@article{ASNSP_1979_4_6_4_573_0, author = {Cesari, L. and Kannan, R.}, title = {Existence of solutions of nonlinear hyperbolic equations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {573--592}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 6}, number = {4}, year = {1979}, mrnumber = {563335}, zbl = {0434.35060}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1979_4_6_4_573_0/} }
TY - JOUR AU - Cesari, L. AU - Kannan, R. TI - Existence of solutions of nonlinear hyperbolic equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1979 SP - 573 EP - 592 VL - 6 IS - 4 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1979_4_6_4_573_0/ LA - en ID - ASNSP_1979_4_6_4_573_0 ER -
%0 Journal Article %A Cesari, L. %A Kannan, R. %T Existence of solutions of nonlinear hyperbolic equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1979 %P 573-592 %V 6 %N 4 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1979_4_6_4_573_0/ %G en %F ASNSP_1979_4_6_4_573_0
Cesari, L.; Kannan, R. Existence of solutions of nonlinear hyperbolic equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 6 (1979) no. 4, pp. 573-592. http://archive.numdam.org/item/ASNSP_1979_4_6_4_573_0/
[1] Un théorème de compacité, C. R. Acad. Sci. Paris, 256 (1963), pp. 5042-5044. | MR | Zbl
,[2] Functional Analysis, Academic Press, 1966. | MR | Zbl
- ,[3] Functional analysis, nonlinear differential equations, and the alternative method, in Functional Analysis and Nonlinear Differential Equations (L. Cesari, R. Kannan, J. D. Schuur, eds.), Dekker, New York, 1976, pp. 1-197. | MR | Zbl
,[4] An abstract existence theorem across a point of resonance, in Dynamical Systems, an International Symposium (A. R. Bednarek and L. Cesari, eds.), Academic Press (1977), pp. 11-26. | MR | Zbl
,[5] Nonlinear oscillations across a point of resonance for nonselfadjoint systems, J. Differential Equations, 28 (1978), pp. 43-59. | MR | Zbl
,[6] Nonlinear problems across a point of resonance for nonselfadjoint systems, in Nonlinear Analysis (a volume in honor of E. H. Rothe (L. Cesari, R. Kannan and F. Weinberger, eds.), Academic Press (1978), pp. 43-67. | MR | Zbl
,[7] Functional analysis and nonlinear differential equations, Bull. Amer. Math. Soc., 79 (1973), pp. 1216-1219. | MR | Zbl
- ,[8] An abstract existence theorem at resonance, Proc. Amer. Math. Soc., 63 (1977), pp. 221-225. | MR | Zbl
- ,[9] Solutions of nonlinear hyperbolic equations at resonance Nonlinear Analysis., to appear. | MR | Zbl
- ,[10] Alternative problems and Grothendieck approximation properties. Bulletin Inst. Math. Sinica, Taiwan, 6 (1978), pp. 569-581. | MR | Zbl
- ,[11] On the existence of periodic solutions for the equation Dttu + + (- 1)pD2pxu = εf(·,·, u), J. Differential Equations, 7 (1970), pp. 509-526. | Zbl
,[12] Periodic solutions of a class of weakly nonlinear evolution equations, Arch. Rational Mech. Anal., 39 (1970), pp. 294-322. | MR | Zbl
,[13] An existence theorem by alternative method for semilinear abstract equations, Boll. Un. Mat. Ital., (5),14-A (1977), pp. 355-358. | MR | Zbl
- ,[14] Nonselfadjoint semilinear equations at multiple resonance in the alternative method, J. Differential Equations, 33 (1979), no. 3. | MR | Zbl
,[15] Periodic solutions of the equation utt + uxxxx = f(·, ·, u, ut), Czechoslovak Math. J., 23 (98) (1973), pp. 269-285. | MR | Zbl
,[16] On the Cesari index and the Browder-Petryshyn degree, in Dynamical Systems, An International Symposium (A. R. Bednarek and L. Cesari, eds.), Academic Press (1977), pp. 295-312. | MR | Zbl
,