P, B; and 0Y,,N0Y, 50 for p>1. In striking
contrast with these noninclusions, we shall establish the strict inclusions
0}, < 0},, and 0§, < 0f, for p>1.

1. — We first prove the existence of N-manifolds which carry neither QL»
nor QX functions:

(*) The work was sponsored by the U.S. Army Research Office, Grant DA-
-ARO-31-124-73-G39, University of California, Los Angeles.

MOS Classification: 31B30.

Pervenuto alla Redazione il 10 maggio 1974 e in forma definitiva il 9 luglio 1974.
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THEOREM 1. 0§, N 0Jy# 0 for N>2, 1<p< oo, X=P, B, D, C.

PROOF. An example is simply the Euclidean N-space EY. We first
show that QL*=@. Every g€ can be written as ¢=¢q, +h, where
¢o= —1*[2N €@ and h belongs to the class H of harmonic functions. Set
h = h(0) + k, with h(0) the value of k at the origin. Since fde: ¢k(0)=0,
we have EY

Ilqlll=flqo +h(0) +E|dV > |f(qo +1(0))dV|= oo;
EY EN

in fact, g +h(0)~er* and dV=r""14(6)drdo,...d0,_,, with A a trigono-
metric function of 6= (0, ..., 05_,).

To see that QL?» = @ for p>1, take a function ¢ € C*(E¥) with ¢ = r*
on {r>1}, « a real constant to be specified later. If p’ is determined by
1/p +1/p'=1, then

oIz =a+b[r= ¥ "1dr < oo,
1

that is, p e L*, for «<<— N/p'. Suppose there exists a function qeQLs.
Then |(¢, ¢)| << co. For some heH,

(g, @) = |(go + 1(0) + %, @)| = |(¢0 + 1(0), ¢)| = o0

if a>— N —2. Thus any ae[— N —2,— N/p’) gives a contradiction, and
we have QL?= ¢ for every p>1.

We proceed to show that E¥ € 0y for all X. It suffices to establish
QP = @. Write again an arbitrary ¢e@Q as ¢= ¢, +h. Take an increasing
sequence {r,}7° with r, —>oco. For every n there exists an 6" = (6}, ..., Oy_,)
such that h(r,,0") = h(0). Therefore ¢(r., 0") = () + h(0) - — oo, and
q¢QP.

2. — The relation 03;,NOY; 0 is trivial in view of the Euclidean N-ball.
We proceed to give a Riemannian N-manifold which carries QL? functions
but no QX functions.

THEOREM 2. O, N 0Yy# 0 for N>2, 1<p< co, X= P, B, D, C.

Proor. Consider the manifold

T:{(x, 9, ..., yN_1)||w| < oo, ly;|<1,i=1,..., N —1},
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with the opposite faces y,=1 and y,= — 1 identified for each ¢ by a pa-
rallel translation perpendicular to the zx-axis. Endow T with the metric

N—-1
ds? = ¢~ da? 4 ¢~V Y dy?.

i=1
For a quasiharmonic function ¢,(x) we have
Agy(@) = — 6" (e 6" g () =1,
which is satisfied by

x t
_ — - .
0(@) Of Ofc at dw

To estimate
©o x

g0l %= ”ffe“'dtdwlpe*”'dx

—oc 0 0

we set a = f e "dt and obtain
0

lgol3 < a%eflal?e™ o < oo.
Therefore T €03, for all p.

A harmonic function hy(z) satisfies Ahy(x) = — ”(¢~%" ¢“ hy(x))' =0, which
gives hy(x) = ax +b. The harmonic measure o of the boundary component
at 2= oo on {#>0} is w=1lim, w,, with 0, = 2/n harmonic on {0 <z<n}.
Thus w = 0, the same is true of the harmonic measure of the boundary
component at = —oo, and therefore T belongs to the class 05 of parabolic
N-manifolds. In view of O c0p, (loc. cit.), we obtain T € 0jy for all X.

3. — Our next problem is to find an N-manifold which admits QX func-
tions for X = P, B, but no QL? functions.

THEOREM 3. O0),NOY %0 for N>2, 1<p< oo, X =P, B.

Proor. Let M be the N-space equipped with the metric

N—1
ds* = dr® 4+ p(r)?¥=10 3 2.(60) do?,
1



472 LUNG OCK CHUNG - LEO SARIO - CECILIA WANG

where ye ([0, o),
N-1 for r<i
w(r) = { r 2

eer for r>1,

and the 4, are trigonometric functions of 6 such that the metric is Euclidean

on {r<}}. The function
t

Qo(r) = —Jrzp“(t)ftp(s)ds dt
0

]

satisfies the quasiharmonic equation Ag,= — -1(¢q;)’= 1. For r>1,
T t
0o(r) = a6(1) — [ete+(a + [orerds) at
1 1

= (1) —f(e—t a6ty di— 0(1)
1

as 7 —> oco. Therefore ¢,€ @B, and M €05, < 0Y,.
We next prove that M e0J),.. Suppose there exists a ge@QL. Then
|(g, e7")| < oo. We may again write q=g¢, +¢ +%, ke H, k(0)= 0, and

(@6 = (@ +¢,67) = a +b[(gy +-)eeerdr
1

Set

Cp = — ¢o(00) =f¢‘1f1pds dt.
0 0

If ¢+ ¢,, then 'l__lg}) (9o +¢)=d+#0, and |(¢,¢")|= oo. If ¢=¢,, then for
r>1

qo + ¢ =f(e“ “+a, e—"e—')dt
and

(g e")=a +b j (o + ) e dr
1

=a+b if (e—' + alfe—ete—‘dt) e dr

T
co o

=a -+ b}oe—'e"dfr +a, bf ( f e-"'e—‘dt) eeTerdr .
1 1

T
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Here

oo

. ¢ t r . —e e "
— -—_ 14 ) J— —_— =
o fe retdtfe e = i ey

r

so that for some R >0,

(g,e")=c +bleedr —I—a,bfo(l)e“'dr .

1 R

The last integral converges, the first diverges, and therefore |(q, ¢")| = oo.
This contradiction shows that ¢¢ L', that is, M € 0],,.

To see that M € 0f;, for p>1, let p’ be determined by 1/p +1/p'=1.
For a function ¢ e C*(M) with

plr> 1} = (e~<err2ys

we have

o2 =a+ bfe"'e"r‘ze"e'dr < oo,
1

hence pe L?. If there exists a qge@QL?, then |(¢g,p)|<oco. But (g, ¢)=
= (g +¢, ¢), and if ¢s¢,, the integrand in (g, + ¢, ) is asymptotically

- ,or r ,
01(0”’ e—r7—2)1/p ecer = ¢,6° Ip grlp p—2/p ,

s0 that [(¢, + ¢, ¢)| = oo, a contradiction.
In the case ¢= ¢, we observe that for r>1

oo

g +C=1¢"+ alfe_cte_tdt ’

r

with
fe"te“dt < e—"fe“tdt =e¢"e,
r T

so that g, +¢~e" as r — oo. It follows that the integrand in (g, 4 ¢, @)
is asymptotically

~1(g—¢ e—Tp—2)1p e’ ot — @e'Ip p—1Iv y—2/0’
e '(6 e o—Tp ) et er — et [P o—1/P'p /p’
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and therefore |(g, -+ ¢, ¢)|=oco. This contradiction shows that M €0},
and the proof of Theorem 3 is complete.
In the proofs of Theorems 1-3 we have actually shown somewhat more:

nongﬁOgX;éﬂ,
]

N0 N 0Gx# 0
for N>2, 1<p<< oo, X=P, B, D, (C; and

DogL"nogx¢¢
for N>2, 1<p<oco, X=P, B.

4., — Next we are to find an N-manifold which carries @D functions but
no QL? functions. First we consider the case p > 1.

THEOREM 4. 0, NOY,# 0 for N>2, 1<p< co.
Proor. Take the manifold
T:{(® Yy -r Yyy_)0<ax <1, |yi<m, i=1,..., N—1},

with the opposite faces y,= =, y,= — n identified as in No. 2, and choose-
the metric

N—1

d82 — w—%d‘,v‘z +.’E2ﬂ/(N—l) Zdy2,

1

where «, § are real constants to be specified later; they will depend on p,
so that we shall not have a generalization of the theorem in the same manner-
as at the end of No. 3.

The function

Qo) = — (B —a +1)7}(— 200 + 2)1g2at
satisfies the quasiharmonic equation

Agy = — a*P(afareq,) =1

provided
f—oa—+1+£0, a#l.
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The Dirichlet integral is

1 1
D(q,) = ¢|g2a**aP*da = clfmﬂ_s“”dm <oo
[

0
if
B—3x+3>0.

For the L? norm we have

1
[goll3 = oo 270" = dp — oo
0

if
B—(2p +1)a +2p +1<0.

An inspection of the last two inequalities shows that p =1 is ruled out. For
p>1, a>$}, pe(3(a—1), (2p +1)(x—1)],

all four inequalities are satisfied. In particular, Teﬁgp.

The exponent § — « in the volume element is positive, and the constant
function 1 belongs to L? for our p'>1. Suppose there exists a ge@QL>.
Then |(g,1)| < oo.

Every he H can be written

h(@, y) = ho(@) + 3 fu(@) Gu(y)

where h,eH, f,G,€ H, n= (ny, ..., ny,), the n; integers >0, the G, pro-
ducts of the form

(0]

G ( ) COS COS
= . N .. N e . My -
(Y sin 1Y1 sin 2Y2 sin ¥ 1YN—-1)

and the prime in Y’ indicates that in each term at least one =, does not
vanish. The harmonic equation Ahy(x) = — x*B(wf—2x**h])’ = 0 is satisfied by

hy(x) = amp—*—F+1 - b .
Suppose first a4 0. Since —2a 42> —a—f +1,

qo() + ho(x) ~ ho(w) as ¢ —0.
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It follows that the integrand in (q,1)= (g, 1+ ho,1) is asymptotically
xe—ptrtp-a— g-2et1 - A fortiori, |(g,1)|= oo, a contradiction.
Now let a =0, hy,=>. Since

(P(w) — x(~2u+2)/ﬂ'€L1}"

|(¢, )] < co. On the other hand,
1
|(Q7 ‘P)l == I(QO + b} (P)| = U, + bl m—2d+2w(—2a+2)/p’$ﬁ—adx == OO0
0

if
—2(a—1) (1+%) +h—@—1)<0,
ie.,

ﬂ<(3+}) (x—1).

Since 2p +1>3 +2/p’ for p>1, the choice

pefs—1, 3+ 2) =)

gives the contradiction |(¢, ¢)| = oo while preserving the earlier inequalities.
We conclude that 0., N 0%, 9 for all p>1.

5. — For p =1, 03, N 0Y,+0 is no longer true. In fact, we even have
a striet inclusion:

THEOREM 5. 0, < OF, for N>2.

Proor. To prove the inclusion relation ogL,cogD, suppose u€QD. For
any regular subregion £, the Riesz decomposition yields (cf. e.g. Nakai-
Sario [3])

u(@) = ho(@) +[gal@, ) dy
Q

on Q, where hg(x) is the harmonic function on 2 with ho=wu on 00,
and g,(z, y) is the Green’s function on £ with pole y. By Stokes’ formula,

[ [9a(, )y do< Dyw) .
2 Q
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On letting 2 — R we obtain

ffg(w, y)dydr<D(u) << oo,

R R
where ¢ is the Green function on R. Since 4 fg(a;, y)dy =1, we have
fg(w, y)dy €QLY, and therefore 03;.c 0J,. By Theorem 2, 0F.Nn 0%, 0,
hence 05, < 0§,

6. — It remains to consider the class @C. Here we have the most elegant
case, as there is striet inclusion for all p:

THEOREM 6. 0f;,<0g, for N>2, p>1.

Proor. In view of Theorem 2, it suffices to show that 0J;,cOg.
Suppose R¢0J,, and take a u€@QC. The Riesz decomposition of « on Q&
implies

J9at@, 91 dy < [u@)| + hg(a)| <2 supglu(a)]
Q

On letting Q2 — R we obtain f g(z, y)dy € B. From the proof of Theorem 5

we conclude that f g, y) dyeC Let

R, = {ocR|[g(s, y)dy>1}.
R

Then
V(R,) fdw<”gw,y dy ds < oo.
R,
For p>1,
[(Jo@ nay)rao=[([g@ pay)eaz +[ ([o@, v ay)ra
R R R, R R—R, R

<MV(R) +] (@, y) dydw< oo,
R R

and therefore fg(w, y)dy e QL.
R
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