Beirão Da Veiga, H.
Existence of strong solutions for a class of nonlinear partial differential equations satisfying nonlinear boundary conditions
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4 : Tome 3 (1976) no. 3 , p. 377-404
Zbl 0344.35039 | MR 430883
URL stable : http://www.numdam.org/item?id=ASNSP_1976_4_3_3_377_0

Bibliographie

[1] H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. Journal, 21 (1971), pp. 125-146. MR 296498 | Zbl 0209.13002

[2] H. Amann, Nonlinear elliptic equations with nonlinear boundary conditions, Proc. 2nd Scheveningen Conf. on Diff. Eq. (1975), ed. W. ECKHAUS, North-Holland (1976). MR 509487 | Zbl 0345.35045

[3] H. Beirão Da Veiga, Proprietà di sommabilità e di limitatezza per soluzioni di disequazioni variazionali ellittiche, Rendiconti del Seminario Matematico della Università di Padova, 46 (1971), pp. 141-171. Numdam | MR 308580 | Zbl 0236.35021

[4] H. Beirão Da Veiga, Soluzioni forti di equazioni non lineari con vincoli unilaterali sulla frontiera, Lecture at the School « Recenti sviluppi ed applicazioni della teoria delle disequazioni variazionali », Erice (Sicily), 2-12 Mars 1975.

[5] H. Beirão Da Veiga, Differentiability and bifurcation points for a class of monotone nonlinear operators, Annali Mat. Pura Appl. (to appear). MR 433273 | Zbl 0363.47027

[6] H. Brezis, Problémes unilatéraux, J. Math. Pures Appl., 51 (1972), pp. 1-168. MR 428137 | Zbl 0237.35001

[7] H. Brezis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations., Contributions to nonlinear functional analysis, E. H. Zarantonello ed., Academic Press (1971), pp. 101-156. MR 394323 | Zbl 0278.47033

[8] H. Brezis - M. Crandall - A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach spaces, Comm. Pure Appl. Math., 23 (1970), pp. 123-144. MR 257805 | Zbl 0182.47501

[9] H. Brezis - W. Strauss, Semi-linear second-order elliptic equations in L1, J. Math. Soc. Japan, 25 (1973) 565-590. MR 336050 | Zbl 0278.35041

[10] G. Da Prato, Somme d'applications non lineaires et solutions globales d'équations quasi-linéaires dans les espaces de Banach, Bollettino U.M.I., 4 (1969), pp. 229-240. MR 248431 | Zbl 0176.45703

[11] G. Da Prato, Somme d'applications non-linéaires, Istituto Nazionale di Alta Matematica, Symposia Mathematica, 7 (1971), pp. 233-268. MR 333862 | Zbl 0234.47048

[12] H. Kestelman, Modern Theories of Integration, Dover Publications, New York (1960). MR 122951 | Zbl 0096.03201

[13] M.A. Krasnosel'Skii, Topological methods in the theory of nonlinear integral equations, Pergamon Press (1973) (english edition).

[14] J.L. Lions, Equations aux derivees partielles et calcul des variations., Cours de la Faculté des Sciences de Paris, 2- semestre (1967), (multigr.).

[15] J.L. Lions - G. Stam-Pacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), pp. 493-519. MR 216344 | Zbl 0152.34601

[16] G. Mintiy, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962), pp. 341-346. MR 169064 | Zbl 0111.31202

[17] G. Minty, On the monotonicity of the gradient of a convex function, Pac. J. Math., 14 (1964), pp. 243-247. MR 167859 | Zbl 0123.10601

[18] J. Necas, Les méthodes directes en théorie des équations elliptiques, Masson et C.ie, Paris (1967). MR 227584

[19] F. Riesz - B. Sz. NAGY, Leçons d'analyse fonctionnelle, Akadémiai Kiadó, Budapest (1953). MR 56821 | Zbl 0122.11205

[20] G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), pp. 4413-4416. MR 166591 | Zbl 0124.06401