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On the Rationality of the Period Mapping.

ANDREW JOHN SOMMESE(*)

Summary. - Let S be a Zariski open set of a connected projective mani f old rS, where
 - S has only normal crossing singularities. Let q : X ---&#x3E;. S be a proper maximal
rank holomorphic surjection with connected fibres such that I~a~ (X, Z) has a section
whose restriction to each fibre of q is represented by a Kaehler form. Let p : ~S -~ 1’BD
be the associated period mapping. By a theorem of Griffiths there exists a Zari8ki
open containing S to which p extends as an holomorphic proper map

Let JY’(,p(~S) ) denote the normalization o f and let 
S-+ denote the associated map. It is shown that there exists a normal

quasi-projective variety M and a holomorphic proper 
such that:

1 ) ~ is a biholomorphism from M - to P where 9) is the

degeneracy set of i.e. the set of those points such that

dime &#x3E; dime 

2) is algebraic and 9) is the degeneracy set of 0;
3) 8- M is a meromorphic rational map, and given any bimero-

morphic map ’If: JY’(p(~S’))--~ M’, where M’ is a normal quasi-projective va-
riety such that WOJW(j5) is a rational meromorphic map, then YfoO gives a
birational equivalence of M and M’ ;

4) let flL c be the image under A?(j5) of those points of ~’ at which dp
is of maximal rank; then flL is open and possesses a quasi-projective structure
compatible with 0 and M;

5) if r is torsion free then given any holomorphic map A : Z -~ with
Z a normal quasi-projective variety and A(Z) containing an open set of

,N’( p(rS) ), then 0-’oA is rational.

One corollary of the above is that if dimc p(S)  2 then is Zariski open
in a compact Moisezon space.

To each proper holomorphic maximal rank surjection q: X -~ S of

connected complex manifolds with connected fibres, such that R’. (X, Z)

(*) Mathematics Department, Cornell University, Ithaca, New York.
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has a section whose restriction to each fibre of q is represented by a Kaehler
form, one has associated an holomorphic called the

period mapping [cf. 10, 11, 12, 13, 24], where is a complex space that
is generally not quasi-projective in any way compatible with its analytic
structure. If S is Zariski open in a projective manifold 9 and 9 - S has
only normal crossing singularities, y then by a theorem of Griffiths there is
a Zariski open set 9 C ~S’ that contains S and to which p extends as a

proper holomorphic map p. It is a basic question [cf. 11, pg. 259 for a

discussion] whether if ~S is quasi-projective then possesses a functorial

algebraic structure such that p is rational.
This is known [7] if the fibres of q are either one-dimensional, abelian

varieties, y or K - 3 surfaces, since then D is a bounded Hermitian sym-
metric domain. Griffiths [10, III.9.7] showed it if is compact and the
author [29, 30] showed it if p is proper, and the image has at most isolated
singularities.

In this article I use the methods of [29, 30] to prove the above mentioned
conjecture on the function field level. More precisely I show (Proposition IV)
that when S is a quasi-projective manifold and p : S - TED arises from
geometry as mentioned in the first paragraph, then possesses a quasi-
projective desingularization 6: such that the meromorphic map
6-Ilop is rational. Furthermore when 1~ is torsion free then the negative
curvature of D in horizontal directions forces on the GAGA prop-

erty [25] that given a second quasi-projective desingularization 6’: 
then (6’)-lob: Y - Y’ is a birational equivalence.

In fact it is shown that if J~(p): ~ 2013~ denotes the map from
to the normalization, of peS) associated to p, then X(fi(g)) - 0
is quasi-projective where 9) is the degeneracy set of JY’(p), i.e. the set of

points y of with dimc JY’(p)-1(y) greater than dimc 
§ I is devoted to background material and especially the theory of the

generalized canonical sheaf of Grauert and Riemenschneider [9].
In § II some criteria, based on § I, the L2 estimates for a, and Kodaira’s

proof of his embedding theorem, are given for the image of a proper holo-
morphic map to be bimeromorphic to a quasi-projective variety in a way
compatible with the proper map.

In § III some results about proper maps are given that allow us to

sharpen the results of § II.
In § IV I prove my results about the period mapping.
I would like to thank Phillip Griffiths for introducing me to the problem

of the algebraicity of the period mapping as a graduate student, and for
explaining his theory of the period mapping to me.

I would like to thank the Institute for Advanced Study in Princeton and
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the National Science Foundation (NSF Grant MPS 7102727) for their finan-
cial support. I

§ I. - I essentially follow the notation of [29]. If Y is a complex space
and E is a holomorphic vector bundle on Y, then O(E) denotes the sheaf
of germs of holomorphic sections of E, and Oy, the holomorphic structure
sheaf. If Y is a complex manifold, then Ky, and 0* denote the
canonical bundle of Y, the q-th exterior power of the holomorphic cotangent
bundle of Y, and respectively. If F and G are holomorphic vector
bundles on a complex space Y, then F ~ G denotes the tensor product over C;
if Y and 9 are coherent sheaves on H, then Y &#x26; 9 denotes the tensor

product over Oy. Denote the manifold points of a reduced analytic space Y
by Reg Y.

If Y is a reduced and irreducible analytic space, recall Ky, the generalized
canonical sheaf of Grauert and Riemenschneider [9]. Given a desingulariza-
tion A : f - Y, then Xy = A* This definition is local and doesn’t

depend on the given desingularization. To see this one first notes that by
Hironaka’s desingularization theorem [17], if one has a second desingulariza-
tion B : W - Y, one can find another complex manifold #/ and proper
modifications 0: W -+r and D : W - W such that = BoD. Now we

would be done if one know that = = or in

other words that Xy is functorially isomorphic with the canonical sheaf
at manifold points of Y. This follows immediately from the following [9] :

LEMMA I-A. Let V’ be a normal connected anatytic space with S c V’ an

analytic set containing the singular set of V. Let (JJ be a holomorphic n form
on V - S with n = dime V. Assume  001 Then given any

v-S

desingularization q : T~ -~ TT, extends to an holomorphic n form on T~.

PROOF. Clearly

One now uses Fubini’s and Hartog’s theorems to reduce to the punctured
disc where it is obvious. Q.E.D.

This gives an important characterization [9] of ~y for a normal,
irreducible analytic space with dimc Y = n. At a point y E Y, Ky,, con-
sists of germs of holomorphic n forms, o), defined on the intersection of some
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neighborhood and Reg ( and such that

The following is needed.

LEMMA I-B. I f lp: X --~ Y’ is a proper holomorphic surjection from a con-
nected complex manifold X onto a normal analytic space Y, then 
functorially isomorphic to a subsheaf of S~~ where n = dim~ Y.

PROOF. To see this, Remmert-Stein factorize p as P20Pl where lpl: X 2013~
is a proper surjection with connected fibres onto a normal analytic space X
and lp2: X - Y is a proper finite to one holomorphic map. Using the above
characterization of by means of integration one immediately sees that

is functorially isomorphic to a subsheaf of Thus one may as-

sume q has connected fibres.
Now what must be shown is that given a point y e Y and any neigh-

borhood U of y and a section m of x’u, then has a unique
extension to as an holomorphic n form. Let --~ Y be a desin-

gularization of Y and Xv, the irreducible component of the fibre product
of p and q that surjects on X. One has the commutative diagram

where p and §5 are the holomorphic maps induced by p and q, respectively.
Since p has connected fibres, p is a modification. Let p’ : X’- X- be a de-
singularization and note that is a modification since p is a

modification. Now given y, cu, and U as above, one can assume that Y
is U since the desired result depends only on g~ : --+ U. Now

extends to be an holomorphic n form y on Y by lemma I-A.
Thus is an holomorphic n form on X’, and in particular

extends to be an holomorphic n form on X’.
Now pop’ is a biholomorphism of a Zariski open set of X’ with X - S where
the codimension of 8 is at least two. Thus extends to an holo-

morphic n form on X - S. Since S is of codimension at least two, q*m
extends to an holomorphic n form on X. Q.E.D.

Now recall some basic facts about positivity. I refer to the good ac-
count of Siu [27, p. 58 ff.]. If V is a complex vector space and {~ ...y en~
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is a basis of the dual V*, then a (k, k) covector u E (llk V*) @ (Ak V*) is said
to be positive if for any {Wk+l 7 - * * , the complex number a in :

is non-negative. A continuous (k, k) form u on a complex manifold Y is
said to be positive if at each point y of Y, u is a positive (k, k) co-

vector of T ylllo
If u is a positive (k, k) form and w is a positive (1, 1) form, then uAw

is a positive (k -~- 1, k -~- 1) form.
One has a partial order on the (k, k) forms by u  v if v - u is positive.

Note further that if w and 8 are two positive (1, 1) forms on a pure n
dimensional complex manifold then uA 6  uA wr for any positive
(k, k) form u. To see this note that = 8) +
-~- (w - 8)/B 8 + ... + UA (w - 6) A 8r-l.

If q is a ( k, 0 ) form on a complex manifold X, then is

positive. One consequence of this that will be needed below is that if 7y
is a (k, 0) form on a polydisc dn, and w is an Hermitian (1, 1) form on dn
which is greater than 8y the Euclidean Kaehler form, then

Now given a continuous Hermitian structure on an holomorphic line
bundle L on a normal analytic space Y, then will denote the

space of L2 sections of LIReg(y) O Any element of 

which is holomorphic on Reg (Y) extends, by the integration characteriza-
tion of Ky, to a section over Y of 

Now to globalize lemma I-A and I-B we need the concept of an Her-
mitian structure with L2 poles at infinity. This is basically the same as the
« croissance moderee » of [8, II.2.17] except that the L2 version is better

adapted to our needs. Let X be a Zariski open set in a connected complex
manifold X. Given a manifold point p E X - X one can find a neigh-
borhood U of p in X biholomorphic to a polydisc J" and TI biholomorphic
to (,j*), X L1n-a where a is the codimension of the irreducible component of
X - X to which p belongs. Let the coordinates be denoted (Zl, ..., zn) with

Now let L be an holomorphic line bundle on X. A continuous Hermitian
on Llx, is said to have L2 poles at in f inity relative to L i f given
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any irreducible component Z of X - X, of codimension one in X, one can
find a point p E Z and a neighborhood U of p in X such that:

1) p is a manifold point of X - X,

2) U is as in the last paragraph

3) there is a trivializing holomorphic section, s, of L over U and an
integer N such that f (zl IN II s II -2 dZ  oo where dl is Lebesgue measure on
4* X LJ n 1. ¿jn-l

LEMMA I-C. Let X be a Zariski open set of a connected Kaehler mani-
fold X. Let p : X - Y be a proper holomorphic surjection onto a normal an-
alytic space Y. Let L be an holomorphic line bundle on Y such that p* L
extends to an holomorphic line bundle L on X. Let L have a continuous

Hermitian structure on Y such that the induced Hermitian gtructure on p* L
has L2 poles at infinity relative to L. Then given a section s of O(L) (8):K,y
with p* s extends to X as a meromorphic section of 
where dimc ~’’ = k.

PROOF. Let co denote the Kaehler form on X. Let v be the (k, k) form
on Reg ( ~’) constructed from s. In local coordinates {W],,,", at some

point y E Reg ( Y), one has s = e 0 dWlÂ where e is an holomorphic
section of L in a neighborhood of y and

One has f v  oo. Note p* s gives rise to an holomorphic section of
Reg( Y)

by lemma I-B. Thus p* v gives rise to a well defined contin-
uous (k, k) form on X denoted by y.

Note that  00 where dime X = n. To see this note that
x

there is a dense open set V of Reg Y and hence of Y such that p : U

is a C°° fibre bundle. Now by Fubini’s theorem one has: =

x

=f( f wn-k) v but since X is Kaehler fwn-k is independent of y ETr, andV v-1(v) ~-~)
thus the integral over X is finite.

Now by Hartog’s extension theorem, to show extension it suffices to get
p* s to extend over a neighborhood of one point of each irreducible codimen-
sion one component of X - X. Given a codimension one component Z of
X - X, let p, U, e, and z, be as given in the definition of L2 poles at in-

finity. Letting s = e where q is an holomorphic k form on U r’1 X,
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one has 00 and by the definition of L2 poles at
Ung

00 for some integer N.
UnX

It may be assumed from the discussion of positivity above that w is

the Euclidean Kaehler form after possibly shrinking U, since 
is positive. Letting q = z where J runs over multiindices (1, ..., 3k),

one sees that the former integral implies for each J, that:

Thus one has up to a positive constant:

Thus qj extends meromorphically to U and thus so does q, and hence p* s
extends meromorphically as a section of -L 0 A k T* - to X. Q.E.D.

REMARK I-A. It seems worth noting that the above lets one define

generalized holomorphic differential forms for any k on an irreducible
reduced complex space Y. Let U be a neighborhood of a point y E Y that
is embedded in CN. Now let m be an Hermitian form on CN associated to an

Hermitian metric. If q is an holomorphic k form on Reg U, ?yA
_ 

Reg U

oo where dimc U = n, and if p : U - U is a desingularization
of U, then p* q extends to a meromorphic k-form on 0 with poles of bounded
degree along (j - p-’(Reg ( U)). This should be compared with [14, II(a)].

§ II. - In this section I collect some material pertaining to the L’!. esti-

mates for 8 and prove Proposition I and Proposition II which give criteria
for the image of a proper map to be bimeromorphic to a quasi-projective
variety.

Let L be an holomorphic line bundle on a reduced and irreducible complex
space Y. L is said to be semi-ample (almost-positive [9, 22], ample) if it pos-
sesses an Hermitian structure that has positive semi-definite curvature on Y,
and that has positive curvature at least one point (on a dense open set, at every
point).

The relevant lemma is:

LEMMA II-A. Let p : X - Y be a generically finite to one proper holo-

morphic surjection f rom a connected complete.Kaehler manifold X to a normal
anaZytic space Y. Let L be an holomorphic line bundle on Y with a continuous
Hermitian structure II 1B. Assume p* li B1 is 000 on p* L and that p*L is semi-
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ampte with respect to p* 11 11. Let U be the intersection of the complement of the
images 2cnder p of the set where p isn’t a covering and the set of those points
y eY such that the curvature form of p* JJ II is positive de finite in a neighborhood
of p-1(y) ·

Then for any finite set (pm) C U and any finite set of non-negative
integers corresponding to ~pm~, there exists an No such that for N ~ No, there
exists a section e of O(LN) (8)JB,y with e E (L No and preperibed jet at p.
for each m.

PROOF. For each m choose a neighborhood U~, of such that 

are disjoint, and - U m is a covering. Let

m

Now one can use lemma B of [30] to find an No &#x3E; 0 such that for each

N&#x3E;No, there exists a section e of with 

and such that tr e, the trace of e over p-1 (’B1) with respect to p, is an holo-
morphic section of with the desired Åm jets for each Pm.

The proof will be finished if one shows tr e E since

then by Lemma I-A, it gives rise to a section over Y of Ky.
Therefore I will show that tr i E L2(.LN 0 K,). Let ~S equal the union

of the singular set of Y and the image under p of the set where p is not a

covering. S is an analytic variety of Y by Remmert’s proper mapping the-
orem and p : X - - Y- S is a covering. It suffices to show tr e

E L2(Vly-s (8) Ky-s) since ~’ is a set of measure zero. The inequality

where deg p is the sheet number of p is a trivial consequence of

where is a set of r complex numbers. ’QIE.DI

For a further discussion of the trace operator see [14, II(b)].
The following lemma will be used to prove Proposition II. The assumption

that .X is quasi-projective could be dropped with extra work.

LEMMA II-B. Let r: .X ~ ~ be a proper holonorphic surjeotion f rom a
quasi-projeotive manifold X onto a normal irreducible analytic space Y. As-

sume that X is complete Kaehler and that r is biholomorphic on a dense open
set of X. Let .L be an holomorphic line bundle on a reduced analytic space Z;



691

assume there is an Hermitian structure on L with respect to which L is
semi-ample. Let q: Y - Z be an holomorphic map that as the

normalization of Z. I Let U be an open set of Y belonging to the inverse image
under q of the set on Z where the curvature of II is positive definite. Then

given any finite set {p,,,,} C U and any finite set of non-negative integers
corresponding to fp,,,}, then there exists an No such that for any N ~ No, the1’e
exists a section e of with e E and with pre-
scribed image in for each m.

PROOF. The proof is a modification of Kodaira’s basic proof [18].
I will do the proof for a single point p E Y and a single integer I ;

the general case is a trivial modification of this.
By definition one can choose a neighborhood Z of q(p) such that :

a) there is an embedding of W into a neighborhood W of the origin 0
in CN for some N,

b) q(p) is identified with 0 by this embedding,

c) Llw is the restriction of an holomorphic line bundle L on Wand )]
is the restriction of an Hermitian metric In, ]] on L that has a positive defi-
nite curvature form on TV.

By shrinking Wand W if necessary, it can be assumed that there

is a neighborhood V C Y of p such that q: V - W is proper and

r’1 V = p.
Now let TV’ denote W with the origin blown up and let 6: W be

the blowing down map. Let Q denote ð-l(O). Let Tr’ be the normalized ir-

reducible component of the fibre product W’ of 6 and q that sur-

jects onto V under the map induced from the projection of W’ X onto V.

Let ~~: V’-V and q’: be the induced maps. One has the commu-

tative diagram:

Note that:

To see this, note that &#x26;§(&#x26;’*(8)) = 8 for any coherent sheaf 8 on V since
V’’ and V are normal and 6’ is proper with connected fibres. Thus:
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denote the Hermitian structures induced by ~~ II and

~~ II respectively on q*LN and LN.
By the basic argument of Kodaira [18] one can find an No &#x3E; 0 such that

for all one can modify to get an Hermitian metric 
on such that:

_

a) agrees with IIN outside some compact neighborhood of Q.

b) positive curvature on W’.

Let Y’ denote Y with V replaced by V’. This makes sense because

6’: V’- V is a biholomorphism from V’- 6’-I(p) to TT - p. No confusion

will result from letting 6’: Y’ ~ Y denote the map induced by 6’: V’---&#x3E;- V.

Since is the trivial line bundle outside of the compact set 6’-’(p)
of V, it is easy to see it has a unique extension as an holomorphic line bundle Q
on Y that is the trivial holomorphic bundle outside of d’-1(p). Note that

6’*(q*LN) CXQ-.1 is semi-ample for all N ~ No . To see this, simply note that 6’
is a biholomorphism outside of 6’-’(p), (qo~’)*LN agrees with (qob’)*(LN) X Q-
outside ~’-1(p), and q’* ~ líllÂIN agrees with 6’*q*(Il IJN) outside a compact
set of V’.

Let X’ be the normalization of the irreducible component of the fibre

product of r and 6’ that surjects onto Y’ under the map induced
by the projection of Xx, Y’ onto Y’. Let a : X’ --~ X and b : X’- Y’ de-

note the induced maps. Note that a is a biholomorphism outside of a com-
pact set, i.e. a gives a biholomorphism between X’- (roa)-’(p) and X - a-1(p).
This implies that X’ is Zariski open in a Moisezon space. To see this, note
that X is Zariski open in some projective manifold X and that (roa)-’(p)
is disjoint from X - X.

Therefore by Hironaka’s theorem, there exists a quasi-projective mani-
fold X and an holomorphic proper surjection h : X ~ X’ such that h is

a biholomorphism on a dense open set of 1.
Now note that 1 possesses a complete Kaehler metric. To see this simply

add the Kaehler metric of X pulled back by a map into projective space to
the pullback of the Kaehler metric on X by aoh.

Note that there is the commutative diagram:
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Also, by the above for any N~No, = (qoroaoh)* LN @ (boh)*Q-A is
semiample. Note that as a consequence of 1) above, one has:

Also any holomorphic section of that is L 2 gives rise
to a section of that belongs to This follows

since:

and since the L2 norm depends only on the metrics on (qoroaoh)*LN and
q*LN, and these agree outside compact sets.

Now after possibly shrinking V one can find a section e of Kv xo 
over V where and the image in is prescribed.
If V is small enough one can factor e as where (3 is a non-vanishing
section of and s is a section of Let ~3’ denote where o
is a C°° function with compact support in V such that o is 1 in a neighborhood
of p. By the definition of Ky, it follows that (roaoh)* s is an holomorphic
section s of Xv where P= (roaoh)-l (V). Further, fl = is a com-

pactly supported C°° section of Thus is a 000 section

of 

Thus, since 3(8P) is 0 in neighborhood of (roaoh)-’(p), it is a compaotly
supported C°°, CNIÂ valued (0, 1) form. Thus by [30, Lemma A] and
the fact that tN.;L is semi-ample, there exists a C°° section A E L2(Kÿ xJ tN,a)
such that 8A = Now is an holomorphic section of .KX @ (qoro
oaoh)*LN and gives rise to an holomorphic section e of q* by 2’).
Now clearly e E q* LN). Thus the lemma will be proved if it is shown
that e gives rise to the prescribed section of 

Now by construction s~ is holomorphic in a neighborhood of 
and gives rise to the prescribed section. Thus it suffices to note that in a

neighborhood of (roaoh)-’(p), A is an holomorphic section of and

by 1’ ) gives rise in a neighborhood of p to a section of a’v".
Q.E.D.

Meromorphic maps will be in the sense of Remmert [21] with a few ex-
ceptions for the sake of convenience. Given two normal analytic spaces X
and Y, a bimeromorphic map A : X - Y will be a meromorphic map that
gives a biholomorphism between a dense open set of X and a dense open
set of Y. I am not requiring that be meromorphic; the property that
is allowed to fail is that A-1 (y) with y e Y need not be compact. Also if X

and Y are irreducible quasi-projective varieties and one has an irreducible
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algebraic set 0 in X X Y that gives a biholomorphism between dense open
sets, one will say that 0 is birational. This is useful and conforms to po-

pular usage though neither 0 nor its inverse is meromorphic.
Though in general one can not compose meromorphic maps, there is one

situation where one can which covers the needs of this paper. Namely,
let X, Y, and Z be normal irreducible analytic spaces. Let A : X - Y and
B : Y ~ Z be meromorphic maps. If A is surjective then there is a dense
open set U of X such that is holomorphic, A( U) is dense in Y, 
is holomorphic. Thus BoAlu is a well defined holomorphic function. Now
one can define BoA as the closure of the graph of BoAlu in X x Z.

The somewhat involved form of the following is dictated by my appli-
cation in IV to the period mapping.

PROPOSITION I. Let p : X -~ Y be a proper holomorphic surjection from
a Zariski open set X of a connected compact Kaehler manifold X onto a normal
analytic space Y. Let L be an holomorphic line bundle on Y with a continuous
Hermitian structure II 111 Assume that p* L extends to an holomorphic line

on X and p* II II has L2 poles at infinity relative to C. Let q : Z ---&#x3E;- Y

be a proper generically finite to one holomorphic surjection of a complete Kaehler
mani f old Z onto Y. Assume that q* is a Coo Hermitian structure of q* Land
that q*L is almost positive with respect to q* Then there exists a Zariski open
set 1J1 of a projective manifold M and a bimeromorphic map 0: Y - M such that

extends to a meromorphic map from X to M. If 0’: Y - M’ is a bimero-
morphic mapping of Y to a Zariski open set M of a compact analytic space M’
such that extends to a meromorphic map from X to M’, then Oo 0’-’ ex-
tends to a bimeromorphic map from M’ to M. The function field of M is charac-
terized as the set of those meromorphic f unctions f such that extends

to a meromorphic f unction on X.

PROOF. Using Lemma I-C it follows that a section s of 

with s E is such that p* s extends to be a meromorphic sec-

tion of fN Ox S~g where dime ~’’ = k. Now using this and Lemma II-A in-
stead of Lemma I-B of [29] one can follow the argument of Proposition I
of [29]. What one gets is a finite dimensional family S, of sections of

@ (~y)r for some t and r such that

’ 

1 ) p* s, with s E S, extends to be a meromorphic section of (
on X.

2) the meromorphic map q : Y- CPR for some I~ associated to S is an
embedding on a dense open set.
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Now 1) implies that ggop extends meromorphically to X and thus that
qJ(Y) is Zariski open in its closure which is a projective variety. Using
Hironaka’s desingularization theorem one can assume that p( Y) is a manifold.

The remaining assertions are immediate consequences of the following
minor variant of Lemma I-E of [29]; it is a straightforward consequence
of Remmert’s proper mapping theorem applied to graphs.

LEMMA II-C. Let X, Y, and Z be analytic spaces and let X and Y be
compact normal spaces in which X and Y are respectively Zariski open. Let

p : X - Y be a meromorphic surjection that extends to a meromorphic map
f rom X to Y. Let f : Y --+ Z be a meromorphic map. The composition f o p
extends to a meromorphic map from X to Z if and only if f extends as a
meromorphic map to Y.

The following corollary will be important. I

COROLLARY II-A. Let Y, .L, 11 II, M, M, ø, Z and q be as above. It
f : X’ --~ M is a proper holomorphic surjection from a Zariski open set X’ of a
compact complex manifold X’ and if :

A) f*L extends to an holomorphic line bundle C’on X’,

B) f* II has L2 poles at infinity relative to C’, then Øof extends to a
meromorphic map f rom X’ to M. ø can be chosen to be a biholomorphism on
a set which includes the intersection of the complement of the image under q
of the set where q isn’t a covering and the set of those points y E Y such that the
curvature f orm of q* II is positive definite in a neighborhood of q-1 ( y ) .

PROOF. The first assertion will follow if it is shown that the meromorphic
Tof: X’-+CPR extends meromorphically to X where 99: Y -+ CpR is as in
the proof of Proposition I. Since 99 is defined by a space S of sections of

and since these sections are sums of products of L2 sections
of O(La) @ ~Y for various a &#x3E; 0, it suffices to show that given an holomorphic

then f * s extends to be a meromorphic section of c’a 
where k = dime Y. This follows from the .L2 pole condition by Lemma I-(!.

The latter statement follows immediately from Lemma II-A and the
proof of Proposition II. Q.E.D.

Finally there is :

PROPOSITION II. Let r: M - Y be a proper generically one to one holo-
morphlc surjection of M, a Zariski open set of a connected projective mani-
fold M onto a normal analytic space. Let q : Y --~ Z be an holomorphic surjec-
tion of Y onto a reduced analytic space Z, that expresses Y as the normaliz-
ation of Z. Let L be an holomorphic line bundle on Z with an almost positive
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.Hermitian structure II ~~ . Assume that (qor)* L extends to an holomorphic line
bundle L on M and that (qor)* II has L2 poles at infinity with respect to L.
Then there exists a meromorphic -+ CPN, for some N, such that Øor
is rational and 0 is an embedding on the set of manifold points in the inverse
image under q of the set of points of Z where the curvature of 11 II is positive
definite. I

PROOF. As in the last proposition, one uses the proof of the main pro-
position of [29] combined with Lemma 11-B. Q.E.D.

.L1ppenclirv to § II.

It seems worthwhile to record the following cute consequence of

Lemma II-A :

COROLLARY TO LEMMA II-A. Let be Y a Zariski open set in a compact
connected complex mani f old Y such that the codimension of Y - Y is at least
two in Y. Let p : X -+ Y be a generically finite to one surjection where X is
a complete Kaehler manifold. I If there is a closed positive semi-delinite ( 1, 1 )
form OJ on Y that is positive definite at least one point and if (0 has rational
periods, then Y is jJloisezonl

PROOF. If one produced a holomorphic line bundle L on Y with cur-
vature form equal to some multiple of wand if L extended to a holomorphic
line bundle on Y, one would be done. The extension follows from a result
of Shiffman [27]. The existence of L is a consequence of both the following
lemmas, and also the fact that Y being Zariski open in Y implies H2( Y, Q)
is finite dimensional and thus that there exists an integer N such that N ~ "0)
has integral periods. I

LEMMA A-II-A. Let Y be a complex manifold and let 0) be closed, real,
(1, 1 ) f orm with integral periods, on Y. There exists a holomorphic line bundle L
on Y with curvature form equal to w.

PROOF. This is a very easy consequence of Weil’s proof of the equiv-
alence of de Rham and C6ch cohomology [31]. Using a Riemannian metric
on Y, one can choose a of Y by open sets with each Ua convex.
Thus Uap = Ua t1 Up is convex and thus contractible whenever Uaa is non

empty. Now it can be assumed after shrinking if necessary that each Ua
is relatively compact in an open set TTa that is biholomorphic to a polydisc.
Now it can be further assumed that and hence are locally
finite. Choose a set of points for each pair (0153, fl) such that U,,#
is non-empty, p,,,6 c Uxp, and = ppx.
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Now there exist a set of real valued C°° functions with
= - Let fJJtX = It can be assumed with out loss of gener-

ality that = 0 for each @ such that is non-empty, since the 
are only unique up to pluriharmonic functions and Uao is non-empty for only
finitely many {3. For each Uexp, = pp is pluriharmonic. Thus

is a one cocycle of holomorphic one forms. I p

Since Uaa is convex and hence contractible, the function = 

pab

is well defined. I Noting that = one sees that the set of con-

stants where = -E- + ywa is the C6ch representative for OJ.
Thus there are a set of real constants such that yt«gy - (Caa -f- Coy + Cya)
is an integer. Thus the set of non-vanishing holomorphic functions

{exp [2n y-l(1pap - is a multiplicative cocycle and defines an holo-
morphic line bundle L.

Now .L is trivialized by the and a section f is given by func-
tions with:

I claim one has an Hermitian structure given by

To check this note that on one has

Now note

since consists of real functions. I Thus noting that = 0

one has = Thus + = f/JIX on 

Now note that the curvature form of this Hermitian structure is given by

REMARK A-II-A. Note that the above lemma implies that a complete
Kaehler manifold Y with dimq H2(y, Q) 1 has enough global meromorphic
functions to give holomorphic coordinates in a neighborhood of any point.
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It is not difficult to figure out a uniformity condition that will let one
construct enough holomorphic sections of .K ~ LN for a fixed JV to give an
holomorphic embedding of Y into CPN. Indeed in [4; this was written

in 1961!] such a condition is derived and used to show that one can embed
the universal cover of any projective manifold into CPm for some M.

§ III. - In this section I collect a few concepts and results connected
with proper maps. These allow us to form a bridge from the conclusions
of Proposition I to the hypotheses of Proposition II; this will be useful
in § IV in the study of the period mapping. They, especially Proposition III,
could be somewhat generalized, using [16] for example, but I will for sim-
plicity work only in the degree of generality needed.

Let p : X -~ Y be a proper map from an irreducible normal analytic
space X to a complex manifold Y. The singularity locus of p, J(p) is the
union of the singular locus S, of X with those regular points of X where p
is not of maximal rank. To see that it is an analytic set note first this is
trivial if X is a complex manifold. If X isn’t, let 6: be a desingular-
ization that exists by Hironaka’s theorem, with 6 proper and 6: X - 6-’(S) -

--&#x3E; X - S, a biholomorphism. Now note that 6J(pob) = J(p), and thus by
Remmert’s proper mapping theorem J(p) is an analytic set. If X were

only a reduced analytic space, one could still define J(p) by locally em-

bedding Y in CN. If X is not irreducible, let E A} be the irreducible
components of X. Define J(p) in this case as 

a 
"

Let p : X - Y be an holomorphic map from a reduced analytic space X
into a reduced analytic space Y. Define 8,(p) as those points x E X such
that the irreducible component of the fibre p-’(p(x)) that contains x is of
dimension greater than or equal to r. Clearly 80(p) D 8, (p) D ..., and the
sequence terminates if X is finite dimensional. Define 0,(p) as p(~r(p)) ;
if X is irreducible and k = dimc X - dinlc p(X), then is called

the degeneracy locus of p. Note that if q : Y -+ Z is a finite to one holo-

morphic map to a reduced analytic space Z, then q(D,(p)) = and

8r(qop) = ~r(p). For this reason it suffices to assume Y is normal and p

surjective in the following lemmas.
If q : A - B is a holomorphic map between reduced analytic spaces, then

JY’(A) --~ N(B) denotes the associated holomorphic mapping between
the normalizations of A and B.

If p : X - Y is an holomorphic map between normal analytic spaces,
let po = p and define inductively = from to Y’.

Let io : J(p) -~ X be the inclusion mapping. Define inductively 
= from to X.
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LEMMA III-A. Let p: X -~ Y be an holomorphic map between normal
analytic spaces. ~r ( p ) and are analytic subsets of X and Y respectively
for all r. If X is Zariski open in a normal compact analytic space, then
Sr (p) extends to an analytic set in X for all r, if extends to an analytic
set in X for all j.

PROOF. Clearly one can assume X is irreducible. Let k = dime X -
- dime p(X). By the upper semicontinuity of the dimension of the fibres
of an holomorphic map = X.

Let Z be an irreducible component of J(Pi)1 If dime Z - dimc pj(Z)
= k + r where r &#x3E; 0 then ’,(Z) C Sk+r(P) for r &#x3E; 0 is a union

of such irreducible components as all j’s are run over. To see this note

that if dime Z - dime pi(Z) were less than or equal to k and r &#x3E; 0

then = and that J(pj+,) rl =

Now the set of irreducible analytic components Z of ii(J(Pi)) such that
dime Z - dime p(Z) = k + r is an analytic set of X. Thus Sk+r(P) is an

analytic set if the sequence J(p,) eventually terminates. This is clear since

dime X  oo and dime J(pj+,)  dime J(pj).
The 5),,(p) are analytic sets by Remmert’s proper mapping theorem,

since p(S,(p)) = Ð,(p)1
Finally note that if Z is an irreducible analytic component of 

and i,(J(p,)) extends as an analytic set to X, then Z extends as an

analytic set to X. Q.E.D.
The next lemma is quite well known :

LE1VIMA III-B. Let p : A ~ B be a proper, finite to one holomorphic map
from a reduced and irreducible compact analytic space A to a projective variety B.
Then A is a projective variety. In particular the normalization of a quasi-
projective variety is a quasi-projective variety.

PROOF. Let H be an ample line bundle on B; let us show p*(H) is ample
on A. Using Serre’s criterion let 8 be an analytic coherent sheaf in A. Since

.Rp* (~ Ox 0 if i &#x3E; 0 and I~p* (~) &#x26; 0 (LtN) - if i = 0, one is done,
using the Leray spectral sequence. 

’

If X is quasi-projective, i. e. Zariski open in X a projective variety, then
X(X), the normalization of X is Zariski open in JY’(X). Thus since the

map from X(X) to X is finite to one, JY’(X) is projective and hence JY’(X)
is quasi-projective. Q.E.D.

PROPOSITION III. Let p : X - Y be a proper holomorphic surjection of a
Zariski open set X of a connected projective variety, X, onto a normal

45 - Annali della Scuola Norm. Sup. di Pisa
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analytic space Y. Let p = sor be the Remmert-Stein factorization of p with
r: X - R, a proper holomorphic map with connected fibres onto a normals

space R and s : 1~ ~ Y a proper finite to one map. I Let 9 = where

k = dime X - dime Y be the degeneracy set of p. Assume there exists a

bixfleromorphic map 0: Y’ -~ Z where Z is a normal quasi-projective variety
and is rational. Then there exist spaces X’, X’, C, C and Y’ where X’
and C are Zariski open in the projective varieties X’ and 6 respectively, and
there exist proper holomorphic surjections d, a, b, b, c, d, and e such that :

A ) the diagram :

commutes, ~c is a birational morphism, and b has equidimensional fibres,

B) e, d, and a are biholomorphic when iestricted to Y’- e-1(Ð),
~ - d-l(S-l(Ð)) and respectively,

C) b has connected fibres and c is proper and generically finite to one,

D) Y’ is quasi-projective and c is, rational.

E) If p has connected fibres, then the above remains true without the
assumption that 0 or Z exist.

PROOF. It is convenient to first do the case when R = ~.’’~, i.e. , when p
has connected fibres. I Now recall [cf. 1, 5] that the Chow space of X con-
tains countably many irreducible components, ei7 and to each, one has
associated an analytic space X X ei; denote by ni and ~i the projections
of Z, on the first and second factors. Now the ei and Zi are projective and
reduced and the fibres of ði are sums of subvarieties all of the same dimension.
Since there are only countably many components, a category argument
shows there exists one component C with associated Z and projections
n: Z -~ X and 6: Z -* 6 such that n(Z) = X and containing an infinite
number of the fibres of p. Now one can, by normalizing, assume that Z and e
are normal. Now using the following well known rigidity theorem one sees
that n is birational.
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SUB-LEMMA A. Let p : X - Y be a proper sitrjective map between normal
anaZytic spaces. Assume p has connected fibres. Let F be a fibre. Then there

exists a neighborhood U of F such that any connected analytic space F’ C U
with fibre of p if F’ is compact.

PROOF. By Remmert’s proper mapping theorem one has p(I") a sub-
variety of Y, but if U is small enough then p(F’) belongs to a Stein open
set and is a point. By upper semi-continuity of dimension all fibres of p
near enough to F have dimension at most dimc F. Finally use the connec-
tedness of the fibres of p. Q.E.D.

Now Using the above lemma one sees that C is

Zariski open in C. Now there is an holomorphic surjection d, from C to Y.
Send ce C to p (~ (~-1 (c) ) ~ ; by the rigidity theorem this would be well de-
fined, and without diffoculty holomorphic, if one shows 6-1(C) = n-l(X)1
To see this assume there is a fibre F of 6: ~ 2013~ C with n(F) i X. Let 8 be

an algebraic curve in C, that contains c and such that there is an open set U
of 8 such are fibres of p. Now if for 

then clearly by the rigidity lemma there exists an open set U(t) 3 t such
that X. Let 9.1 be the largest open set of &#x26; such that

X. If SEe is a boundary point of then Jc (6-1(s)) c X - X.
If not then X) would contain some interior point y of Y. By
properness of p, given any point s’ near enough to s, p(n(b-’(S,)) r) X)
must intersect a fixed neighborhood of y. But by hypothesis there exists
a sequence 9.1 with xn 2013 where by the rigidity theorem, since

yr(~~(~)) ~ X, one has p (~ (W 1 (xn ) ) ) diverging. It is trivial now that ‘lb must

be Zariski open in 8y and thus if n(F) i X then C X - X; but this
would contradict c 

Note that d: C -+ Y is generically one to one by the rigidity lemma.
In fact the only time there can exist two points such that

= d(c,) is when the fibre is of dimension greater than

dimc Y, i.e., when d(c1) E 0. Note the fibre of d must be posi-
tive dimensional in this case since otherwise ~: Z - e) - X could
not be onto. Further d : C - -~ is a biholomorphism since it
is one to one and onto and C and Y are normal.

Now consider the case where p : X - Y is a proper generically finite

to one surjection. Let A be the sheet number of p. There is a well defined

meromorphic map A: Y -~ XU) where is the A-th symmetric power
of X. To see this first consider p!~-p-i(D)~2013 -~ Y - 1‘~ and let A

send y to the A tuple where consists of A distinct points; an

easy argument with Riemann’s extension theorem shows 1 extends holo-

morphically to Y - 0. To go the rest of the way, note 9) is of codimension
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two at least and X is projective. This guarantees that one gets a mero-
morphic map from Y to X~~~. Now to show that X~~~ for y E Y simply
note that A(y) E p-’(y)(") for a dense set of y E Y. This combined with the

properness of p and a continuity argument shows that for all y E Y one
has ll(y) E p~(2/)~. Thus l1. is a meromorphic function from Y to X~~~.

Now if there is a bimeromorphic map from 0: Y~ ~ Z where Z is a normal
quasi-projective variety and Oop is rational, then one can construct similarly
with Oop a map ~l.’ : Z -~ X(Â) with an algebraic subset Gr (~l’) S Z X X(Â)
as graph. I Now the projection of Gr (ll’) in X~~~ is a locally closed algebraic
set and has the image of 11 as one of its components. Thus A(Y) is an

algebraic set Y’ in X(l). Now using the natural map p(*’) X ~~&#x3E; &#x3E; Y~~~ one
sees by a continuity argument that p~~~( Y’ ) is in the diagonal and thus one
gets an holomorphic map e : Y’ ~ Y where Y’ is quasi-projective. One can
by normalizing assume that Y’ is normal. Clearly e : ~’’’- e-1(Ð) ~ Y - 5)
is biholomorphic. Now one has a meromorphic and rational map from X
to Y’ by using the normalization of the graph of the map Aop. Thus

one has the commutative diagram

with the projection q: ~ -~ Y’’ a rational holomorphic map and t a birational
morphism.

Now let us put the above together.
One has p: X -+ Y with Remmert-Stein Y

and one has a bimeromorphic map 0: Y -~ 2’ such that (Pop is rational.

First use the first half of the above argument applied to r: X ~ .R
to get the commutative diagram _

where X’ = Z, a = x and b = 6. Now note that Wosod is rational. To

see this, simply note that the graph of tPo8od in exZ is a component of
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the algebraic set gotten by pulling the graph of (Pop in X X Z to X’ X Z

using a, and then pushing it down to C x Z by b. Thus one can use the

second half of the argument applied to s o d to get

Here is the normalization of the graph in C X Y’ of the rational mero-
morphic map Aosod. Let 9 be a normal projective variety in which 9
is Zariski open. Note that q is a proper, generically finite to one map and
that the birational morphism t extends to a birational mapping t : ~’ --~ ~.
Replace C buy 9. Replace C by the normalization of the component r of the
graph of t that surjects on both C and 9 under the maps induced from the
projections Cx8 2013C and Cx9 20139. Replace X’ by the normalization of
the component of the fibre product of b and t that surjects onto X
and 9 under the induced maps. Similarly replace X’ by the normalization
of the component of the fibre product X’ X ~ h of b and the projection of F
onto e, that surjects onto X and r under the induced projections.

Note that if :

is a commutative diagram of quasi-projective varieties and rational maps oc

and @, then the fibre product of a and # is quasi-projective. To

see this, simply consider the embedding of the fibre product in 
I leave it to the reader to check that the above satisfies the conclusion

of the theorem. Note that 0 was used in an auxillary role to show quasi-
projectivity of certain graphs and spaces but all maps above are indepen-
dent of it. Q.E.D.

REMARK III-A. If dimc Y = k in the above theorem then if

8k+l(P) is algebraic it follows immediately from the above result that e-1(D)
is algebraic where D is the degeneracy set of e.
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REMARK III-B. One can use a combination of the rigidity lemma and
the Chow space argument to show each component of C X is alge-
braic--of course there may be infinitely many components. The following
question if answered affirmatively would, with the results of the next sec-
tion, imply that the normalization of the image of the period mapping is
algebraic.

QUESTION. Let p : X - Y be a proper holomorphic surjection with X a
Zariski open set of a normal irreducible projective variety X and Y a normal
analytic space. Assume p-l(Ð) is an algebraic set where 0 is the degeneracy
set and that p gives a biholomorphism between X - and Y - Ð. Then

does thcre exist a compact normal space Y in which Y is Zariski open such
that p extends meromorphically to a map from X to Y?

REJBIARK III-C. If X is Zariski open in a normal compact irreducible

analytic space X and p : X - Y is a proper holomorphic surjection with
connected fibres onto a normal analytic space Y, then an analogue of the
above proposition would hold if the Chow space of X had compact com-
ponents ; this is probably true if X is a Kaehler manifold. Precisely, there
would exist a bimeromorphic map 0: Y --* Z with Z a Zariski open set of
a compact normal analytic space Z and such that Oop extends mero-
morphically to a map from X to Z.

§ IV. - References for this section are [10, 11, 12, 13, 24, 29, 30]; I will
not repeat all the usual definitions. D will denote a period domain and 1-’
an arithmetically defined discrete group that acts properly discontinuously
on D. Thus is normal complex space.

A smooth quasi-projective variation of Hodge structure is given by an holo-
morphic map p : S --&#x3E; of a Zariski open set of a connected smooth pro-
jective variety ,S in 1BD such that :

A) there is an holoxflorphic map pu : Su -~ D of the universal cover ~Su
of S into D that covers S in the sense that

commutes,

B) fixing a basepoint so of 8 and letting so) act on 8u by covering
transformations, then one has an homomorphism so) -+ .r with respect
to which pu is equivariant, 

’
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C) p,, is horizontal in the sense of [24, p. 224],

D) ~S’ - ~ has only normal crossing singularities.

REMARK IV-A. All maps p : S - that arise in algebraic geometry,
as sketched in the introduction, are smooth quasi-projective variations of
Hodge structure. It will be convenient in a certain technical situation below

to allow a variant of the above definition. I A normal quasi-projective varia-
tion of Hodge structure is defined the same as above except ~S is only normal,
p is proper, .1~ is torsion free and D) doesn’t apply.

Let p: S -~ " be a smooth variation of Hodge structure where ~S’ - S
has only normal crossings. I Then, by a result of Griffiths [10; III p. 158]
there exists a Zariski open set ~S of ,S containing S and such that p extends
to a proper holomorphic mapping p : ~S called the Griffiths exten-
sion of p.

REMARK IV-B. In general p: ~S ---+ not a smooth quasi-projective
variation of Hodge structure if .1~ is not torsion free [cf. 10, III p. 172].
It is for this reason that the main result in [29] needs in its hypotheses
either that p is proper or 1~ is torsion free.

LEMMA IV-A. Let p : S --* .hBD be a smooth quasi-projective variation of
Hodge structure with S Zariski open in a projective manifold Sand let

p: S -* IBD be the Griffiths extension. Then there exists a smooth quasi-
projective variation of Hodge structure, p’ : with a Griffiths exten-
sion P’: S’ --~ whe1’e rf is torsion free and of finite index in rand:

A) Sf and ~S’ are Zariski open in 9’, a smooth projective manifold,
and there exists an holomorphic surjection with restriction q
S’-&#x3E; S a covering projection and restriction q = Qls’: ~S’ --~ ~S a proper map,

B) the diagram

commutes.

.Furthermore let q = ro s denote the Remmert-Stein factorization of q where
s : ,S" -~ l~ is a proper surjection with connected fibres onto a normal variety R
and if: -k --&#x3E;,g is a proper finite to one surjection. I Letting R = s(~S’)’, then 1~
is Zariski open in R which is projective, and there is an holomorphic proper
map pr : R - which is a normal quasi-projective variation of Hodge
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structure. Letting r = rlR and s = 81;, then q = ros is the Remmert-Stein

factorization of q and the diagram

commutes. I

PROOF. Recall Selberg’s theorem [6, 17.4] that there exists a torsion
free subgroup 1~’’ of finite index in .h. Using B) of the definition of smooth
quasi-projective variation of Hodge structure one has a commutative

diagram:

where ~’ is a finite cover of S. Now S’ is also quasi-projective in such a way
that the covering projection q : S’ - S is rational; this standard fact follows
easily from § II.

Let S’ and S be projective manifolds in which S’ and S respectively
are Zariski open. It can be assumed by Hironaka’s theorem [17] that q
extends to an holomorphic q from N’ and further that ~S’- ~’ and
~S - ~S have only normal crossings. Let and P’: 
be the Griffiths extensions of p and p~ to proper maps [10, III p. 158].
Let 4 denote the restriction of q to ~S’’; it is easily checked from how the ex-
tensions p and p’ are defined that 4 gives an extension of q to a proper map
from to Let 4’= ros be the Remmert-Stein factorization of 4’ where
r: g’-* R has connected fibres and s : R ~ S is a finite to one proper map
with normal. Note that one can also Remmert-Stein factorize 4’ as ros
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where has connected fibres and s : l~ --~ ~S is a finite to one map.
Since s is finite too it follows by Lemma III-B that is projective and R,
being Zariski open in l~, i.e. Y]n = r and R = R - is quasi-pro-
jective. Thus the lemma will be proven if it can be shown that fif factors
as p,or and the diagram:

commutes. 

’

This follows immediately from the universal property of the Remmert-
Stein factorization. I To be precise, Remmert-Stein factorize p’ = s’ or’ with
r’ : 8’-+R’ a proper surjective map with connected fibres and .R’ normal
and s’ : a finite to one proper map. Consider the commutative

diagram:

where t : -&#x3E;. .1BD is finite to one. Thus one has = (tos) or’
where r and r’ have connected fibres and tos is a finite to one map. Thus

by the universal property (easily proved using the rigidity lemma of § III)
of the Remmert-Stein factorization of tosor’ as (tos)or’, there exists a sur-

jective proper map u: R ~ R’ such that, letting one has the

desired commutative diagram. Q.E.D.

LEMMA IV-B. Let p : ~ -~ be a normat quasi-projective variation
of Hodge structure. I Let be the normalization o f an irreducible algebraic
subvariety Z of S. Then JY’(Z) -~ is a normal quasi- projective
variation of Hodge structures. I

PROOF. The only thing that must be checked is the horizontality con-
dition C). Since this is local, one can by choosing a neighborhood of a point
of Z and lifting the situation, assume p is a map from S to D. Now p is
horizontal means that dp maps the tangent space at each regular point of S
to a certain holomorphic sub-bundle Je of TD . Clearly by continuity this
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condition must only be checked on a dense open set of the regular points.
Now if Z is not contained in the singular set of ~’, then there is a dense open
set of the regular points of Z that are regular points of 8 and everything
is clear. Thus one can assume Z is contained in the singular set 8 of S. Use
Hironaka’s theorem to do a of S such 

S - 6-1(8) -+ S - 8 is a biholomorphic. By continuity po 6 is horizontal.
Now consider Now pob is horizontal restricted to the regular
points of 6-’(Z). Further there is dense set U of the regular points of Z
such that for each point y of U, there is at least one point x of 6-1(y)
such that 61,5-.(U) maps the tangent space of x in onto the tangent
space of y in U. Thus considering ~-1( U) ~ U -~* D, one sees that p is
horizontal on U. Q.E.D.

Now (§ III) consider the filtration 8o(p):¿ 81(j§)D... of ,S where

is the Griffiths extension of a smooth variation of Hodge
structure p : S 2013~ 

LEMMA IV-C. With j§ as above, the sets 8i(p) are algebraic subvacrietzes o f S.

PROOF. Note that if A : X --~ Y and R : ~’’ --~ Z are surjections of normal
irreducible analytic spaces and A is finite to one, then A(Si(B.A)) = 8i(B)1
Thus by Lemma IV-A it suffices to show that ... are alge-
braic where p,: R is a normal quasi-projective variation of Hodge
structure.

Now consider the following lemma of Griffiths :

LEMMA (Griffiths). Let normal quasi-projective varia-
tion of Hodge structure. T he singular locus J(p) is algebraic.

PROOF. Using the remark preceding the statement of this lemma, one
can assume using Hironaka’s theorem that p: ~ 2013&#x3E; is a smooth quasi-
projective variation of Hodge structure where p is proper and T is torsion free.

One notes that I the holomorphic tangent bundle of is built

out of the universal bundles on by tensor products and dual-

izing [10, III p. 153]. Thus extends as an analytic coherent
Sheaf Y to S, some projective manifold in which S is Zariski open [25; 4.13].
Now it can be shown [10, III p. 153 and 24, p. 225 ff] that the differential
dp E Hom(Ts, is given by the induced action of the Gauss-Manin
connection on p* (TrBD ). Thus by [24; 4.13] dp extends to a meromorphic
sheaf map on g from to T. The set where dp is not of maximal rank
is thus algebraic. Q.E.D.
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Now let

be as in lemma IV-A where p : S -+ " and p’: ~S’ --~ 1~’’BD are the Grif-
fiths extensions of the smooth quasi-projective variations of Hodge structure
p : ~S and P’: respectively. Let A be a quasi-projective
manifold of ,S’ such that is generically finite to one and proper. To

construct such an A simply take A as a projective submanifold of ,S" that
intersects a generic fibre of p’ in a finite set of points and has dimension
equal to that of 15’(S’), and then let A = A r1 ~S". Letting 
denote the inclusion, let 2: A -+ denote pofjoi A and let y: A -+ 
denote 

One has the commutative diagram:

Note that y the canonical bundle of D, since it is invariant under 1-’,
drops to a line bundle on which by abuse of notation I denote KFBD;
if 1~’ were actually torsion free this line bundle would be the canonical bundle
of is built by taking tensor products, y dual and determinant
bundles out of the universal Hodge bundles on D. Therefore by a theorem
of Griffiths [24; 4.13], the sheaf of germs of holomorphic sections of

JC = extends to S as a coherent analytic sheaf ~,. By a theorem of
Ros,si [23, cf. 22, § 2 for a good discussion] combined with Hironaka’s

theorem it can be assumed that L is the locally free sheaf associated to an
holomorphic line bundle L on ~S.
D is of the form G/V where G is the connected component of the identity

of all biholomorphic maps of D and V is a compact subgroup. Any G in-
variant metric on .KD (unique up to a constant multiple) drops to give a con-
tinuous metric on I In [29, p. 254] it is shown as a direct conse-

quence of the results of [24] that the pullback of this Hermitian metric to Je
has L2 poles at infinity relative to L. Further = 

and the pullbacks of the Hermitian structures agree.
Now I claim that the curvature of this Hermitian structure on K r’’’’-D Ip’(~)

is positive definite. Note that the G invariant metric on KD is positive defi-
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nite in the horizontal directions [12, p. 277]. Thus the assertion will follow
from the following lemma.

LEMMA IV-D. Let g~ : X -+D be an holomorphic horizontal embedding of
an irreducible and reduced analytic space X into D. Assume that 99 is a proper
map f rom X to an open set U C D. Let úJ be any real C°° (1, 1 ) form defined
in U and positive definite on horizontal directions. Then given a point x E X,
there exists a neighborhood V of in U and a plurisubharmonic function A
on V such that:

1) is identically zero,
is positive on V.

PROOF. be holomorphic functions defined in some

neighborhood TT’ of gg(x) that span the ideal sheaf of Let

A -1 
iN

Let H C Tv, be the horizontal sub-bundle. If for a possibly smaller neigh-
borhood V’ of one had Ý 1 88A positive definite on some comple-
mentary sub-bundle to H in T v, , the lemma would be done by restricting
to some still smaller relatively compact neighborhood V of ~(~)y and mul-
tiplying A by a large enough positive constant.

Now let:

The desired conclusion about A will clearly occur if Now ~~(x)
is the Zariski tangent space of tp(X) at and is well known to be the smal-

lest vector subspace of spanned by the Zariski tangent cone 
of T(X) at x. Now let be a sequence of manifold points of with

y,. - tp(X)1 Let {e,} be a sequence of tangent vectors er E Then

by continuity and the horizontality of tp, it is clear that any limit 
must belong to Thus by a theorem of Whitney [32, 22.1 on p. 547;
cf. 15, p. 251 ff. for discussion] Hlq,(x) D and thus also ~~(x) .

Q.E.D.

It is worth recording one consequence of this lemma; see [11, p. 258J ; -1 
.

COROLLARY IV-A. Let 99: J~ -~ D be a proper horizontal holomorphic map
where X is a reduced and irreducible analytic space. Then is ac Stein space.

PROOF. Let o be the exhaustion function of D found in [12, p. 295].
The Leviform of o is positive definite when restricted to the horizontal sub-
bundle of H. Thus by the above, the restriction of e to tp(X) is a strongly
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plurisubharmonic exhaustion function. I Now use Narasimhan’s generalization
of Grauert’s solution of the Levi problem [19]. Q.E.D.

Next note that A is a complete Kaehler manifold. To see this, first note
that since A is a quasi-projective manifold it possesses a Kaehler metric.
Next add to this metric the pullback under fl of the complete metric dG on
F’BD that is induced by the essentially unique G invariant metric on G.
It is easy to see [29, p. 254] that the Hermitian form associated to fl*clG
is closed.

In the following will denote the normalization of Z, for any reduced
analytic space Z. If f : Z - W is an holomorphic map between reduced
analytic spaces Z and W, then V(f) will denote the functorially associated
map between and As far as meromorphic mappings go, I will
work with normal spaces. One can go to more general spaces by throwing
everything back into the normalizations of the spaces in question, but this
does not allow any better results below. It should be noted, though, that
with the classical definition of meromorphic functions one has the result [1-, 3.9]
that ~ where for a reduced and irreducible analytic space Z,

denotes the field of meromorphic functions. I
Now the following is the major proposition of the paper.

PROPOSITION IV. Let p : S --&#x3E; r""’D be a quasi-projective variation of Hodge
structure and let p: S -?- riD be the Griffiths extension of p. Let 0 be the

degeneracy set of Then there exists a proper holomorphic surjection
-?- where ill is a normal quasi-projective variety such that :

A) is an algebraic subvariety of M and 0 gives a biholomorphism
between M - 0-1(0) and JY’(p(~S)~ - 5),

B) the degeneracy set of 0 is Ð,

C) is rational; if P: Jf(p(S)) --&#x3E;- Z is any bimeromorphic
map onto a normal quasi-projective variety Z, such that is rational,
then is a birational equivalence between and Z,

D) Let j: ---&#x3E; r"",n denote the induced map. If f : S’--* 
is any holomorphic map where S’ is Zariski open in a projective manifold S’,
jol is a smooth quasi-projective variation of Hodge structure, and f(S’) contains
an open set of JY’ (p(~S’)) , then 0-lof is rational.

PROOF. A), B), and C) follow directly from Proposition I, Proposition III,
Lemma IV-0, Lemma IV-D and the discussion preceding the statement of
the above Proposition IV.

D) Follows from Corollary II-A and the discussion preceding the above
Proposition IV. Q.E.D.
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COROLLARY IV-B. Let p : Ag --* hBD be the Griffiths extension of a smooth
quasi-projective variation of Hodge structure p : 8 and Ag are
Zariski open in S, a projective mani f otd. I Assume that the degeneracy gel

Ð c o f is a discrete set, e.g. dime p(~S’) ~ 2. Then there is a

compact Moisezon space Y in which is Zariski open and such that

X(p) extends to a meromorphic map from S to Y.

Now let me record an amazing GAGA [25] like corollary of the above
proposition that amplifies D) of Proposition IV.

COROLLARY IV- C. Let p : ~S’ -~ be the Griffiths extension of a smooth
quasi-projective variation of Hodge structure. I Assume r is torsion free. Let U1
and U2 be two open sets of If one can put a quasi-projective struc-
ture on U1 and U2, then U1 n U2 possesses a quasi-projective structure com-
patible with both. The union ’11 of all points that possess a quasi-projective
neighborhood is a scheme of finite type ove C.

PROOF. Let 0: 1Vl --~ be as in the above proposition. Using
Hironaka’s theorem, let U, ---&#x3E; Ui for i = 1 and i = 2 be smooth de-

singularizations with ði proper and U’ Zariski open in a projective mani-
fold V; such that U2 has only normal crossing singularities. Let

j : denote the induced map. Since T is torsion free, jobi
is a smooth quasi-projective variation of Hodge structure. Thus by D) of
the above Proposition IV, Ø-l0ði is rational. In particular each O-I(Ui)
is a constructible set by Chevalley’s theorem. I Since the are also

open in the complex topology they are open in the algebraic Zariski topo-
logy on M and the maps 0: -1( Ui) - Ui are rational. Thus Z = M -
- Ø-l(U2) is algebraic and therefore 0(0-’(Ul) - Z) = U1- O(Z) = Ux r’1 U,
is open in U1 in the algebraic Zariski topology on Ul. Thus the quasi-
projective structures on U, and U2 are compatible.

Now let ’11 = U Ua where each Ua has a quasi-projective structure.
«

Note that Ø-l(’11) = U SW1( U«). Since a quasi-projective variety is com-
a

pact in the algebraic Zariski topology, it follows that ’B.L is a finite union.

By the paragrah, everything is compatible. Q.E.D.

RE31AP.K IV- C. The above is a reflection of the negative curvature and
the resemblance of D to a bounded domain in horizontal directions.

PROPOSITION V. Let p : ~S’ -~ hBD be the Griffiths extension of a smooth
quasi-projective variation of Hodge structure p : ~S --~ hBD. Let U denote the,

image in of the set of points in S where dp, the differential of p, is

of maximal rank. Then U is an open set possessing a quasi-projective structure.
Further U has the GAGA [25] property; it possesses only one quasi-projective
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structure compatible with the underlying analytic structure in the sense that if
= 1 and i = 2} denote U with each of two quasi-projective structures,

then the identity map on U gives a birational equivalence between Ul and U2.

PROOF. By Proposition IV there exists a normal irreducible quasi-
projective variety 31 and a proper, generically one to one, holomorphic
surjection : 1 -- JY’((,S)}. I Using Hironaka’s theorem [17] to desin-

gularize one can assume that M is Zariski open in a projective mani-
fold 9 and M - lVl has only normal crossing singularities. Let j : -

be the induced map.
Assume first that his torsion free. I Then jo 0 is a smooth quasi-projective

variation of Hodge structure. Thus one can apply Lemma IV-C and the
discussion preceding Proposition IV to joO, in order to conclude that the
hypotheses of Proposition II are satisfied. Thus there exists a meromorphic
map ~: -+ CPN for some N, such that:

A ) is rational,

B) P is an embedding on the set of manifold points of JY’(~(~S)) .
By A ) and Chevalley’s theorem, the image of WOW is constructible.

Thus by normalizing the closure of the image of ToO one can assume
that there exists a normal irreducible projective variety Z and a mero-
morphic map IF’: - Z with dense image such that:

A ) is rational,
B) T’ is an embedding on the set of manifold points of I

Since by Griffiths’ lemma stated during the proof of Lemma IV-D, the
singular set of p is algebraic, it follows that U is open in ~S in the Zariski
topology. Thus, since is rational, is constructible and since

is open in the complex topology, it is quasi-projective. Thus 1J"

gives a biholomorphism of N(p( U)) with a quasi-projective variety.
Now let r be arbitrary. I By Lemma IV-A there is a smooth quasi-pro-

jective variation of Hodge structure p’ : ~S’--~ with Griffiths exten-

sion j§’ : 8’ --¿. where .1~’ is a torsion free subgroup of finite index in r
and where the diagram:

commutes with q, a covering map. Now let U’ be the image in 
under of the open set of points in S where dp is of maximal rank;
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it is a manifold by the implicit function theorem. The map from 

to induces a holomorphic generically finite to one map r : -

-M).
Note that is a finite to cover from U’ onto U. There is a map

from U to U’ ~~~ where rlu’ is 2 to 1 and 99 s ends ac E U to the unordered 2

Now U’ possesses a quasi-projective structure by the earlier part of the
proof. Using Hironaka’s theorem [17] one can assume U’ is Zariski open
in a projective manifold U’ and U’- U’ has only normal crossing singular-
ities. Since jor) u, : U’ -+ is then a quasi-projective variation of Hodge
structure and 1"lu’(U’) contains the open set U of J~(p(~))y one can conclude
by D ) of Proposition IV that is rational with image 
Now A is Zariski open in ~f in the algebraic Zariski topology, since

A = is open in the complex topology and A = 0-loriu,(U) is con-
structible by Chevalley’s theorem.

Thus one can define a rational meromorphic map gg’: A -+ U’(1) by sending
a generic point a E A to Now and gg(U) have the same
image. Since 99 is an embedding of U into U’(1) and since 99 is rational, it
follows that U possesses a quasi-projective structure. I

Now I will show U has only one quasi-projective structure in the strong
sense that if there were two, the identity map would be birational. Assume U
possesses two quasi-projective structures; denote U with these two structures
Ul and U2. Now U’ is a finite cover of U and thus each Ui induces a quasi-
projective structure on U’, as is easily seen. But by Corollary IV-C, U’
has a unique quasi-projective structure. It is easy to see that this forces U1
and U2 to be equivalent. Q.E.D.

REMARK IV-D. The above has as one consequence the fact that in cer-

tain situations, y when the local Torelli theorem holds and a moduli space
exists, e.g. [20], the moduli space has a unique quasi-projective structure
supported by the underlying analytic structure.

Note that since the degeneracy locus D of p is the image of an algebraic
set, one can conclude that there is a Zariski open set of with a quasi-
projective structure and so on.

The above results can be somewhat improved. I By using Lemma II-B
at all points, not only at the smooth ones, and by using the proof of Pro-
position I of [29], it can be shown that if r is torsion free then’the normaliza-
tion ~k of the monoidal transform of with respect to for

some N is quasi-projective. This fact, combined with some further arguments,
can be used to show that if .1~ is torsion free then the various bimeromorphic
embeddings of used above can be gotten by using holomorphic
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sections of the pullback Z~ of to for some integer M &#x3E; 0.
Roughly one chooses a quasi-projective desingularization Xk of Xk. Letting R
be the invertible sheaf on Xk which is the pullback of modulo

torsion, one notes that the direct image under the surjection of Xk onto
of B-1 is the trivial sheaf at the non-singular points of
Letting L’ be the pullback of L to Xk one does a curvature cal-

culation on D that implies 0 Rw is almost positive for r » 0. One

now constructs ’sections of L’b) for various a and b, including
a = 0. By tensoring appropriate induced sections of the direct images on

one gets holomorphic sections of L8 for various s on X(p(S))
minus the singular set of J1~’(p(~S)) ; these sections then extend to 
I will not give full proofs of these extra results because their importance
does not seem to me commensurate with the extra space the proofs would
require.

It is clear from the above that to say whether the image of p itself has
an algebraic structure, one must study the behavior of p at infinity. E.g. if X
is an algebraic curve, assumed generically one to one would
be algebraic unless there were two sequences of points and of X

with Xn =I=- Yn, p(xn) diverging, and p(xn) = p(yn). This type of question
is considered in detail in [28]. One positive result that the author

proves [28, Prop. V] in this direction is that if ~: L1* ~ is a horizontal,
holomorphic, locally liftable map, then there is a smaller subdisc on which
~ : L1* --&#x3E;99(,J*) is a finite to one cover.

Note added in proof. I

In Remark III-C we mention an improvement possible if the Chow space of a
compact Kaehler manifold had compact components. I This has been shown indepen-
dently by A. FUJIKI, Publ. RIMS, Kyoto Univ., 14 (1978), pp. 1-52 and D. LIEBER-
MAN, Sem. Fran. Norguet (1976), pp. 140-186.
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