@article{ASNSP_1978_4_5_2_327_0, author = {Hill, C. Denson and Taiani, Geraldine}, title = {Families of analytic discs in $\mathbf {C}^n$ with boundaries on a prescribed $CR$ submanifold}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {327--380}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 5}, number = {2}, year = {1978}, mrnumber = {501906}, zbl = {0399.32008}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1978_4_5_2_327_0/} }
TY - JOUR AU - Hill, C. Denson AU - Taiani, Geraldine TI - Families of analytic discs in $\mathbf {C}^n$ with boundaries on a prescribed $CR$ submanifold JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1978 SP - 327 EP - 380 VL - 5 IS - 2 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1978_4_5_2_327_0/ LA - en ID - ASNSP_1978_4_5_2_327_0 ER -
%0 Journal Article %A Hill, C. Denson %A Taiani, Geraldine %T Families of analytic discs in $\mathbf {C}^n$ with boundaries on a prescribed $CR$ submanifold %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1978 %P 327-380 %V 5 %N 2 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1978_4_5_2_327_0/ %G en %F ASNSP_1978_4_5_2_327_0
Hill, C. Denson; Taiani, Geraldine. Families of analytic discs in $\mathbf {C}^n$ with boundaries on a prescribed $CR$ submanifold. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 5 (1978) no. 2, pp. 327-380. http://archive.numdam.org/item/ASNSP_1978_4_5_2_327_0/
[1] Complexes of differential operators. The Mayer-Vietoris sequence, Inventiones Math., 35 (1976), pp. 43-86. | Zbl
- - - ,[2] The elements of real analysis, John Wiley and Sons, New York, 1964. | MR
,[3] Differentiable manifolds in complex Euclidean space, Duke Math. J., (1965), pp. 1-22. | MR | Zbl
,[4] Methods of mathematical physics, Vol. II, Interscience Publishers, New York, 1962. | MR | Zbl
- ,[5] The maximum modulus principle. - I: Necessary conditions, Indiana Univ. Math. J., 25 (1976), pp. 709-717. | MR | Zbl
- - ,[6] Cauchy-Riemann equations in several variables, Ann. Scuola Norm. Sup. Pisa, 22 (1968), pp. 275-314. | Numdam | MR | Zbl
,[7] A Kontinuitätssatz for ∂M and Lewy extendibility, Indiana Univ. Math. J., 22 (1972), pp. 339-347. | Zbl
,[8] Hyperf-unction cohomology classes and their boundary values, Ann. Scuola Norm. Sup. Pisa, 4 (1977), pp. 577-597. | Numdam | MR | Zbl
- ,[9] Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962. | MR | Zbl
,[10] An introduetion to complex analysis in several variables, Van Nostrand, Princeton, N. J., 1966. | MR | Zbl
,[11] Extensions of CR-functions, Amer. J. Math., 98 (1976), pp. 805-820. | MR | Zbl
- ,[12] On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables, Ann. Math., 64 (1956), pp. 514-522. | MR | Zbl
,[13] An example of a smooth linear partial differential equation without solution, Ann. Math., 66 (1957), pp. 155-158. | MR | Zbl
,[14] On hulls of holomorphy, Comm. Pure Appl. Math., 13 (1960), pp. 587-591. | MR | Zbl
,[15] Strong derivatives and inverse mappings, Amer. Math. Monthly, 81 (1974), pp. 969-980. | MR | Zbl
,[16] On the H. Lewy extension phenomenon, Trans. Amer. Math. Soc., 168 (1972), pp. 337-356. | MR | Zbl
,[17] On a generalization of the concept of functions, Proc. Japan Acad., 34 (1958), pp. 126-130 and 604-608. | MR
,[18] Theory of hyperfunctions, J. Fac. Sci., Univ. Tokyo, Sect. I, 8 (1959-60), pp. 139-193 and 387-436. | MR | Zbl
,[19] Microfunctions and pseudodifferential equations, in Hyperfunctions and pseudodifferential equations, Lecture Notes in Math., 287 (1973), pp. 265-529. | MR | Zbl
- - ,[20] Théorie des hyperfonctions, Lecture Notes in Math., 126 (1970). | MR | Zbl
,[21] On holomorphic extension from real submanifolds of complex Euclidean space, Ph. D. Thesis, M.I.T., Cambridge, Mass., 1966.
,[22] On the local holomorphic hull of a real submanifold in several complex variables, Comm. Pure Appl. Math., 19 (1966), pp. 145-165. | MR | Zbl
,