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On Analyticity in Homogeneous First Order
Partial Differential Equations.

HANS LEWY (*)

1. - Let al, a,, s be independent real variables and x, y, u real Cl-fune-
tions of these near the origin, y satisfying

An arbitrary Cl-function u = f (x, y) satisfies (1). We investigate condi-
tions such that f is analytic in x and y.

THEOREM 1. If x, y, u (1) and (2) aid

and i f x, y, u extended acs holomorphic functions. 01 
which C~ in al, OC2, s, t, then u = f (x, y) where t is analytic in x and y.

PROOF. We first establish that near the OCl, OC2, s, t-origin the map

is one-one for 

(*) University of California at Berkeley, visitor, Scuola Normale Superiore, Pisa.
Pervenuto alla Redazione 1’8 Aprile 1976.
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Put

where

An application of Cauchy’s integral formula shows the coefficients of the
above power series to be 01-functions of al, a2. The imaginary parts of x
and y are of the form tP(s, t) where P(s, t) is a convergent power series in s
and t. It follows from (2) that for t ~ 0

a power series in 8 and t.

Hence near 8 = t = al = a2 = 0,

where the omitted terms are of degree &#x3E;1 in s, t.
By (2) and (3), near the origin. Accordingly

is one-one, if is defined by continuity also for Im x = 0 ; Im0153= 0
coincides with t = 0 by (2). Now the map

Rex, Rey, 1m x , Rey, Imx, Imy
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is one-one as long as Hence the part of an open neighborhood
of the s, t, «1, cx2-origin for which t 0 0 is in one-one correspondence with
a certain open set of Re x, Re y, Im x, Im y-space with Im x ~ 0 ; and the
Jacobian a(x, y, x, t) # 0 there.

Now consider for t ~ 0 the form

We have

since by assumption (1) holds and u, x, y are all holomorphic in s -f- it,
i.e. satisfy ayat = i(aylas), and the first derivatives with
respect to oci, a2 are also holomorphic in s --~- it. As J # 0 in 0 we conclude

Similarly, aulag == 0 for t ~ 0. Hence u = f (x, y) in t# 0 with f holo-

morphic for 0. As Im x -* 0 we have t ~ 0, Im y - 0 and u, x, y tend
to their values for t = 0 uniformly on compact sets of al, (X2’ 8. This im-

plies that f (x, y) with x, y real is the limit of I(x, y) as x, y tend from complex
to real values. Moreover that part of the neighborhood of the origin of the

x, y-space which is image of a neighborhood of the origin of Lx:,, a2, s, t cer-

tainly contains the Cartesian product of

with

with E &#x3E; 0 and small, i. e. the products of a square E of the Re y-pla-
ne with an open c cone &#x3E;&#x3E; W of the Im x, Im y-plane (truncated by Im x == s)y
vertex at (0, 0), and with its negative, - W. Tterefore we may apply the
local version of the edge-of-the-wedge theorem [1] which tells that I(x, y)
is holomorphic also for real x, y, q.e.d.
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2. - Theorem 1 contains the special case when x = = «i for 8 = 0.

We then have OC2, 0) = f ( al , a2 ) with analytic f.
Note that (1) (with the aid of (2)) can be formulated thus: are

solutions of

with

This suggests the following corollary of Theorem 1.

THEOREM 2. Let A1(al, OC2’ s), 9 A2 (MI OC2’ s) be real valued analytic f un-
ctions of OC1, I OC2, 1 s, extensible holomorphically as functions of s -- it, t to.
Let v be a 01-solution of (4) which can be extended to a 01-function of
s + it, OC1, OC2’ holomorphic in s + it for ~t~  to. Then v is holomorphic in all
three variables OC1, OC2’ s, provided -=1= 0.

PROOF. There exist by Cauchy-Kovalewski two solutions x, y of (4)
which reduce to x = OC1, y = OC2 for s = 0 . We find for s = 0, if w.l. o. g. ,
Al = 8zj8s -=1= 0,

so that (3) becomes for s = 0

so that Theorem 1 applies. Hence v is a holomorphic function of x, y which
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in turn are analytic in «i, as Cauchy-Kowalevski solutions of (4).
Thus v is holomorphic in «i, q.e.d.

Dr. T. KAWAI has kindly communicated to the A. how to deduce The-
orem 2 as a special case of a general analyticity Theorem to be found in [2].
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