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Cauchy-Stieltjes Integrals
on Strongly Pseudoconvex Domains (1).

EDGAR LEE STOUT (*)

Introduction.

A very attractive chapter of classical analysis is that devoted to the

study of integrals of Cauchy-Stieltjes type. Given a measure ,u on the unit

circle in the complex plane or, more generally, on a curve y, the smoothness
properties of p and y are shown to be related to those of the holomorphic
function FJA defined by

This theory is quite well developed and may be found in the books [1]
and [7].

Recently it has become feasible to begin an analogous theory in the
higher dimensional case. The papers [2], [4], [6] and [11] contain contri-
butions in this direction. In particular, Nagel [6] has studied integrals of
the form

where p is a measure concentrated on the smooth curve h in the boundary
of the unit ball BN in CN, F and p suitably restricted. In this paper we

(l) This material is based upon work supported by the National Science Founda-
tion under Grant No. MCS78-02139 and No. MCS76-06325. Part of it was presented
to the NSF/CNR Seminar on Several Complex Variables from the Geometrical
Point of View at Cortona in July, 1977.

(*) Department of Mathematics, University of Washington, Seattle.
Pervenuto alla Redazione 1’8 Settembre 1978.
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extend some of Nagel’s results. In the first place, y we work on strongly
pseudoconvex domains in CN, rather than the ball. Secondly, y where Nagel
worked with measures concentrated on smooth curves, y we are able to treat

measures on submanifolds of the boundary of arbitrary dimension.
There is the question of the analogue on a general strongly pseudo-

convex domain of the kernel (1 - z, W&#x3E;)-N in the integral above. Two

candidates come to mind. One natural candidate is the kernel of Henkin

and Ramirez. The other is the Szego kernel. We begin by dealing with
the Henkin-Ramirez kernel. Given the analysis of this case, we are then
able to treat the Szego kernel by using the analysis given recently by
Kerzman and Stein [5].

I would like to acknowledge here some useful discussions I have had
with Nagel concerning the results of this paper. In particular, he suggested
the idea of studying the Szego kernel in this context.

1. - Preliminaries.

We fix attention on a strongly pseudoconvex domain D in CN with eoo

boundary. Thus, D is a bounded domain in CN, and there exists a real-

valued eoo function Q on a neighborhood f2 of D which is strictly pluri-
subharmonic and which satisfies

and dQ # 0 on aD. It will become evident in the discussion below that

for much of what we do less stringent regularity conditions on aD would
sufhce.

Recall the integral kernel construct. by Ramirez [8]. (Compare this

construction with the similar kernel constructed by Henkin [4] as well

as with the constructions given by 0vrelid [12] and Fornaess [3].) According
to Ramirez, there exists a neighborhood V of aD, a neighborhood ’tL of D,
and a Coo function 0: ‘lL x ’U -+ C with the properties that for fixed’ E ’U,
0(-, ,) e 0(’LL), and Re O(z, ,) &#x3E; 0 for z e D, I e aD and z =A ,. In addition,
there is a decomposition of 0: There exist Coo functions gj: U x ’U C,
j = 1, 2, ..., N, each holomorphic in the first variable, such that
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According to the theory of Cauchy-Fantappie forms, there is a constant eN
such that if f E 0(-D), then for each z E D,

L1k a smooth form that depends holomorphically on z.
It becomes natural, therefore, to consider integrals of the type

s &#x3E; 0, with It a finite measure on aD. It is known from [11] that F(s) E H"(D)
provided 0 C s C N and p E (0, N/s ) .

In this paper, as in [6], attention is focused on measures concentrated
on certain smooth submanifolds of aD, the submanifolds transverse to the
holomorphic tangent spaces of aD in the following sense. Given a point
p E aD, let Tc(aD) denote the maximal complex subspace of T,,(aD), T,,(aD)
the tangent space to aD at p. Thus, dimc Tc(aD) . N - 1. We shall say
that a submanifold lVl of aD is transverse to the holomorphic tangent space
of aD at p E M if T,,(aD) = Tp(M) + T2c, (aD). As Tp (aD) has codimension
one in T,,(aD), the condition is equivalent to the condition that 1£(8D)
not contain T,,(M). Notice that aD itself has this property at each of its

points.

2. - The case of the Henkin-Ramirez kernel.

With the preceding notions in mind, we formulate the following
result (2).

THEOREM I. Let M c 2D be a locally closed submanifold of class ek,
k &#x3E; 2 dimension m, 1 c m c 2N - 1, that, at each of its points, is transverse

to the holomorphic tangent space of aD, and let 1p be a compactly supported
function of class ek-I on M. If flm denotes the m-dimensional Hausdorff measures

(2) Mme Anne-Marie Chollet has informed me that she has obtained the case
m = I of Theorem I.
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on CN and if is defined by

..

a = s + i-r tvith 0  s, then the derivatives of F of order x, k - s - 1  loci 
 N + k - s - 1 belong to H"(D) for p E (0, N/(s + locl- k + 1)).

The condition that k - s - 1  ]ce ) guarantees that s -E- loc1- k -]- 1 &#x3E; 0,
so the range of p, the interval (0, N/(s -+- lcxl - k -E- 1 ) ), is nonempty.
Notice too that if k -&#x3E;- s + 1, then ]ce ) can vary within an interval of length N.
On the other hand, if s is large compared with N and k, the condition
lcx I  N + k - s - 1 cannot be satisfied. Finally, y for la I  N + k - s - I
we have s -E- lal - k + 1  N, so in particular the derivatives in question
belong to HI(D).

The hypothesis that if be a locally closed submanifold means that M
is a closed submanifold of an open subset of aD.

PROOF. We execute the proof in two steps. First we deal with the

case of curves, i. e. , the case that m = dim M = 1, paying some attention
to the dependence of the estimates on the differential properties of the

curve. This analysis follows the general line of [6], the main point being
repeated integration by parts. Once we have the curve case, we are able

to deal with the general case by a fibering process.
As above, we denote by Q a eoo strongly plurisubharmonic characterizing

function for the domain D. Let P be the associated Levi polynomial
P : CN x S2 ---&#x3E;- C given by

There is a constant fl such that for a certain smooth function H defined on

iwht Jut(’ i) holomorphic on and with

for some constant ci &#x3E; 0.

Consider now a locally closed, connected curve 1-’ in 3D that is of class ek
and is transverse to the holomorphic tangent spaces of aD. Assume T to
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have length not more than idle Choose a parameterization

of class ek, y’ nonvanishing. The ek-l function y is compactly supported
in F, so 1p 0 Y is compactly supported in (0, 1). Set

By hypothesis the curve T is transverse to the holomorphic tangent
spaces of aD, so for each t, y’(t) 0 Tct)(aD). As D = IQ  01, given w E aD,
the space Tc(aD) can be identified with the complex subspace

of CN, so is equivalent to

Fix a constant c2 &#x3E; 0 so that for all t in the support of ip 0 7,

For a multiindex a = (01531, ..., aN), let Da denote the associated dif-

ferential operator Ô!Xl +...+!XN/(ÔZl ... ozc;r), and consider DaI’. We have

If we set

dist
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we have the estimate

sup

with CQ,a(dl ) a constant which depends on ø, s, a and dl but not on 1-’.

As the curve T has length no more than! d1, it follows that for i e T,
zE’l1(r, !dl), we have I - z ]  § di , so for z e U(T, ) di ) , we can write

where the summation is over multiindices x and A with nonnegative entries,
where the q(x, A) are certain constants and the functions u,, and v. arise
from differentiating the quotient 1/PH and depend on P and H respectively.
For a fixed t, u,, is a polynomial in z and v is holomorphic in ’LL(F, 4 d) .
As « is fixed, A in (7) is determined by x. Set

so that (7) is

We integrate this by parts.
To this end, notice that

If we write Qjk for ô2Q/(ô’/ð’k) and use similar notation for other deriva-
tives so that, e.g., Q, denotes ôQ/ô’" we have
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whence

where the remainder term R(z, t) is, for given t, a quadratic polynomial in z
that satisfies R(y(t), t) = 0. Thus, from (4) it follows that there is a

constant d2 such that

if dist (z, y(t))  d2. The constant d2 depends only on Q and on the magni-
tude of the first order derivatives of y. We may take d2  dl.

Assume now that ly’l  0,,. Divide [0, 1] into equal intervals J1, ... , JI,, I
4C1/d2 c L  40l/d2 + 1, disjoint except for their endpoints. For a given j,
let Jj be an open interval twice as long as Jj and centered on the center
of Jj . Let (q;)f_ be a partition of unity of class eoo on [0, 1] subordinate
to {Jj}f=l. 1. The functions ?7j can be chosen so that their ek norms are bounded
by a constant C(L) that depends only on L and hence only on the e1

norm of y.
We have

In estimating these summands, we restrict our attention to z’s in’11{F, ! d1)
because of the estimate (6). In the sum (12), there are two kinds of terms.
First there are those j for which zc-’LU(F, -I d.)-cLL(y(ij), -I d,). These terms

are bounded by C,, s p IV’I (length y(Jj ) ) for a certain constant Cx that

depends on x and D but not on y, for P is bounded away from zero uniformly
on this set.

If z E ’11{y(Jj), !d2) then as y(Jj) has length no more than
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it follows that for all ’E y(Jj}, dist (z, I)  !d2, so the estimate (11) is at

our disposal. Assume now that x satisfies

and write

by integration by parts. Introduce a sequence of functions, y Go, G1, ... by

and, for

Iterating the partial integration, y we find

For a given J, x and k, we terminate this process for one of two reasons.
When 8 + lul- It E (0, 1], we do not integrate parts again. Also, notice

that the functions Gj become progressively less differentiable. The function Go
is of class ek-1 in t, so if s + lul- (k - 1) &#x3E; 0, we take r = k - 1 in (15).
Thus, in the former case, we reach
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with and in the latter case, we find that the integral is

(Recall that by its construction, Gk-l is supported in Jj.) By hypothesis,
leX C N + k - s - 1, so as 1"1  leX I, it follows that 1"1 + 8 - k + 1  N.

If we recall (9) and ( 12 ) , we see that for zE’l1(T, !dl) we have written
Da F(z) as a sum of ]ce) L terms of the form

with 0  s’ s + la I - k + 1, g a function continuous on D X J, g(., t)
holomorphic on D, and bounded uniformly by a constant that depends
only on the Ck norm of y, the ek-, norm of 1p and the quantity

As the integral (17) can be rewritten as

and the integral (18) lies in HI(cLL(-r, -I d,)) for
(See [11].)

We have, therefore, established that for the f unction F given by (3),
DrxF lies in H°(D) for p E (0, Nj(s + l0153l- k + 1 ) ) i f 0153 satisfies k - s - 1 
 l0153l  N + k - s - 1 and, moreover, the H1J(D) norm o f Da I’ is bounded

by a constant that depends only on the ek norm o f y, the ek-1 norm of 1p and

the quantity

This completes the discussion of the case m = 1 of the theorem. We

turn now to the case of general M.
Suppose therefore MeaD is a locally closed m-dimensional submanifold

of class Ck that is transverse to the holomorphic tangent spaces of aD, and

let y E Ck-1(NM) have compact support. We suppose, as we may, that M
consists of a single coordinate patch so that there is a diffeomorphism (of
class Ck) y: R" - M. Choose R &#x3E; 0 so large that. the support of 1p 0 y is

contained in
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Since M is transverse to the holomorphic tangent spaces of aD, there is for
each x E Rm a unit vector E Rm such that

By compactness, there is an 8, &#x3E; 0 such that for each x E Bm(O, R) there
is a unit vector such that

By continuity there exists a 6, such that if x E Bm(o, .) and if x’ satisfies
then

Choose xl , ..., Xp E B(O, R) such that where

Let u, be the ux associated with Xj. Let be a Coo partition of unity
on Bm(o, R) subordinate to the cover

We write

where J. denotes the appropriate Jacobian. (See, e.g., [10].) The function Jy
is of class Ck-l. For each j, let Nj be the orthogonal complement of the
line We can write
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By construction and the discussion of the one dimensional case above, for
fixed x E Nj r1 Bj, the inner integral, qua function of z, belongs to the appro-
priate H?-space, with HI norm bounded uniformly in x. Thus, the integral
on the left of (16) belongs to H°(D), and so the theorem is proved.

COROLLARY. I f M and 1p are of class eoo, then the functions If of the theorem
belongs to Aoo(D).

Recall that A°°(D) is the space of holomorphic functions on D that together
with their derivatives of all orders are continuous on D. The special case
that lVl = aD of the corollary is contained in work of Elgueta [2]. See

also [5].

3. - The Szego kernel.

We will now study integrals of the form

wherein 8 denotes the Szego kernel of the domain D, and M, 1p and pm are
as in the preceeding section. Throughout this section we require D to be a
strongly pseudoconvex domain in CN with boundary of class Coo with strictly
plurisubharmonic defining function Q. Our analysis of the integral (17) is

based on the ideas involved in our treatment of the corresponding Henkin-
Ramirez integrals and on the recent results of Kerzman and Stein [5] con-
cerning the Szego kernel.

We need to recall some of the Kerzman-Stein results. They introduce
an explicit kernel E(z, I) by

with 0: D X 8D - C a Coo function whose principal term is a function given
explicitly in terms of Q and the function g given by

with gi of the form
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Here 1p: R - [o, 1] is a Coo function satisfying
s &#x3E; 80’ and

if

The constant so is chosen so that if

then for some

if and It follows then that for some

if Also, for and

we have

P the Levi polynomial used in the last section. The functions g(z, I) and

g(), z) are much alike in size near the diagonal of D x D. If z, 03B6 E aD, then

According to Kerzman and Stein, the Szego kernel for the domain D
is given as follows. For z, C E aD, put

For a fixed integer d, for and

in which Rd(Z, I) E Ca-(D) in z for a fixed i e aD with
as d -+ oo, and the kernels EOK» are given by
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with dS the surface area measure on aD, i.e., 9 dS = d!l2N-l.
Thus, to analyze the integral (17) we must consider three kinds of terms:

This analysis yields the following result.

THEOREM II. Let M c aD be a locally closed submanifold of class Ck, k&#x3E;2,
dimension m, 1 c m c 2N - 1, that at each of its points is transverse to the

holomorphic tangent space of aD, and let 1p be a compactly supported ek-I
function on M. If pm denotes m-dimensional Hausdorff measure on CN, and
if F E 0 (D) is defined by

then the derivatives of F of order cx, k - N - 1  let C k - 1 belong to H"(D)
for

This result corresponds to the case or = N of Theorem I which is to

be expected on the basis of the representation (22) for S.

PROOF. We shall not execute the proof in detail; to do so would merely
be to repeat much of the proof of Theorem I.

The first point to be made is that as in the preceeding section, y it is

sufficient to treat the case that if is a curve, say h; the case of higher
dimensional lVl reduces to this as before. Thus, we fix a Ck parameterization
y : [o,1 ] - 8D of F; y’ (t) is transverse to the holomorphic tangent directions
of aD at y(t).

Also, by using a smooth partition of unity, we can suppose that the
diameter of y is small, say diam 1-’ C 8 so .

Thus, if

dist

then for
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- 

We can now dispatch the integral F,. The function Fl is smooth on

DBT’ but not holomorphic on all of D, though for fixed’ c -r, E(., ,) is

holomorphic on Qr,lso. To determine the behavior of PI and its derivatives,
we need only examine the behavior near h itself. However, as noted in the
last paragraph, for z near 1, the kernel of the integral defining F(z) has
the same singularity as the one we handled in analyzing the Henkin-
Ramirez integral. Thus, FI behaves as the theorem asserts.

We shall see that Fn and Flu behave better.
Consider Fn. * If we set

then for

The t,, ..., tj- and the ’-integrations can be interchanged because Kerzman
and Stein have shown

for some constant C independent of t1 and t2.
The definition shows that G(-r) is defined for all T E aDBh. If we write

with

and

then the function G’ is defined and smooth on all of F)BF. Near the diagonal
of aD X aD, the singularity of E is essentially 1 /PN, so the analysis used to
treat the Henkin-Ramirez kernel applies. The derivatives DrxFn are smooth
on -DBF, and they are in the appropriate -EP class near r. Thus, the boundary
values of G’ are in L’(aD) for p E (0, N/(N + lal - k -+- 1)) if lcxl lies in the
range
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To treat G", we notice that the equation (20) implies that

If now X1, ... , X, are smooth vector fields on 3D and we put

which is surely defined on aDBh, then for T E aDBF, we have

for a suitable smooth function 81. By virtue of (24), we can integrate by
parts, just as in the Henkin-Ramirez case, provided we have made 1-’ short

enough. The process will be terminated here just as in the earlier case.

If we take r  k - 1, we find .

for a continuous function 99 - 99 is continuous in í so long as r is close to F.
According to (20) we may write

IU(i, ’)Iconst li- ’la, so we have then

Since Re g(-r, ,) &#x3E; const IT - ’12, we get, again provided 1-’ is short enough
and z is close enough to r,

with q a continuous function-the term q is at least continuous, but it is

not clear how smooth it is. In any event, we reach
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for r near r. This is an integral of the type we dealt with earlier; the con-
clusion is that provided k - N - I  r  k - I-, DX1...xrG" has values on aD
belonging to E.,,(aD), p in the asserted range.

We now know that both G’ and G" have the kind of boundary behavior
we claim for F. Since, as Kerzman and Stein show, the kernel .K is a

smoothing kernel, a kernel of type 1 in their terminology, y and since E is
a kernel of type 0, the definition of Fn implies that the boundary behavior
of Fn is even better than that claimed for F.

It remains for us to discuss the integral FIn. This follows the same

lines as the treatment of Fl,. We have to recall the form of the remainder
term Rd(Z, (). By construction it is, except for a term that is of class eoo

on aD X D,

Here the kernel A is given by

the function C of class Coo on D X aD, and S(z, w) is the Szego kernel itself.
This leads to

with

As in our discussion of Fn, 7 this function G is smooth on D, and becomes
progressively smoother as k increases. It follows that by making d large,
we can make FIII as smooth as we wish.

The theorem is proved.

4. - An example.

We have considered integrals of smooth functions over smooth manifolds,
and our work has used this smoothness in an essential way, in our repeated
partial integration. We give here a simple example to illustrate what can
happen when we relax the smoothness conditions.
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Let F be the circle in aB2, B2 the open unit ball in C2, given by

We have so is transverse to for each t.

Consequently, y if and

then for

It is not unreasonable to ask whether, granted mere continuity on f,
the function F enjoys any unanticipated smoothness properties brought
about by the special geometry of F. The answer seems to be that it does not.

Recall that for g E e(oB2),

A the Lebesgue measure on C. It follows that F E Hl(B2) if and only if

We have

If f belongs to the disc algebra, i.e., f is continuous on the closed unit disc,
holomorphic on its interior, then we find

so F E .Hl(B2) if and only if

It is known however [9] that there exist functions g in the disc algebra
for which

for almost all values of 0.
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Thus, the integral (25) need not belong to H1(B2), even f or f the boundary
value of function in the disc algebra.

REFERENCES

[1] P. DUREN, Theory of Hp-Spaces, Academic Press, New York, 1970.

[2] M. ELGUETA, Extension of functions holomorphic in a submanifold in general
position and C~ up to the boundary to strictly pseudoconvex domains, Dissertation,
University of Wisconsin, Madison, 1975.

[3] J. E. FORNAESS, Embedding strictly pseudoconvex domains in convex domains,
Amer. J. Math., 98 (1976), pp. 529-569.

[4] G. M. HENKIN, Integral representations of functions holomorphic in strictly
pseudoconvex domains and some applications, Mat. Sb., 78 (1969), pp. 611-632
(English translation: Math. USSR-Sb., 7 (1969), pp. 597-616).

[5] N. KERZMAN - E. M. STEIN, The Szegö kernel in terms of the Cauchy-Fantappiè
kernels, Duke Math. J., 45 (1978), pp. 197-224.

[6] A. NAGEL, Cauchy transformations of measures, and a characterization of smooth
peak interpolation sets for the ball algebra, Rocky Mountain J. Math., 9 (1979),
pp. 299-305.

[7] I. I. PRIWALOW: Randeigenschaften Analytischer Funktionen, VEB Deutscher
Verlag der Wissenschaften, Berlin, 1956.

[8] E. RAMÍREZ DE ARELLANO, Ein Divisionproblem und Randintegraldarstellungen
in der Komplexen Analysis, Math. Ann., 184 (1970), pp. 172-187.

[9] W. RUDIN, The radial variation of analytic functions, Duke Math. J., 22 (1955),
pp. 235-242.

[10] K. T. SMITH, Primer of Modern Analysis, Bogden and Quigley, Tarrytown-on-
Hudson, 1971.

[11] E. L. STOUT, Hp-functions on strictly pseudoconvex domains, Amer. J. Math.,
98 (1976), pp. 821-852.

[12] N. ØVRELID, Integral representation formulas and Lp-estimates for the ~-equation,
Math. Scand., 29 (1971), pp. 137-160.


