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Closed Geodesics on Surfaces of Genus 0 (*).

WILHELM KLINGENBERG (**)

1. - One of the outstanding results in Global Differential Geometry is
the theorem of Lusternik and Schnirelmann that there exist on any closed

orientable surface of genus 0 three non-selfintersecting closed geodesics.
See [LS 1, 2] as well as our « Lectures on Closed Geodesics » [Kl]2013briefly:
LCG for a simplified proof.

In the present paper we want to show how an extension of the methods
which we employed in LCG for the proof of the Lusternik-Schnirelmann
theorem yields an elementary proof for the existence of infinitely many
prime (i.e., not multiply covered) closed geodesics on a surface of genus 0.

In LCG we have already presented a proof for the existence of infinitely
many prime closed geodesics on an arbitrary riemannian manifold with finite
fundamental group. This proof, however, is quite involved and uses rather
delicate arguments. So it seems of interest to give a much simpler proof
for the case of a surface of genus 0.

A fundamental r6le in our proof play the subspaces of the space of all
closed curves formed by those curves having selfintersection number  a
fixed integer v. We will introduce energy-decreasing deformations of those
spaces into itself and show that for every v = 0, 1, ... , there exist two not

necessarily prime closed geodesics with selfintersection number v. Moreover,
as v increases, the energy of these geodesics does. Cf. (5.5) for details.

2. - We begin by fixing some notations. By .M we denote the 2-sphe re 82,
endowed with an arbitrary riemannian metric. P.M shall be the space of all

(*) This paper was written while the author was visiting the Univer sita degli
Studi and the Scuola Normale Superiore at Pisa in spring 1977 under the auspices
of the Consiglio Nazionale delle Ricerche.

(**) Mathematisches Institut der Universitat, 53 Bonn.
Pervenuto alla Redazione il 2 Agosto 1977.
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piecewise differentiable maps (with an infinite number of geodesic pieces
being allowed)

of the parameterized circle S into M, endowed with the metric

Here d( , ) denotes the distance on M, derived from the riemannian metric.
On PM we have defined the energy

u

For any real x we put

In particular, P° M consists of the constant maps c: 8 --* M and thus is

canonically isomorphic to M.
On PM we have the canonical 8-action coming from the X = SO(2)-

action on S:

That is to say, z - o is obtained from c by changing the initial point from
OES to reS.

We also have the Z2-action generated by

i. e. , 7 by the reversal of the orientation.
The 8-action and the Z2-action together give a 0(2)-action on PM.
The isotropy group 1-(e) of c e PM under the S-action either is S

(and this occurs if and only if c e P°M), or else, is a finite cyclic group.
The order of this group is called the multiplicity of c. If c has multiplicity 1
it also is called prime. If c has multiplicity m then c can be written as
c(t) = co(7nt). co is uniquely determined and is called the underlying prime
closed geodesic of c.

We now introduce the fundamental concept of the selfintersection number

v(c) of a closed curve c E PM. Assume first that c: S - M is an immersion
and that the multiple points-if they occur at all all are double points
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representing a transversal intersection. Then we define v(c), to be the
number of these double points.

For every integer w &#x3E; 0 we now define Pr M to be the closure in .PM of
the immersions with , v transversal double points. Put P-,, M = 0. We
thus have the strictly increasing sequence

of subspaces of PM. If c E Pv .M but not in Py_1 M then we define v(c)
to be v.

Not every c E PM will belong to one of the Pv M. For the remaining c
we put v(c) = oo . But certainly for closed geodesics c, v(c) is finite.

Actually, there exists the following relation between the selfintersection
number of a multiply covered closed geodesic and the selfintersection number
of the underlying prime closed geodesic:

2.1 PROPOSITION. Let c be a closed geodesic of multiplicity m(c). Denote

by eo the underlying prime closed geodesic. Then

PROOF. We can asume: m(c) &#x3E; 1. Observe now that the m(c)-fold cov-
ered closed geodesic co can be approximated by curves which have m(c) arcs
near co and m(c) - 1 transversal double points away from the selfintersec-
tion points of c,,. Near each of the selfintersection points of co (which are
transversal but may not be only double points but also points with k &#x3E; 2

arcs passing through it) the approximating curves can be assumed to have
double points only in number m(c)2k if k + 1 is the number of arcs pas-

sing through that selfintersection point.

NOTE. It is the concept of the selfintersection number where it is impor-
tant that M is 2-dimensional. Indeed, if dim M &#x3E; 2, .Poif = -Pit and thus
the selfintersection number carries no information in this case.

3. - Our next goal is to define an E-decreasing deformation of the sub-
space Pv .M into itself. For v = 0, Lusternik and Schnirelmann, cf. [Ly],
had defined already such a deformation. This deformation seems very com-

plicated and we had difficulties in establishing the necessary properties for
it. Therefore we proposed in LCG a much simpler and actually more efh-
cient E-decreasing deformation of Po M into itself. Here we will show that
the same deformation also can be used to transform P,M into itself.



22

As it is customary in this theory, y the deformations are defined only on
a subspace P’M = P"M r1 P’M of Py M, x some arbitrarily fixed positive
real number. For such a x we choose an even integer k &#x3E; 0 such that

4x/k  q2. Here, 77 is a positive number such that, for every p E M, the disc
of radius 2q around p is a convex neighborhood of p.

Let c e PM. The relation (with E denoting the length)

implies: If c c P’M and [ti - to [  2 fk then

Thus in particular, there exist a unique minimizing geodesic segment
cc(to)c(t) from c(to) to c(t1).
We begin by defining the deformation

Let c E Pv .11T. Put c(O) == p. For every a e [0, 2/k] the geodesic segment
opc(a) is well defined. The closed curve Ðao = u c I [or, 1 ] again belongs
to P’M. However, it may happen that, as d increases, °pc(a) will have new

proper (i. e. , transversal) intersections with 01[0’, 1 ] as compared to the original
arc c)[0, a]. Whenever this begins to occur we start modifying a[[a, 1] by
substituting for each small arc of 01[0’, 1 ], which comes to lie on the « wrong »

side of C-’.(,) so as to cause additional transversal selfinteractions, a geodesic
segment on cpc(a) which goes from the initial point to the end point of such
an arc.

, 
It may be necessary to make such a substitution simultaneously for

several small arcs. But this is no problem, since the whole procedure takes
place inside the convex neighborhood B,,,(p) of p where the geodesic segments
’0,,c(,,) look like straight segments starting from p. The substituting process
may be thought of as a pushing aside or sweeping aside of parts of el[or, 1]
which come to lie in the way of the segment cpc(a) as it moves around.

We denote by Ðaol[a, 1] the modification of cl[a, 1]. Since arcs of 01[0’, 1]
may be replaced by geodesic segments, the E-value of Ðaol[a,l] will be
E(ol[or, 1]). As we proceed with d from 0 to 2/k it also may happen that
c(d) has been replaced by Ðac(O’). We now define
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We proceed to define in the same way Ðao for a e [2/k, 4/k], C E p: M:
The only difference is that c(0) is being replaced by c(2/k) as initial point
and we begin by substituting the geodesic segment cC(2Ik)c(a) for the arc

cl[2/k, (1]. 154IkCI[2/k,4/k] will be a geodesic segment of length c
We continue in this manner until we reach the interval [( k - 2)/k, 1].

We then proceed to define fi§ c for 0’ e [ly 1 + 2/k] as being a similar defor-
mation with c(1 /k) as initial point and having the effect that cl[l/k, (J- 1+1/k],
(1 e [1, 1 + 2/k] is being replaced by a geodesic segment. We go on until
we reach the interval (1 E [2 - 2/k, 2] where Ðac represents a curve such
that 15acl[l-l/k, (J -1 + l/k] is a geodesic segment.

We now define D (d, c), o’ e [0, 2], to be the subsequent application of the
mappings ’fu2Ik’ ..., 152Z1k, Ða, where 2l is the even integer determined by
2l  kG  2l + 2.

3.1 PROPOSITION. Choose a x &#x3E; 0 and acn integer v&#x3E;O. Then the mapping

is continuous. Moreover, E(D(2, c))  E(c) with equality if and only i f either c
is a constant map or else a closed geodesic.

PROOF. We consider Pv .11T to be a subspace of PM. Then the con-

tinuity is obvious. The last statement follows from the following standard
facts of riemannian geometry : Let c : [to, t1] - M be a piecewise differentiable
map from p = c(to) to q = c(t1), d(p, q)  77. Let o,,,, be the unique minimizing
geodesic segment from p to q, parameterized by [to, t1]. Then B(c.,,)  B(c)
with equality if and only if Cpq(t) = c(t).

For reference we formulate another standard result of local riemannian

geometry :

3.2 PROPOSITION. Let tc,,l be a sequence of piecewise differentiable paths
On: [0, 1] - M. Put cn ( o ) = p n , 0,,(l) = qn . Assume : d ( p n , q,,,) ,q with ?7 &#x3E; 0

as above so that there exists the uniquely determined minimizing geodesic segment
op.,.: [0, 1] - M from Pn to qn.

Let now {E(on)} and {E(oPn(ln)} both be convergent with the same limit.

Then fcnl possesses a convergent subsequence with limit a minimizing geodesic
segment c: [0, 1] - M.

PROOF. Since .M is compact, there exists a subsequence of fenj which
we denote again by {Cnl such that lim Pn = p and lim qn = q exist. It fol-
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lows that {oPnqn} converges to the minimizing geodesic segment c = Cpq

from p to q.
Let to E ]0, I[. Put cn (to ) = rn. We will show that lim rn exists and is

equal to c(to ) . Indeed, {rn} possesses a convergent subsequence f rn(k)} . Let r

be its limit. The sequences

of unique minimizing geodesic segments converge to cpr and crq , respectively, y
with parameter domain [0, to] and [to, 1]. From our assumptions follows:

Since cpq : [0, 1] - 1V1 is the unique segment of minimal E-value from p to q,
the curve °V1’ u ora from p to q must coincide with cpa . In particular, its

value r for t = to must be equal to opito). This completes the proof.

3.3 LEMMA. Choose ,,&#x3E;0 and an integer v &#x3E; 0. Let 15(cr, ) be the deforma-
tion o f Pv M into itself, as defined above.

Assume that {c,,v) is a sequence in P’X such that both, fE(c.,,)l and
{E(15(2, c,,))I, are convergent with the same limit xo &#x3E; 0. Then {e,,l possesses
a convergent subsequence with limit a closed geodesic co with E(co) = "0’ v(co) c v.
If, for all sufficiently large, v(Ð(2, on)) = v then also v(eo) = v.

PROOF. Besides the deformation Ð(cr, ) we will also consider the defor-
mation Ð(o’, ) of Lusternik and Schnirelmann, (cf. [Ly] and LCG) which
is defined as follows: Choose k as for the definition of i3(a, ). ,

For (J E [j/k, ( j + 2)/kJ, j = 0, 2, ..., k - 2, put

Similarly, for define

Here, as always, the t-parameter has to be taken modulo 1.
Let now 0(a, 0), G E [0, 2], be the subsequent application of the defor-

mations U)Ilk I... Ð2l/k’ 1 Ða, with 21 being the even integer determined by
21  kor  21 + 2.
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We then have the relation

Thus we get from our hypothesis and from (3.2), since D(l, cn) consists of
k/2 geodesic segments: There exists a subsequence of (cn) which we denote
again by {c.,,l such that both, {c,,l and {Ð(l, cn)) converge to a k/2 times broken
geodesic co with E(co) = xo . Applying the same argument to the sequences

we see: {5)(2, cn)) converges to 00. Since E(Ð(2, (0)) = E(Ð(2, co)) = E(co),
co is a closed geodesic, cf. (3.1).

Clearly v(co) c v, since P’ is closed. If v(l)(2, cn)) = v, all large n, then
also v(co) = v. To see this we observe that D(2, cn) consists of k/2 geodesic
segments: 2)(2y cn ) ( [( j + 1)lk, ( j + 3)/k] is such a segment and it converges
to col[( j + l)/k, ( j + 3)/k]. Hence, v(l)(2, cn)) = v(co). But

hence our claim. This completes the proof of (3.3).
From (3.3) we easily get

3.4 LEMMA. Let xo &#x3E; 0. Let v be an integer&#x3E; 0. Denote by C the set of
closed geodesics c with E(,c) = "0’ v(c) c v. Let ’l1 be an open neighborhood
of C. In the case C = 0 one may choose ’l1 = 0. Let x &#x3E; "0 and consider on

Pv M the deformation 1) = 55(2, ). Then there exists a E &#x3E; 0 such that

PROOF. Since j5 is continuous, there exists an open neighborhood %L’
of C, ’11’ c ’11, such that li3flL’ c ’tL. If there were no s &#x3E; 0 with the desired

property this would imply the existence of a sequence to,,,l in P: M with
C,, 0 U’,

From (3.3) we get a convergent subsequence of {on} with limit a closed
geodesic co, E(c,) = xo, c,, c P,, c,, 0 ’tL’. This clearly is impossible.

4. - In this paragraph we are going to construct for every v = 0, 1, ... ,
a rationally non-trivial cycle w(v) of PM which actually belongs to Pr M.
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In addition, we will define a certain Z2-cycle w(v) of the quotient space
PvM/{}. In (5) this will be used to prove the existence of two closed geode-
sics with selfintersection number v.

Topologically, i.e., if we disregard the distance but only consider the
underlying topology, PM can be identified with PS2. Now, the homology
of PS2 is well known. An appropriate way to describe PS2 is to consider it
as subset of the Hilbert manifold A82 of all closed .H1-curves c: S --&#x3E; S2 I
cf. LCG for more details. S2 here is being endowed with the canonical metric
of constant curvature equal to 1.

The energy function -R: A82 --&#x3E; R is differentiable. It satisfies the con-

dition (C) of Palais and Smale. The set of critical points of -R on AS2 de-
composes into nondegenerate critical submanifolds: For R = 0, this is the
manifold AO S2 of constant maps, isomorphic to 82. For f = 2(v + 1)2 ;r 2,
v = 0, 1, 2,..., we have the manifold Bv+ 82 of the (v + l)-fold covered
great circles. Each BV+182 is isometric to BiS2, I i.e., to the unit tangent
bundle of 82 , which coincides with the real projective space P3. Index

BV+182 = 2v + 1.
We therefore obtain A 211’(v + 1)’ S"2 by attaching to A2n2J.282 the negative

bundle of B, + 1&#x26;2. One can show that this attaching does not affect the
homology of A"""’ 82. Since Hi(Bv+l S2)00 only for i = 0 and 3, this at-
taching gives new rational cycles in dimensions 2v + 1 and 2v + 4.

For our purposes it seems preferable to describe the (2v + l)-dimen-
sional homology class determined by the negative fibre of an element

,ev+l E Bv + 1 S2 in a different manner: We take the standard embedding of S2
in R3 = {(XI I Xl X2)}. As base point * of S2 we choose (1, 0, 0). Let

be the identity map and the Hopf map, respectively. To give a precise de-
scription of b we represent S3 by

The base point * of S3 shall be (1, 0) E C X C. Then

Here, the isomorphism between C and 82 shall be the stereographic projec-
tion of S2 - {*I onto C gz R2 = {(X, y)l:

00 e C then corresponds to * E 82 .
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We also describe S3 by

Then

Every q E S20 determines a parameterized circle cq on S3 as follows: c, starts
from * c- 8,’ c S’ tangentially to the great cirle ([wo[ = 11 into the half-

sphere {- i(wo - ivo) &#x3E;0) and passes for t = 2 through the point q c- S,.
If q is being given by (cos ao, e-i7, sin ao) then the circle c, is determined

by the following two linear equations for uo , vo , ui, v1, with wo = uo + ivo ,

The image under b : S3 --&#x3E; S2 of the circle eQ therefore is the circle b(q), passing
through * E S2, which in C is being represented by the straight line

In particular, to ao = yr/2y i.e., the points q on the great circle {(O, e-iv)l c
C S2 C S3 there correspond the great circles on 52 which pass through * E 82.

We have thus defined a mapping

where QS2 is the loop space of S2. We consider only the piecewise diffe-
rentiable loops starting and ending at * E S2 - Thus, QS2 becomes a sub-
space of P82.

We also define a map

as follows: Let S) be the great circle on 81 given by {x, = 0}. Then a(p)
shall be the parameterized circle starting from * c- $,’ c /S2 into the half sphere
(ici &#x3E; 0) tangentially to the great circle {x2 = 01 and passing for t = 2 through
the point p E Sli -
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The mappings E and b are but particular explicit descriptions of the

mappings Qa E 7l1DS2, Db E 7l2QS2, associated to a E 7l2S2, b E a, S2 cf. Spa-
nier [Sp]. Thus, a, b are cycles which represent the generators of the rational
homology of QS2 in dimensions 1 and 2. A classical result of H. Hopf states
that the rational cohomology ring of QS2 is being generated by the duals
[a]*, [b]* of the homology classes [a] and [b]. Moreover-and this is funda-
mental for our further argumentation-the products [a]* U [b]*’’, v = 0, 1, ...,
are restrictions of cohomology classes of PS2 - AS2 (homotopy equivalence), y
cf. Svarc [0160v].

This shows that we can define cycles w(v) of PM, dual to the [a*] u [5*7y
by taking the loop product (also called: Pontrjagin product, cf. Bott-

Samelson [BS]) of a with v copies of b :

Here, q stands for the v-tupel (ql, ..., q,) and b(q) denotes the loop product
b(ql)."..b(qv). In forming the loop product of circles we take the parame-
terization of the factors so as to be proportionally to arc length. I.e.:

We also use D(v) to denote the domain of w(v). As we stated before, w(v)
is homologous to the negative fibre of the (v + l)-fold covering of a great
circle on 82.

By yZ we denote the positive rotation of S§ around * c S02 and its anti-
podal point *’c- S,’ by the angle r. I.e. if q is being represented by
(cos DC, e-iljJ since) then yzq shall be given by (cos a, e-i(1J1+T) sin oc).

We denote by

the reflection on the great circle f iwl =1} c 802. Then

is the antipodal map.
Finally, we use y, also to denote the positive rotation of S2 c R3 around

the points * = (1, 0, 0), *’ = (- 1, 0, 0) by the angle í.

4.1 PROPOSITION.
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with

PROOF. (i) follows from z(yrq) = eirz(q). To see (ii) we write b(Äq) =
= yb(tq). Let q have (a, 1p) as coordinates. The linear equation of the
straight line representing the circle b(q) in the plane C is then given by

Therefore, 6(tq) possesses the representation

which means that Î’nb(tq) coincides with b(q), up to the orientation.
To prove (iii) we use (ii) :

4.2 PROPOSITION. Let f: PS2 - R be the energy on PS2 where S2 has
the canonical metric. Let iv be any cycle homological to w(v). Then

PROOF. Among the curves of maximal f-value in image w(v) there is

only one closed geodesic, i.e., the (v + 1)-fold covering of the great circle
Sol c 82. It is the image of ( po , qo) where po = *’= ( -1, 0, 0) and qo is the
v-tupel (0, i)y. An application of the deformation D(2, ) will render the

.9-value of all other curves in image w(v)  2 n2(V + 1)2 = f(the (v + l)-fold
covering of Sol).

w(o) is a generator of n.,S2S2. Thus, it cannot be homotopic to a 16

having it image in the domain (lli  2n2} because then it would be homotopic
to a Map 81 - 82 and thus, null-homotopic.

Therefore it only remains to prove (4.2) for v &#x3E; 0. If there were a

i-v - w(v) with image lb c (f  2x2(w + 1)2) it would also be homotopic to
a cycle representable as the negative bundle over some cycle P of the space
B,O+l S2 of (p, + 1)-fold covered great circles, ,u  v. The dimension of such

a cycle is the dimension of P plus 2,u + 1. But as observed already before,
the only non-zero cycles in Bp+1S2 occur in dimensions 0 and 3. dim fl = 0
is impossible, since ,u  v. And dim = 3 is also impossible since (2,u + 1) +
+ 3 # 2v + 1.
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So far, the product of circles w(v)(p, q) = -a(b) - b(qi) ..... 5(qr) is not neces-
sarily in P"S2. We show that we can replace w(v) by a homotopic element
having this property:

4.3 PROPOSITION. The cycle w(v) is homotopic (modulo cells of codimen-
sion &#x3E; 2) to a cycte belonging to P"S2 r1 {-R  2g2(V +1)2}. The new cycle
which we denote again by w(v) still has the property (4.1) (iii).

PROOF. As we did observe already in the proof of (4.2), the cycle w(v)
is homologous to the non-trivial cycle given by the strong unstable manifold

-Wu.(cv+’) of a (v + 1 )-fold covered great circle cv+1. This latter belongs to
PrS2 rl {-R  2n2(V + 1 )2) . To see this note that an eigenvector with the ne-
gative eigenvalue

X(to) = X(to + x/(v + l)), x an integer, occurs at most v times for a non-
constant X(t). Thus, the curves near the origin of ’W..(cv+") belong to PvS2.
Along the - grad E flow lines the selfintersection number possibly increases.
But that part of alPuu(cv+1) which goes outside PvS2 is homologically neg-
ligable : Indeed, from (3.3) we have that the deformation 1) can be applied
without encountering an obstruction since there are no critical points of
selfintersection number v below 2 = 2n2(v + 1).

Consider now the cycle w(v). The product w(v)(q, p) of v -+-1 circles in

general will have a selfintersection number &#x3E; v. But if we apply the
- grad E’ deformation we will push this cycle into the Morse complex for-
med by the unstable manifolds of the fl-fold covered great circles, ,u c v -E-1.
Here, up to homologically negligable parts, w(v) will be accomodated in

Pv S2, as we just saw. Since the - grad .E deformation commutes with 0,
the relation (4.1) (iii) is being preserved.

5. - The cycles w(v) constructed in paragraph (4) will yield a closed
geodesic c(v) in the usual manner, using the minimum-maximum method,
cf. (5.5) below. We even will find a c(v) with selfintersection number v. How-

ever, for the proof of the existence of infinitely many prime closed geodesics
we need a second closed geodesic c’(v) with v(c’(v)) = v.
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This leads us to consider the mapping

Note: w’(v) = w(v + 1)1{*} X (802)v+’. Moreover, by taking the modifications
described in (4.3): image w’(v)cPvM.

We define the class W’ (v) of mappings

by the following conditions:

(i) image w’cP"M;

(ii) w’ is homotopic to w’ (v) by a sequence of admissible homotopies;

(iii) w’ (Àq) = 6w’(q).

Here we mean by an admissible homotopy a continuous mapping

such that, if we put h[(d) X D’ (v) = w,a, w’° e W’ (v) and

5.1 PROPOSITION. Let W’EW’(V). Choose a To. Then

is an admissible homotopy of w’.

PROOF. Immediate from lyr = yrl.

5.2 PROPOSITION. Let w’ EW’(V). Then there exists a iv’EW’(v), homo-

topic to w ’, such that

for all q E D’(v). Here 15(2, ) is a de f ormation f rom Pv X into P: M of the
type considered in (3). n &#x3E; 0 has been chosen so large that image w’c (E x) .

, PROOF. Let H,2, c 8§ be the half sphere given by {(cos a, e-itp sin 0153);
O0153n; n/2:1p3n/2}. Let
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be a differentiable function with f (q) = 0 for q E a(H,)"" and f (q) = 1 if
every component of q has distance &#x3E;s from 8H§, some small E &#x3E; 0.

Let J(v --E- 1) be the set of the 2?+1 (v + I)-tupels j = ( jo, ... , jv) E Z;+1.
If q = (qo, ..., qy) E (S20)"+1 we define

Choose a fixed subset J’(v + 1) of J(v + 1) of 2v (v + l )-tupels j. Then,
for every j e J(v + 1), either j E J’ (v + 1) or else, j + 1 = ( jo + 1, ...,j" +1) E
c- J’(v + 1).

With this we define a homotopy w" of w’ as follows, with q* E (H,)"+’:

This obviously is an admissible homotopy. Moreover, the inequality (5.2)
is satisfied whenever q E D’ (v) can be written in the form q = 1(j) q* where
q* E (HO2)v+’ and I(q*) = 1.

To obtain (5.2) also for those q = 1(j)q* where f (q*)  1 we apply to

(.go )’’ + 1 first one of the (v + 2) rotations

and follow this up with the previously defined homotopy. For every

q** E (H,2)v +’ it will happen at least once that, if y,(,,) q* * = Â(j) q*, q* E
E (H,2)"+’, then I(q*) = 1. This completes the proof of (5.2).

From our description of the Hopf map b : S3 -+ s2 in (4) we can see:
If .Ho c S§ denotes the half great circle

then b IHOI: H§ - 82 has as image the great circle So c 82. Actually, b IHO’ is

injective, with the exception of the boundary points * c- S3 and *’E 8a

of Ho which both are mapped into * E So c S2.
- 

Therefore we may write the cycle a-: Sl __* S2S2 also in the form

b IH,’.- Ho’ _* QS2. Consequently we denote also Hl X (8,2)" by D(v). Then

This leads us to define the class W(v) as being mappings

where w = w’ID(v), w’ E W’(v). Clearly, y any w EW(v) is homotopic to w(v).
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Let w E ’W(v). We call (p, q) E D(v) a regular point if it is in the domain
of a non-degenerate singular simplex of the map w : D(v) -* PM, considered
as sum of singular simplices. Similarly we define a regular point of

2v’ E yY’ (v) .

5.3 PROPOSITION. The set of regular points of w E yP(v) belonging to

w-I(P,, M - Pv_1 M) is non-empty.

PROOF. We can assume: v &#x3E; 0. Since w is a non-trivial cycle there are
regular points. If w-l(P"M - P,-, M) were empty, i.e., if image w c P,,-t M =
= P,,-t82, I then image w could be deformed in P,,-t S2 below the R-level
2n2(2v + 1)2, since there are no closed geodesics in P,,_1 S2 with f-value &#x3E;
&#x3E; 2n2(2v - 1)2. But this contradicts (4.2). The degenerate simplices in w
are negligable homologically. Therefore, since w is non-trivial, the same
argument shows that there are non-degenerate simplices in Py M - Pv_x M.

5.4 PROPOSITION. The set of regular points of w’E W’(v) having image in
Pv M - Pv-l M is non-empty.

PROOF. Since w’E W’(v) is not a non-trivial rational cycle we cannot
employ the same arguments as for the proof of (5.3). Instead, we will use
the fact that a we ’W’(v) determines a non-trivial Z2-cycle of the space

P M /0 of unoriented parameterized closed curves on M. Here, PM/0 is the
quotient of PM with respect to the Z2-action generated by the orientation
reversing map 8. Note: OP,M = Py M.

To make this more precise we consider the quotient space D’(v)IA of
D’(v) with respect to the Z,-action generated by Â: D’(v) - D’(v), cf. (4).
Using the notations employed in the proof of (5.2) we can represent the
fundamental Z2-homology class of the space D’(v)/Â by the cycle

The 1-dimensional Z2-homology class is being represented by the cycle

Here we have considered Ho as subset of the first factor of D’(v) = (802)"+’.
Finally, y the 1-codimensional Z2-homology class of D’(v) /I is represented by_
the cycle

with

3 - Ann. Scuola Norm. Sup. Pisa Cl. Sci.
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D’(v)ll has the important property that any 1-cycle and any (2v + 1 ) -
cycle, when in general position, intersect in an odd number of points. That
is to say, -2,+l represents the 1-dimensional Z2-cohomology class of D’(v)IA.
Note that (zi, -2,,+,) are not in general position.

An element w’ E yV’(v) can be viewed as the 2-fold covering of a mapping

Assume now that w’ has no regular points. Since wl ID(v) E W (v) is a

non-trivial cycle this implies that some 1-cycle z[ - z, becomes a trivial
cycle under w’lz’. But this is impossible since w’lzl is homologous to w(O)
which is a non-trivial cycle, representing the generator of HIQS2 = H1PS2,
cf. (3).

That the image of the interior of the set of regular points meets

P"M - P,,-lM is proved now just as in (5.3).
We now can define:

5.5 THEOREM. For every v = 0, 1, ..., there exist closed geodesics {o(v), 0’(V)l
with selfintersection number v and E(c(v)) = x(v), E(c’(w)) = x’(v). Moreover

Here equality can hold only, if there are infinitely unparameterized closed geo-
desics with E-value x(v) = x’ (v) and selfintersection number v.

PROOF. Since w E W (v) contains as restriction w IHl, x {* ... *1 an element
of yY(0), x(v) &#x3E; 0 will follow if we show: x(0) &#x3E; 0. But this can easily be seen
as follows: If x(0) = 0 then there would exist a w E yY(0) with image
W C fE,q2 /21, 77 &#x3E; 0 as in (3). For every p c- Ho, the closed curve w(p)
therefore can be retracted along the radii of the convex 2q-neighborhood
around w(p)(0) = w(p)(1) into w(p)(0). Thus, w(0), being homotopic to w,
becomes homotopic to a map S1 - M = 82, i.e., to a constant map, which
is a contradiction.

Let q E D’ (v) be a regular point of a w’ E W’ (v) : Then there exists a

w E W(v) containing q among its domain of definition. Thus, q is regular point
also for some WE W(v). This shows: x(v) c x’(v).

To prove the existence of a closed geodesic c(v) with E(c(v)) = x(v),
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v(c(v)) = v we observe that we get from the definition of x(v) a sequence
{w,.} in W(v) and a sequence (rn) in D(v), rn interior regular point of wn,
such that for cn = wn(rn) : v(cn) = v and

and lim E(cn) = x(v). According to (3.3) we can assume that lim cn exists
and is a closed geodesic c(v). We can assume that also 3) (2, cn) is in the image
of an interior regular point of 3) (2, wn) E -W(v) and belongs to P,, M - P"-l M.
(3.3) then implies: v(c(v)) = v.

The same arguments lead to the existence of a c’(v) with the desired
properties.

To prove x’ (v)  x(v + 1) we first show that x’(v)  x(v + 1). To see this
we deduce from our previous arguments the existence of a sequence fw,,l E
EW(v+1), hence, {W:=Wnl{*}XD’(v)}EW’(V), and of a q E D’ (v) being
regular for all wn such that the sequence {on = w§(q) = w.(*, q)l converges
to c’(v) with v(cn) = v.

We claim that for any q E D’ (v), regular for wn’, there exist p E Ho , ar-
bitrarily close to * c- Hol such that (p, q) E D(v + 1) is regular for all Wn
This means that ( * , q) E D(v + 1) is a boundary regular point for wn. Indeed,
the cycle w. IHO’ x {q} is homotopic to w. IHO’ x {*} c -W(O) and hence non-
trivial. Therefore, after possibly some homotopic modification of wn near
( * , q), w. IHO’ X {q} will be regular at ( * , q), thus our claim.

Consider now Wn I {P} X D’(v). As long as the image is in P"M, while p E Ho
moves away from * , we get an element of W’(v) and thus, sup BI(Wnl{Pl X
x D’(v)) &#x3E;,,’(v). But it is impossible that image Wn I {P} xD’(v) c P,, M, for
all p E go , cf. (5.3). Hence, there is one po E Ho’ (possibly po = * ) such that po
is the limit of points p E .go with image wnl{P} X D’ (v) m P,,+lM-:/= IJ. Thus,
x(v + 1) &#x3E; x’(v).

To see that actually x’ (v) C x(v -f - 1 ) we note that the set C(v) of closed

geodesics c with E(c) = x’ (v) and v(c) = v and the set C(v + 1) of closed

geodesics c with jE7(c) = x’(v) and v(c) = v + 1, if not empty, are disjoint
compact sets. Since we just showed that in every neighborhood of c(v) E
E C(v) there are elements on = wn(p, q) c P,,+, X - Py M, (p, q) regular for
Wn EW (v + 1), we see that x(v) = x(v + 1) is impossible.

It remains to discuss the case x(v) = x’(v) = (briefly) xo. We want to

derive a contradiction from the assumption that the set C of closed geodesics c
with E(c) = xo, V(c) = v consists of only finitely many 8-orbits S.c. In this

case we could choose arbitrarily small open neighborhoods C)1 of C of the
following type: U is the union of finitely many pairwise disjoint S-inva-

riant open neighborhoods flL(S.c) of the finitely many 8-orbits S.c. We
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also may assume:

From (3.4) and (5.2) we have the existence of an 8 &#x3E; 0 and a w’e "WI (v)
such that

x(v) = x’ (v) means that the image under w’ of every cycle ’
(cf. the proof of (5.4)) meets U/0. Or equivalently: The carrier of every
non-trivial 1-dimensional Z2-cocycle meets U/0. That is to say, there is a

zi z1 where w’(.’) ctL(S.c)/O, some /S-orbit S. c in C. But S. c can be

retracted into a trivial S-orbit c P° M = If, thus, the cycle w’’zi is trivial

which is a contradiction since it is homologous to the cycle w(o).
This completes the proof of (5.5).

6. - We can now prove our main result.

6.1 THEOREM. Let M be a closed surface of genus 0. Then there exist on M
infinitely many unparameterized prime closed geodesics.

NOTES. 1) Lusternik and Schnirelmann l, c. had proved the existence
of three closed geodesics without selfintersections on an orientable surface
of genus 0. The ellipsoid with three pairwise different axes, all approximately
of the same length, gives an example of such a surface where there exist
exactly three closed geodesics without selfintersections, i.e., the three prin-
cipal ellipses of the ellipsoid.

As was shown by Morse [Mo], cf. also LOG, the next prime closed geo-
desic in E-value and hence in length, after these three relatively short closed
geodesics, can have an E-value greater than any prescribed number, if only
the three axes have their length sufficiently near 1. This fourth prime closed
geodesic therefore also will have arbitrarily large selfintersection number.

2) The theorem is a special case of our theorem (4.3.5) in LOG which
states that on every compact riemannian manifold with finite fundamental
group there exist infinitely many prime closed geodesics. The proof of this
more general theorem uses various deep results, among others the Gromoll-
Meyer theorem [GM], Sullivan’s theory of the minimal model [Su] and the
structure of the Morse complex of the Hilbert manifold of closed HI-curves
with respect to a non-degenerate energy function E, cf. LCG for details.

In contrast, the present proof of this result for a closed surface of genus 0
can be considered elementary. We could have shortened it were it not for
an attempt to keep the topological prerequisites to a minimum.
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PROOF. We can assume M is orientable. That is if is the 2-sphere with
an arbitrary riemannian metric. Indeed, otherwise the universal covering fl
of M is of this type. If we have infinitely many prime closed geodesics on fl
then their projection into M under the covering map .9 --&#x3E; M will yield
infixiitely many prime closed geodesics on if also since the image of dif-

ferent prime closed geodesics has different underlying prime closed geodesics.
We now will derive a contradiction from the assumption that there are

on M only finitely many S-orbits of prime closed geodesics. Let {Cl ... , I cl
representatives of these different 8-orbits.

From (5.5) we get for every v = 0, 1, ... a pair {c(v), o’(v)} of closed geo-
desics with selfin.tersection number v. Under our assumption the relations (*)
in (5.5) become

. For a fixed v there exist integers a(v), b(v), 0  a(v)  b(v)  s, such that
both, c(v + a(v)) and c(v + b(v)) have the same underlying prime closed
geodesic. Here and in the following we identify geodesics which lie on the
same S-orbit.

Taking iterated subsequences we see: There exists a strictly increasing
sequence {v(k)} of integers &#x3E;0 and a, b, 0 C b  s, such that, for all k E N,
c(v(k)) and c(v(k) + b) have the same underlying prime closed geodesic, say c.
Moreover, also the geodesics o’(v(k)) all have the same underlying prime
closed geodesic, say c’.

Put E(c) = x .E(c’) = x’. Denote the multiplicity of c(v(k)), c’(v(k))
and c(v(k) + b) by m(k), m’(k), and m(k), respectively. Put v(c) = v,
v(c’) = v’. Then we have the following relations, cf. (5.5), (2.1):

This shows that with k -+ oo also m(k), m’(k), m(k) - 00. Moreover:

(***) lim m(k)2Im(k)2 = 1 ; lim m’ (k)2Im(k)2 = xIx’ .
k k

This follows from (*) together with (* *).
If v = v’ = 0, m(k) = m’(k), x = x’, which contradicts (*).
If v &#x3E; 0 we have from
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and (***):

(****)

From ( * ) and ( * * ) follows :

Thus, with ( * * * ), x = x’, v = v’, which again contradicts (*). This com-

pletes the proof.
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