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Quasiharmonic Lp-Functions on Riemannian Manifolds (*).

LUNG OCK CHUNG - LEO SARIO - CECILIA WANG

Let Q be the class of quasiharmonic functions q, defined by dq = 1,
with + bd the Laplace-Beltrami operator. Denote by P, B, D, C
the classes of functions which are positive, bounded, Dirichlet finite, or

bounded Dirichlet finite, respectively. For X = P, B, D, C, let 0’ be the
classes of Riemannian N-manifolds, N~2, for which QX = Q r1 X = 0. These
classes are known to be related by the strict inclusion relations

for each N, whereas there is no inclusion between OQ and OQ [3, 5].
In the present paper we introduce the class QLp of quasiharmonic func-

tions in Lp, with 1 c p  oo; the value p = oo will be excluded since 
is nothing but O£. If ON signifies the complement of ON with respect to
the totality of Riemannian N-manifolds, then we shall show that

for p~l, 
X==P,B; and for p &#x3E;1. In striking

contrast with these noninclusions, we shall establish the strict inclusions
and for 

1. - We first prove the existence of N-ma~nifolds which carry neither QLp
nor QX functions :

(*) The work was sponsored by the U.S. Army Research Office, Grant DA-
-ARO-31-124-73-G39, University of California, Los Angeles.

MOS Classification : 31 B 30.

Pervenuto alia Redazione il 10 maggio 1974 e in forma definitiva il 9 luglio 1974.
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THEOREM 1. 1

PROOF. An example is simply the Euclidean N-space EN. We first
show that 0. can be written as q = qo + h, where
qo = - r2/2N E Q and h belongs to the class ~ of harmonic functions. Set

h = h(0) --f- k, with h(0) the value of h at the origin. Since kdV = ek(0) = 0,
we have ~

in fact, q, + h(O) _ er2 and with A a trigono-
metric function of 0 = (0~, ..., 

To see that 0 for p &#x3E; 1, take a function with 

on {r &#x3E; 1}, a a real constant to be specified later. If p’ is determined by
+I lp’= 1, then 

-

that for Suppose there exists a function qEQL’P.
Then ( (q, (  00. For some h E .H,

if ot &#x3E; - N - 2. Thus any a E [- N - 2, - N~p’ ) gives a contradiction, and
we have QLP = 0 for every p ~ 1.

We proceed to show that for all X. It suffices to establish

QP = 0. Write again an arbitrary q c Q as q = qo + h. Take an increasing
sequence {r.}- with r n -cxJ. For every n there exists an 0’ = (6~ ..., 6N_1)
such that On) = h(O). Therefore q(rn, 0") = + h(O) - - oo, and

QP.

2. - The relation is trivial in view of the Euclidean N-ball.

We proceed to give a Riemannian N-manifold which carries Q.Lp functions
but no QX functions.

THEOREM 2.

PROOF. Consider the manifold
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with the opposite faces yi = 1 and y, = - 1 identified for each i by a pa-
rallel translation perpendicular to the x-axis. Endow T with the metric

For a quasiharmonic function qo(x) we have

which is satisfied by

To estimate

we set a : dt and obtain

Therefore T E for all p.
A harmonic function ho(x) satisfies which

gives ho(x) = ax + b. The harmonic measure W of the boundary component
at a? == o0 on {~~0} is with harmonic on ~0 c x c n~.
Thus 0) =- 0, the same is true of the harmonic measure of the boundary
component at x = - oo, and therefore T belongs to the class O ] of parabolic
N-manifolds. In view of (loc. cit.), ,ve obtain for all X.

3. - Our next problem is to find an N-manifold which admits Qx func-
tions for X = P, B, but no QLp functions.

THEOREM 3.

PROOF. Let M be the N-space equipped with the metric
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where

and the ~i are trigonometric functions of 6 such that the metric is Euclidean
on ~r c ~ ~. The function

satisfies the quasiharmonic equation

as Therefore qo E QB, and
We next prove that Suppose there exists a Then

I(q,  We may again write q = qo +c -E- 7~, k(O) = 0, and

Set

then for

and
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Here

so that for some R &#x3E; 0,

The last integral converges, the first diverges, and therefore
This contradiction shows that that is, 

To see that for p &#x3E; 1, let p’ be determined by I
For a function 99 E C’(M) with

we have

hence If there exists a q E QLp, then (q,  00. But (q, q;) =
- (qo + c, and if co, the integrand in (qo + c, 99) is asymptotically

so that (qa -~- c, ~p) ~ = oo, a contradiction.
In the case c = co we observe that for r &#x3E; 1

with

so that as r -~ oo. It follows that the integrand in
is asymptotically
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and therefore This contradiction shows that 

and the proof of Theorem 3 is complete.
In the proofs of Theorems 1-3 we have actually shown somewhat more.-

for and

4. - Next we are to find an N-manifold which carries QD functions but
no functions. First we consider the case p &#x3E; 1.

THEOREM 4.

PROOF. Take the manifold

with the opposite faces
the metric

identified as in No. 2, and choose

7T 

where er, fl are real constants to be specified later; they will depend on p,
so that we shall not have a generalization of the theorem in the same manner-
as at the end of No. 3.

The function

satisfies the quasiharmonic equation

provided
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The Dirichlet integral is

if

For the LP norm we have

if

An inspection of the last two inequalities shows that p =1 is ruled out. For

all four inequalities are satisfied. In particular, 
The exponent fl - a in the volume element is positive, and the constant

function 1 belongs to Lp’ for our p’ &#x3E; 1. Suppose there exists a 

Then !(~1)! 00.
Every can be written

where /nGnEH, ? I
ducts of the form

the ni integers &#x3E; 0, the ~~ pro-

and the prime in Y’ indicates that in each term at least one ni does not
vanish. The harmonic equation 0 is satisfied by

Suppose first Since
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It follows that the integrand in ( q, 1 ) _ ( qo -~- ho , 1 ) is asymptotically
= X-2a+l. A fortiori, (q, 1 ) ~ = 00, a contradiction.

Now let a = Since

On the other hand,

if

Since ,- , the choice

gives the contradiction q~) ~ = oo while preserving the earlier inequalities.
We conclude that n OQ ~ ~ for all p &#x3E; 1.

5. - For p = 1, no longer true. In fact, we even have
a strict inclusion:

THEOREM 5.

PROOF. To prove the inclusion relation suppose For

any regular subregion ,5, the Riesz decomposition yields (cf. e.g. Nakai-

Sario [3]) 
-

where is the harmonic function on ,~ with hp= u on aQ,
and g!J(x, y) is the Green’s function with pole y. By Stokes’ formula,
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On letting Q -R we obtain

where g is the Green function on R. Since we have

B
and therefore By Theorem 2,

1(,

hence

6. - It remains to consider the class QC. Here we have the most elegant
case, as there is strict inclusion for all p :

THEOREM 6.

PROOF. In view of Theorem 2, it suffices to show that 

Suppose and take a u E QC. The Riesz decomposition of u on 4ib

implies

On letting Q - R we obtain From the proof of Theorem 5

we conclude that y) dy E C. Let

Then

and therefore
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