@article{ASNSP_1976_4_3_4_665_0, author = {Nakai, Mitsuru and Sario, Leo}, title = {Manifolds with strong harmonic boundaries but without {Green's} functions of clamped bodies}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {665--670}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 3}, number = {4}, year = {1976}, mrnumber = {419801}, zbl = {0343.31012}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1976_4_3_4_665_0/} }
TY - JOUR AU - Nakai, Mitsuru AU - Sario, Leo TI - Manifolds with strong harmonic boundaries but without Green's functions of clamped bodies JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1976 SP - 665 EP - 670 VL - 3 IS - 4 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1976_4_3_4_665_0/ LA - en ID - ASNSP_1976_4_3_4_665_0 ER -
%0 Journal Article %A Nakai, Mitsuru %A Sario, Leo %T Manifolds with strong harmonic boundaries but without Green's functions of clamped bodies %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1976 %P 665-670 %V 3 %N 4 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1976_4_3_4_665_0/ %G en %F ASNSP_1976_4_3_4_665_0
Nakai, Mitsuru; Sario, Leo. Manifolds with strong harmonic boundaries but without Green's functions of clamped bodies. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 3 (1976) no. 4, pp. 665-670. http://archive.numdam.org/item/ASNSP_1976_4_3_4_665_0/
[1] N-manifolds carrying bounded but no Dirichlet finite harmonic functions, Nagoya Math. J., 54 (1974), pp. 1-6. | MR | Zbl
- - ,[2] Parabolic Riemannian planes carrying biharmonic Green's functions of the clamped plate, J. Analyse Math. (to appear). | Zbl
- ,[3] A strict inclusion related to biharmonic Green's functions of clamped and simply supported bodies, Ann. Acad. Sci. Fenn. (to appear). | Zbl
- ,[4] Existence of biharmonic Green's functions (to appear). | Zbl
,[5] A nonexistence test for biharmonic Green's functions of clamped bodies, Math. Scand. (to appear). | Zbl
- ,[6] A relation between biharmonic Green's functions of simply supported and clamped bodies, Nagoya Math. J. (to appear). | MR | Zbl
- ,[7] Classification Theory of Riemann Surfaces, Grundlehren vol. 164, Springer-Verlag, Berlin-Heidelberg-New York (1970), 446 pp. | MR | Zbl
- ,[8] The span and principal functions on Riemannian spaces, J. Analyse Math., 15 (1965), pp. 115-134. | MR | Zbl
- - ,