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On Resolving Singularities
and Relating Bordism to Homology.

S. BUONCRISTIANO - M. DEDÒ

Introduction.

A well-known theorem of Thom ([8]) asserts that, given an n-dimen-
sional (integral) homology class z, there exists a positive integer N, depending
only on n, such that Nz is representable by a smooth oriented manifold
(briefly, y z is N-representable).

Wall has proved that N can be taken to be odd (see [9], or [2], 15.3).
Consequently, , any 2-torsion homology class is representable by a smooth
oriented manifold.

We obtain the following results (see § 0 for notation):

(4.3) there exists an explicit upper bound m(n - 3, S2) for N, which is

odd and contains as prime divisors precisely the odd primes a n/2.

Consequently:

(4.5) let z be an n-dimensional homology class such that flz = 0. Then z

is e -representable, with e = G.C.D. (0153(n - 3, Q); fl). In particular,
if z belongs to the a-torsion with a prime and n = 2 or a &#x3E; n/2,
then z is representable by a smooth oriented manifold.

(4.7b) an obvious generalisation of Thom’s example ([8], p. 62) implies
that the above result is the best possible as regards representa-
bility of n-torsion homology classes: in fact, for any odd prime a,
there exists a class z E H21J+l(K(Zn, 1) XK(Z:n, I)) such that nz = 0
and z is not representable by a smooth oriented manifold.

Pervenuto alla Redazione il 30 Giugno 1979 ed in forma definitiva il 9 Luglio 1980.
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(4.6) let n and y be positive integers; suppose y is not divisible by any
odd prime yr  (n + 1)/2. Then any Z,,-homology class of dimen-
sion n is representable by a smooth Z.-manifold (note the special
case y prime&#x3E; (n + 1)/2).

(4.8) for i?,&#x3E;O there exists a natural transformation of functors $(Q):
Qn(X) --7 L Hi(X ; S2j) which is defined on the category of alt top-

i +i = n

ological spaces and is an m(n, Jf3)-isomorphism.

(,Q) is constructed geometrically: it provides an approximation of

bordism by homology which depends on the dimension n and is more ac-
curate than the one obtained by Conner and Floyd in [2] (14.2, p. 41).

(4.9) let n:&#x3E;O and let X be a topological space such that H* (X) has no
n-torsion, for all odd primes n  (n + 3)/2. Then there is an iso-

morphism Qn(X) -=z fl£ Hi(X; Qj)’
i+i=n

Consider the following: given integers n and q and a map f : Mn --7 X
(JU an oriented smooth manifold, X any topological space), when does

there exist an oriented homology of f to zero carrying singularities in co-
dimension ,q? In answer to this question we have the following result:

(4.10) suppose that, for O4kq-2, H,,,-,,(X) has no n-torsion, for

any odd prime n --- (q + 1)/2. Then f : ffln -X is bordant to zero
in X with singularities in codimension &#x3E;q if and only if certain

a priori obstructions O,c-H,,,-Ik(X) and ÕhEH*(X;Z2) vanish.

Analogous results hold for almost complex bordism U *(-). In this case

many constructions are simplified, due to the fact that U*(point) is free

and its elements are charachterized by Chern numbers. Therefore we have

preferred to deal with the almost complex resolution in detail (§§1,2,3)
and indicate the modifications which are needed in the smooth oriented

case (§ 4).
The methods which we use are geometric in nature, relying on the cir-

cumstance (observed by Sullivan in [7]) that the set of singularities of a
cycle P gives rise to a natural homology class with coefficients in an ap-
propriate bordism group of manifolds (see 1.6). This class is the only ob-
struction to reducing the dimension of the singularity of X and we use
characteristic numbers as complete bordism invariants to study its torsion.

In this connection, we remark that, since this paper was written, the
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theorem that Chern numbers are complete bordism invariants in U * has been

given a geometric proof using no Steenrod algebra or formal groups (see [12]
or [11], where the case of Stiefel Whitney numbers is considered).

0. - Notation and terminology.

Almost complex manifold = smooth oriented manifold with a complex
structure on its stable tangent bundle.

Un (-) - almost complex bordism group of dimension n.

,Qn(-) == smooth oriented bordism group of dimension n.

T,,,(-) = smooth unoriented bordism group of dimension n.

H,,,(-) ==: integral homology.

Un = Un(point) ; Qn = Q,,(point); T,,, = Tn(point).

An element in one of the groups U,,(X), D,,(X), T,,(X), H,,(X) (or any
other bordism group) will be denoted [P]g or [P -- X].

[alb] = integral part of the rational number a/b.
cX = cone on X with vertex c.

A- B = {xEA: x 0 J5}.

If A is a simplex, then A = barycenter of A; A == boundary of A ;
Å = A-A.

For n a positive integer and X a topological space, nX = disjoint union
of n copies of X ; that is, nX Xx{i}.

i=l"."n

Let $: G - H be a homomorphism of finitely generated abelian groups
and a a positive integer; we say that is an a-monomorphism (resp.
a-epimorphism) if, for any x E ker $ (resp. coker $), there exists a positive
integer s such that asx = 0. Of course these definitions depend only on
the primes dividing a.

1. - Complex cycles.

1.1 DEFINITION. A complex cycle of dimension n (n-cycle) is a poly-
hedron P such that:

(1) P is a PE cycle of dimension n with singularity SP (see [6]y p. 98);
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(2) P - SP is an almost complex manifold compatible with the given
P L structure.

1.2. DEFINITION. A complex n-cycle with boel&#x3E;idary (or relative n-cycle)
is a PL n-cycle with boundary P, aP (ibid.) such that P-SP is an almost
complex manifold with boundary aP - SP.

We set p == dim SPn-2.

1.3 REMARK. It is immediately seen that the bordism theory of complex
cycles is integral homology theory.

Let Ki L be a triangulation of P, SP with L full in K and oriented
(i.e. each simplex is oriented); K(1)fL the first barycentric derived of I(
away from L; A a p-simplex of Z; D(A, K) the dual cone of A in K. Then
st (A, = A * D(A, _K) and D(A, K) = lk (A, K(’)IE) !2!! lk (A, K)i&#x3E; .
For the sake of simplicity, -we shall often make no difference in the nota-
tion between the triangulation ]( and the underlying polyhedron P.

Because P - SP is an almost complex manifold, the smoothing theorems
of [3] imply that the PL manifold st (A, K(1)fL) - A has a well-defined
almost complex structure with boundary A * 1)(A, K) - A, Ao x 1)(A, K),
which induces an almost complex structure on D{A, If). Therefore, associated
to K, there is the « singularity p-chain with coefficients in Un-P-l defined
by Sullivan in [7], that is C(K) I [1)(A, K)]A, dim A = p.

A

Remark o&#x3E;1 combinatorial chains.

It is well-known that, given an integral cycle as a formal sum of p-sim-
plexes of an oriented simplicial complex, one can realise it geometrically
by glueing the (p -1 )-faces together in pairs according to a cancellation
rule. It is clear that this construction can be extended to the more general
case of a simplicial p-chain with coefficients in an abelian group G.

Precisely, we define a combinatorial p-chain with coefficients in G to be
an oriented simplicial complex .(p), purely p-dimensional, in which every
p-simplex A is labelled by an element g(A) E G.

Given an oriented simplicial p-chain c == 2 A @ g(A) in K, its realisa-
A

tion is the combinatorial p-chain which consists of the subcomplex of K
formed by the union of those closed p-simplexes A for which g(A) 0 0,
each simplex A being labelled by g(A).

Let B be a (p -l)-simplex of -V(p) which is the face of exactly the

simplexes A1, .. , Ar and set g(B) == 2 e(B, Ai) g(Ai) (E(B, Ai) - incidence’

i=1,...,r

number). We define 6F(p), the boz,cndary of T(p), as the realisation of

2 B@g(B).
B



609

.
Two combinatorial p-chains -V(p), h’(p) (with coefficients in G) are iso-

morphic if there exists an isomorphism of oriented simplicial complexes
F(p) "-’ F’(p) which preserves the labels.

In the sequel, it will be convenient to regard a «singular p-chain with
coemcients in G)) in a topological space X as a map g: h(p) -X rather
than as a linear combination of singular p-simplexes with coefficients in G
(the two points of view are easily seen to be equivalent).

1.4 Thiclcening of a combinatorial chain F(p) with coefficients iTi Uq (q &#x3E; 0).

If A is an oriented simplex and V(A) is a closed almost complex mani-
fold of positive dimension, then A * AY(A) has a structure of relative com-
plex cycle induced by the homeomorphism

A * AV(A) A x AV(A)I(a, x) (a, x’) for any a c zi and x, x’c A V(A)

with boundary a(A * A V(A)) A * V(A).
Given a combinatorial p-chain F(p) with coefficients in Uq (q &#x3E; 0), the

relative complex cycle f(p) = 11 .4 * A V(A) ( dim A = p, [ TT (A ) ] = label
A

of A) will be referred to as a thickening of F(p). We shall often assumc
tacitly that V(A) is equipped with a triangulation; in this way 9(p) is a

simplicial complex via the join triangulations.

1.5 NOTE. If J5 A is a codimension one face of A, then

Let (P ’&#x3E; X] c- H,,(X), with X a topological space, P a complex cycle
and K, .L a triangulation of P, SP as above.

1.6 THEOREM (Sullivan [7], p. 204). The singularity p-chain C(K) is a
cycle and, if [C(K)]x == 0, then [P]x == [P’]x, with P’ a complex cycle and

dim SP p = dim SP.

PROOF. In order to see that C(K) is a cycle it is enough to look at the
links of the (p -l)-simplexcs of .L (see [4], [7]).

After labelling each p-simplex A of .L by [D(A, K)] we obtain a combi-
natorial chain jT(p) realising C(K). Suppose C(K) = 0. Then, -6(A, K) is

an almost complex boundary, hence there exists an almost complex mani-
fold W(A) with a-VV(A) =.b(A, K). We replace st (A, K) == A * AD(A, K)
by A * W(A) for each p-simplex A E L; the resulting polyhedron is the

required complex cycle P’, which is a blow-up of P in the sense of [4], [7].
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If it is only [C(K)], === 0, there exists a combinatorial chain F(p +:L)
(with coefficients in Un-P-I) with 6F(p + 1) = T(p) = T(p + I ) (B K and a
map g: T(p +1) - K extending f)T(p).

In the simplicial product JS"0 [0,1] we identify K g 0 with K and form
the relative complex cycle

There is an obvious map Q -P&#x3E;- X extending P fl X, obtained via g and the
projection f(p -[-1) &#x3E; ]’(p +1). Thus - &#x3E; X provides a homology between

At this point we observe that, by 1.5 and the definition of the boundary 6,
we have C(.K" ) = 0, and so we are reduced to the previous case. 0

1.7 REMARK. Theorem 1.6 is slightly more general than Sullivan’s
theorem ([7], p. 204). In fact we assume [C(K)]x = 0, which is only im-

plied by the hypothesis [C(K)]p = 0 of [7] and we do not require the ex-
istence of a degree-one map P’--&#x3E;- P. On the other hand, the « only if »

part of the statement will not be true in this more general case. We shall
need our version of theorem 1.6 only in the proof of 3.5 (b).

2. - Almost complex resolution.

Let (k) be the set of partitions of the positive integer k.

2.1 PROPOSITION. The1’e exists a basis {[M], I E 5’(k)l of TT2k and poly-
nomials in the (tangential) Chern classes {SI’ I E T(k)l such that:

(b) each oi is a divisor of the L. C. M. of {aI, I E S(k)), where

ai = (il + 1)(i2 + I) ... (ir + 1), I being the partition (iI, ..., ir) of k.

PROOF. The existence of {Sf} and ([Mi]) follows easily from [5] ( § 16, the-
orem 16.7). D
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Now, for each integer n&#x3E;O, define

and c

2.2 RMIARK. Later we shall be interested in the primes dividing 0153( n, U) ;
it is easily checked that W2k = fl p[kl(p- 1)], where p is prime, p c k; + 1. It

v

follows that, for each n, the primes dividing cx(n, U) are precisely those
primes p which are less than (n + 3)/2.

2.3 MAIN LEMMA. For any [P]xEHn(X), we have Wn-P-l[P]X = [P’]x,
where P’ is a complex cycle with dim SP’  p = dim SP. (we-call [P’ ]x a re-
solution of [P]x).

PROOF (using the notation introduced previously). For n - p -1 odd,
we have Un-P-l = 0; therefore the obstruction chain C(K) is zero and the re-
sult follows immediately from Sullivan’s theorem 1.6. Suppose n-p-1 =2k;
let XU) be the first barycentric derived of K ; N = N(K(1») the simplicial
neighbourhood of I(’) in ]((1) and yr: S --&#x3E;- L(l) the simplicial map induced by
the pseudo-radial projection along the lines through the vertices of N (recall
that N is a simplicial mapping cylinder of yr). If Q is the closed comple-
ment of N in Ki&#x3E;, then, by the smoothing theorems of [3], Q is a triangulated
almost complex manifold with aQ = S.

For each I E T(k), represent the Lefschetz duals of s,(Q), P,(S) by sim-
plicial chains Gi, E respectively, with aG, = Ej. Let Et be the chain of
N given by the simplicial mapping cylinder of AIE, and set

CLAIM. ôG = Wn-1J-IO(I{)(1).

The claim follows from the

BOUNDARY RULE. Let A be a p-simplex of L(l). In the group Un-1J-l,
[n-1(Â)] can be written uniquely as a linear combination of the gener-
ators f[M,I} with integral coefficient. If xl is the coefficient of [M,], then
A appears in the boundary G1 -E-- EI with multiplicity exactly x.,Loj. 
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PROOF OF THE BOUNDARY RULE. By transversality we have a commu-
tative diagram

We U-orient A-’-A so that the product of the orientations of 1 and I-11
is compatible with the U-orientation of o(N - SP). In this way, n-I Â
becomes an almost complex manifold isomorphic to D(B, j6T) (by the smoo-
thing theorems of [3]). Now, by diagram (1), Ei intersects A-’A trans-
versally in a finite set of oriented points whose algebraic sum is the coem-
cient Sj of A in a(G, -)- E+). On the other hand, as the intersection is trans-
verse, the 0-cycle E,r)A-’A is Lefschetz dual to sj(S)IA-’A. Therefore,
by diagram (1) and the naturality of the classes sj, we have, e, = xioj. D

At this point, the main lemma is a consequence of theorem 1.6 applied
to the complex cycle (Ùn-p-IP (rel SP), which is formed by taking the dis-
joint union of OJn-P-I copies of P and identifying them along SP; that is,

for any x c SP, li, jWn-p-l’
Us homology class [P’ ]x clearly equals

2.4 REIIARI, We note that, if we are interested in a particular [P]x,
the complex cycle P’ constructed in the above proof may not be the sim-
plest iv.ay of finding a resolution of a multiple of P. For instance, suppose
C(K) is of the form (1 A) » [MJ ] and y is a polynomial in the (tangential)

A

Chern classes such that X m =A 0. Then, proceeding as in 2.3, we
find a simplicial chain G on K(l) with 8G = mC(K); from G, a resolution P’
of mP is constructed in the usual way.

An iterated application of the main lemma gives

2.5 THEOREJBiI. Any integral hopzology class of dimension n is «(n, U)-
representable by an almost complex Jnanifold.

In fact, it is «(&#x3E;1 - 3, U)-repi°ese9+table..
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SKETCH OF THE PROOF. In order to prove cx(n - 3, U)-representability,
it suffices to show that, if dim SPl, then [P]x = [P’]x with dim sP’
 dim SP. The case dim SP = 0 is easily dealt with; therefore we assume
dim SP = 1 and, for the sake of simplicity, C(_K) of the form (I A) 0 [lll],

A

where if 7 is as in 2.1 (the general case is analogous). Suppose z A 0 0
A

in H1(P; Z) ; then there exists a prime q such that the reduction of z mod q
(still denoted z) is not zero. Let z* E H’(P; Zq) be the dual of z, i.e. Z, z*) === 1.
Now Hl(P; Z,) = [P, L], where L is a high dimensional q-lens space. Note

that the fundamental class a E Hl(L; Z,) has a Poincaré dual cycle which
is a «twisted Z,-manifold ». Thus transversality gives that the homology
class z’Y n IP EHn-l(P; Zq) is represented by a polyhedron Q, which is a

(weakly) almost complex manifold outside the disjoint union * fj V, where *
is a point and V is the twisted Z,-singularity set (dim V n - 2); more-
over lk (*, Q) = l1. Hence, after excising an open regular neighbourhood
of * Ij V, one obtains an almost complex bordism between llI and a q-fold
cover. This is a contradiction because of the choice of if 7. Thus z = 0

in H1(P; Z) as required. r-i

2.6 COROLLARY. Let z be an n-dimensional homology class such that

(3z = 0 ; then z is o-&#x3E;.ep#°ese9+table, with o = G.C.D.(a(n - 3, U) ; fl). In partic-
ular, i f z belongs to the ’Jl- (primary) torsion with ’Jl prime and ’Jl&#x3E; n/2, then z
is representable by an almost complex 9na9+ifold. D

We conclude this section with some remarks on representability of

homology classes with coefficients in a finite cyclic group Zy. It is known

that almost complex Zy-manifolds (as defined by Sullivan) represent al-

most complex bordism with Z ,-coefficients and that, if y =A 2, not every
’Zy-homology class is representable by an almost complex Z,-manifold. We
have the following:

2.7 THEOREM. Let n and y be positive integers and suppose y is prime
to a(n - 2, U). Then any Zy-homology class of dimension n is representable
by an almost complex Zy-manifold. (Note the special case y prime,
&#x3E; (n + 1)/2.

PROOF. Let Un(X ; Zy) be the it-dimensional bordism group of the topo-
logical space X with coefficients in Zy and let 2: Un(X;Zy) -¿.Hn(X;Zy)
be the natural map. We must prove that, under the assumption of the
theorem, 2 is onto. Let MZv be a 2-dimensional Moore space for Zy; then
there are equivalences
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Thus we only have to prove that the Steenrod map p : U,,,,(XA MZ,) ---&#x3E;,
-* H,,,,,(XA XZv) is onto. This is a consequence of the hypothesis and
corollary 2.6. Fl

3. - Approximation of bordism by homology.

The aim of this section is to show that the n-dimensional part of

H*(X) &#x26; U * approximates Un(X) up to an 0153(n, U)-isomorphism. This result

represents a o Conner-Floyd type » theorem at each dimension (compare [2],
theorem 14.2, p. 41).

Let Un(X; q) be the bordism theory set up using complex cycles and
bordisms P, SP such that dim P - dim SP &#x3E; q (i.e. singularities are in

codimension at least q). There is, for each n&#x3E;O, a sequence of natural
transformations

defined by the identity on representatives.
The following lemma (and its proof) is essentially a relative version

of 1.6 and it will insure that the main constructions of §§ 1-2 apply to
this more precise context.

3.1 LEMMA. Let Po be a relative complex cycle of dimension n

codim SPo = q, aPo = P, dim SP = n - q -1; let Ko, Lo be a full triangula- ,
tion of Po, SPO and K, L = Ko, LOIP. Then

(1) C(Ko), C(K) is a cycle in the pair Po, P (with coefficients in Ua-l) r

(2) Let Go, , G be a simplicial homology of C(Ko), C(K) to zero in .Ko, K.
Then there exists an element z(Go) E Un(Po, P; q + 1) associated to Go, G
such that:

PROOF. The proof is based on the same methods as 1.6.
In order to see that C(KO), C(K) is a relative cycle, it is enough to look

at the links of the (n - q - I)-simplexes of Lo.
Now we distinguish two cases: Go = 0 and G,,:A 0. If Go = 0, C(Ko) = 0

and C(K) = 0. Then, for each (n - q)-simplex A E .Lo, D(JL, KO) is an almostr
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complex boundary, hence there exists an almost complex manifold W(A)
such that õW(A) == 1)(A, Ko). We replace st (A, .Ko) = A * Al)(A, Ko) by
A * W(A); at this point the (n - q -l)-simplexes BEL are dealt with

similarly, using the pair st (B, ITo), st (B, K). Let P’ P’ be the resulting
polyhedra; Po is a complex cycle of dimension n With boundary P’ and there
is a blow-up f : P’, 0 P P 09 P obtained by projecting W(A) onto D(A, 2 K),
using a collar of 8W(A). From the mapping cylinder of f one immediately
obtains a bordism between Po, P and Po, P’ in Un(Po, P; q) so that the

result follows in this particular case. We note that Po, P’ depends on the
choice of the bordism W(A) ; however it is immediately seen (by coning)
that different choices do not alter its bordism class in U.(PO7 P; q + 1).

If Go o 0, the same method as in 1.6 may be applied using a relative
form of the thickening construction. We omit the details. 0

3.2 MAIN LEMMA (relative version). For any [Pll P]X,A E Un(X, A ; q), we
11aV6 cvq_i[Po , P]X,A = 99,,I[P’, P’]I,A

PROOF. The proof is essentially the same as that of 2.3, using 3.1 in-
stead of 1.6. Details are omitted. D

For each integer k &#x3E; 0, we fix a basis {[JII]: I c- S(k)} for U21c and charac-
teristic classes {s I} as in proposition 2.1.

3.3 LEMMA. On the category of all topological spaces, there exists a natural
transformation O"q: Un(X ; q) - Un(X ; q + 1) which is an Ú)q-l-splitting, i.e.

99q+,Or,,,(Z) = Wq-lZ, for each z E U,,(X; q) (Wi has been defined previously).

PROOF. As the maps from cycles to X do not play an essential role in
the proof, we disregard them.

Write lp, (1, (0 for gg,,,, O"q, oj,-., respectively.
Let [P]x E Un(X ; q). In the proof of the main lemma 2.3 we showed that

oi[P]x is represented in Un(X ; q) by a complex cycle P’ with codim SP’&#x3E; q,
so that P’ is a cycle in the theory Un(X ; q -+- 1). We wish to define or[Plx -
=== [P]x c Un(X; q +1). We need to make sure that or is a well-defined map.
Now the construction of P’ in 2.3 depends on the following choices:

(a) the simplicial chains G,, E, in Q (of course, if G Ei is another
choice, then GI, Ei is homologous to G,, EI) ;

(b) the triangulation K, Z of P, SP;

(c) the representative P of [P]x E Un(X ; q).

(d) the bordisms W(A) mentioned in the proof of 1.6 (compare also
remark 3.4 below).
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But using 3.2 it is easily seen that different choices a) b), c) do not alter
the bordism class of P’ in U,,(X; q -)- 1). In fact it is sufficient to apply 3.2
to a triangulated bordism (which clearly exists) joining the complex cycles
on which we are going to make the two choices; in the cases (a) and (b), for
instance, this bordism is just a cylinder with a suitable triangulation.

Moreover one checks immediately (by coning) that different choices (d)
do not alter the bordism class.

Thus a is a well-defined natural transformation, which is a homomor-

phism, because the assignments K --* GI are additive with respect to K.
Finally, a is an co-splitting because 99 is the identity on representatives
and P’ is bordant to wP in U.,,(X; q) by construction. This concludes the

proof of the lemma. D

We observe that the above lemma extends easily to pairs X, A.

3.4 REMARK. It is convenient here to sum up the procedure for obtaining
a(P]x, as it can be deduced from the constructions of 2.3 and 1.6, to which
we refer for notation. Let [P]x E Un(X; q). Suppose q is even; then a re-

presentative P’ of a[P]x is obtained from by replacing st (A, K) =
= A * AD(A, .K) with A * W(A), where A varies over the (n - q)-simpleges
of L c K and W(A) is any bordism of 1)(A, K) to zero. Note that, in this

case, Wq-l = 1 and cr is an isomorphism, inverse of cpo

Suppose now q -1 = 2k and let {[M I]} and fsjl be as in proposition 2.1;
then (t),-, C(K) a (t),7-1/e I(Cj + E.+) 0 [Mi] (i) . Let r be a combinatorial

1

realisation of "2 (GI -)- Ei) (8) Wq-l!e [M ] with bil = T’= combinatorial re-
i 

alisation of C(wq-lK(I)/L rel L). Then If" = (Wq-l]((I)!L rel L)-ll aP (where
( )_ means change of U-orientation) is a complex cycle for which C(K") = 0.
At this point P’ is constructed as in the previous case.

3.5 THEOREM. For n &#x3E; 0, there exists a natural transformation of functors

which is an 0153(n, U)-isomorphism.

PROOF. Again, for the sake of simplicity, we disregard the maps to X.

Step 1. There exists an w-isomorphism

1p: Un(X; q + 1) -+ Un(X; q)(D ke-rt (cp = ffJq+l; w = Wq-l; (l = uq) .

(1) Here C(K) is identified with O(K)(l) via some fixed homology.
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This is a consequence of lemma 3.3, the isomorphisn-i ip being defined by

Step 2. There exists a natural co-isomorphism f : ker p ---&#x3E; Hn-q+l(X) @UQ-l.’
This statement is non-trivial only for q odd.

Let cp[P]x = 0 in Un(X; q) ; then there exists a relative complex cycle .P,
of dimension n + 1, such that 3jP === P and dim STI  n - q + 1. If 9 is a,
triangulation of P, then [C(K)]x is uniquely written as

and we define

Now we have several statements to verify :

(a) If K is a triangulation of another bordism P of P to zero in ker q,
then K’ = R Ll )Z is a triangulation of P II -P-, where P_ is obtained

_ 

K P -

from P by reversing the U-orientation on P - SP. Let

where GI and E+ are the chains of K’ constructed as G, and Ei in 2.3. Then

This shows that f does not depend on the triangulation or the bordisin P.
Thus, if [P], = 0 in U.,,(X; q + 1), we have f[P], = 0, because we can

choose the bordism P so that dim SP  n - q + 1. This shows that f
depends only on the bordism class of P in U,,,(X; q + 1) and therefore is

well-defined; f is trivially a homomorphism.

(b) f is an co-monomorphism. Because, if §£ oi[Ci]x© [Mi] === 0, then
_ _ 

Tc-3’(k)

oi[Ci]x = 0, YI E S(k), which implies cv[Ci]x == 0, YI e S(k). Thus the rela--

tive complex cycle wK has
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and therefore (by 1.6 ) we can reduce the dimension of the singularities of a)K
so as to obtain a bordism E, of wK to zero with singularities in codimension
&#x3E; q + 1, that is w[P]x = 0 in U,,, (X; q + 1) as required.

(c) f is an w-epimorphism.

Let [C]x@ [ivi] e Hn q+i(X) © Uq_i, where C is a (triangulation of a)
complex cycle of dimension it - q + 1.

Form the complex cycle P = C X civif(a, x) - (a, x’) if a belongs to the
(9+ - q - l)-skeleton of C and x, x’ E cmi .

It is immediately seen that [OP]xE Un(X; q + 1) and P -+X is a bor-

dism of oP  X to zero in Un(X ; q). Thus [aP]x E ker 92 and, by the de-
finition of f, we have f(mfoi[8P]x) = w[C]x@ [M], which proves that f is
an w-epilllorphism.

Therefore f is an m-isomorphism, as required.

Step 3 (proof of the theorem). For each q == 1, ..., n + 2 we have na-
tural wq_I-isomorphisms

which, by induction, prove the existence of a ( Il m,)-isonlorphism;=i,...,q-z

For q = n + 2, we have the required 0153(n, U)-isomorphism

3.6 TimoRFm. Let n:&#x3E;O and let X be a topological space such that H*(X)
is finitely generated and has no n-torsion, for any prime n  (n + 3) /2. Then

PROOF. First we prove that U,,(X) has no n-torsion, for any pri-
me n«n + 3)f2. We proceed by induction; suppose Un(X; q) has no

n-torsion ; in the proof of 3.5 we have defined an (t)-isomorphism
(w == (t)q-l ; 99 99q+l ; : a = Uq)

given by 1p(Z) = (q;(z), wz - O’q;(z)).
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Assume there exists z c- U,,(X; q + 1) with az = 0. Then

because U,,(X; q) has no n-torsion. Thus z E ker 99. Now consider the co-iso-

morphism f : ker p -* Hn-q+l(X; Uq-l) constructed in the proof of 3.5 (we
retain the notation introduced there). We claim that under our hypo-
theses jf is actually a monomorphism. In fact, given [P], E ker 99 c
c U.,,(X; q + l)y we have (see step 2 in the proof of 3.5)

f[P]x = 0 =&#x3E; ÚJ[C(K)]x = 0in Hn-q+l(X; Uq-l) =&#x3E; lC(K)I,r == 0,

because of the lack of n-torsion in H,(X) for each a dividing (o.
But, if [C(-K)]x = 0, we can apply the usual techniques to find a bordism

of P to zero in U,,(X; q + 1) as required.
Now let us return to our z E ker 99; = 0 =&#x3E; nf(z) = 0 + (z) = 0 +

=&#x3E; z == 0, because f is injective. This proves that U,,,(X; q -j-1) has no

n-torsion, completing the induction step.
At this point, we have two finitely generated abelian groups G and H,

which we want to prove to be isomorphic, and we know that :

(a) there exists an co-isomorphism : G --&#x3E; H;

(b) G and H have no n-torsion, for each prime :r dividing w.

From (a) and (b) it follows easily that there is an isomorphism between G
and H (although $ is not one in general). The theorem is proved. D

Let [P]x be an element of Un(X ; q) ; for 0  2k  q - 2 and I a partition
of k, let G, I Ei,,+ = GI be the chain of X(1) constructed from the character-
istic class 8, E H2k(Q) as in the proof of the main lemma 2.3 (to which we
refer for notation). By dimensional arguments, G j is an integral cycle and
thus it defines a class [O](n-2k)]xEHn-2k(X) which does not depend on
the representative GI. In particular, if P is an almost complex manifold,
then OI(n - 2k) represents the Lefschetz dual of s, on P.

In the proof of 3.5 we have constructed a ( PJ wi)-isomorphism
i=1,...,a-2

3.7 THEORElBI. For any topological space X, $, is given by the formula

(note that the range of I depends on k).
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PROOF. The isomorphism was constructed inductively from the fol-
lowing compositions:

if q is even, and 99: U,,(X; q) -- U,,(X; q - l-) if q is odd.

Let z = [P]x and 2k = q - 2 ; then 1p(z) == (99(Z), W2k Z - acp(z)) and, as
cp(z) === [Pjx and P has no singularities in codimension q -1, it follows

from definitions:

where 1’1 is a thickening of the combinatorial chain

Hence V[P], == ([PJx, 2 " 21c lo 1[ ?fllx) .lc3’(k) 
Now observe that [’1 is a bordism of ahl to zero in U,,,(X; q -1 ) ; thus,

by the definition of f in the proof of 3.5, we have

By iteration on [P]x = q(z) E Un(X ; q -1) we obtain the result. R

3.8 COROLLARY. Let X be a topological space such that, for 0:: 2k:: q - 2,
Hn-2k(X) has no n-torsion, for any prime n (q + 1)/2. Then [P]x = 0
in Un(X ; q) if and only if all the homological obstructions [01(n - 2k)]x E
E H n-2k(X) vanish.

PROOF. From the above theorem we have that

The hypotheses on H,,,-,,(X) imply that q is a monomorphism (see proof
of 3.6), which proves the result. 0

3.9 REMARK. Note the special case q == n + 2, i.e. Un(X; q) = Un(X).
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3.10 COROLLARY. Let [P]x E Un(X; q) and r  q ; suppose that, for 0  2k 

 r - 2, H,,-,,(X) has no n-torsion, for any prime n (1" + 1)/2. Then
[ P]x = 0 in Un(X; r) if and only if the homological obstructions [01(n - 2k)]x E
EHn-2k(X) vanish, for 02kr-2.

PROOF. Obvious, by looking at the composition

4. - Smooth resolution.

The analogy with the complex case is very close, except for the fact that
the bordism group Q* has 2-torsion. Therefore we limit ourselves to

sketching the modifications which are needed in this case.

All of § 1 translates immediately into the smooth category, replacing
the words « complex and « almost complex » by « smooth oriented ». By
analogy with the complex case we have the following:

4.1 PROPOSITION. (1) There ezists a basis {[.11f I], I c S(k)l for the free
part of Q4lc acnd polynomials (pi, I E S(k)) in the (tangential) Pontryagin
classes such that:

(b) Each o) is a divisor of the L.C.JBlI. of (a), I E S(lc)), where

a; = (2i1 + 1) ... (2ir + 1), I being the partition (ii , ... , ir) of k.

(2) For each &#x3E;1 &#x3E; 0, there exists a Z&#x3E;-basis {[Lj]} for the torsion part of Qn
and Stiefel- Whitney polynomials {w(i)} such that w(i)ILjl is the unit matrix. 0

For each integer n;&#x3E; 0, w e define

4.2 MAIN LEMMA. For any [P]x E Hn(X}, we have oj’-,-l[PIX = [P’]x,
where P and P’ are smooth cycles and dim SP’  p = dim SP.

PROOF. The proof is similar to the almost complex case, using the
classes PI and W(i) instead of the SI, so that we now have W:-P-l C(K}(1)== 8G,
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with G,, EI Lefschetz dual of p, and -Wi Lefschetz dual of w(i). 0

By iteration we have

4.3 THEOREM. Every integral homology class of dimension n is 0153( n - 3, Q)-
representable by a smooth oriented manifold. 0

4.4 REMARK. We have c,o4k --- flp[2k,(i)-1)1 with p prime, 2  p 2k + 1.
p

It follows that the primes dividing a(n, Q) are precisely those primes p
such that 2  p  (n + 3) /2.

Note that a(n, D) is an odd integer. The fact that any integral homology
class has an odd multiple which is representable by a smooth oriented mani-
fold was proved by Wall (see [9] or [2], 15.3). Note also that a(n, U) is

much greater than a(n, S?).
The following corollaries are proved as in the complex case.

4.5 COIEZOLLAP.Y. Let z be an n-dimensionaZ honlology class such that

{Jz == O. Then z is e-representable, with (! = G.C.D.( 0153(n - 3, S2); fl). In par-
tienlar, if z belongs to the 7r-torsioit, with n prime and n = 2 or n &#x3E; n/2, then z
is representable by a smooth oriented nlanifold. 0

4.6 COROLLARY. Let nand y be positive integers. Siippose y is not divisi-
ble by any odd prime n  (n + 1) /2. Then any Zv-homology class of di-

n1e&#x3E;ision n is representable by a smooth Z,-manifold (note the special case:

y prime, y&#x3E; ( n + 1)/2). 0

4.7 REMARKS:

(a) It is not difficult to see that Thom’s example ([8], p. 62) gives a
class in H,(K(Z., 1) X K(Za, I)} which is representable by a smooth cycle P
with the « nicest possible» singularity structure, i.e. SP = orientable sur-

face and a neighbourhood N of SP in P is of the form /SLPxcone CP2

(CP2 = complex projective plane).

(b) The above example is immediately generalised to any odd prime :r,
providing a class of n-torsion in H2n+l(K(Zn, 1) XK(Zn, 1)} which is not

representable by a smooth oriented manifold. This shows that the range

n == 2, n -&#x3E;- n/2 of corollary 4.5 is the best possible as regards representa-
bility of n-torsion homology classes.

The proofs of the following propositions are similar to those of their

counterparts in the complex case.
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4.8 THEOREM. For n &#x3E; 0 there exists a natural transformation o f f unctors

Which is defined on the category of all topological spaces and is an 0153(n, £2)-
isomorphism. 0

4.9 COROLLARY. Let n&#x3E;O and let X be a topological space such that

H*(X) has no a-torsion for all odd primes n ( n + 3)/2. Then there is an

isomorphism .Qn(X) r’-/ ! H;(X ; £2j). D
i+j=n

Let [P]x E Qn(X; q) ; as in the complex case, construct classes

corresponding to the integral characteristic classes fp,} of 4.1 and classes

corresponding to the Z2-characteristic classes fW(h) } of 4.1; note that, for
each m, h varies from 1 to dim 13m, where %m is the torsion part of Qm.
The following theorems are complete analogues of 3.8, 3.10 and are proved
in the same way :

4.10 TiwoREm. If, for 0  4k  q - 2, H n-4k(X) has no n-torsion, for
all odd primes n C (q + 1)/2, then [P]x is a boundary in Qn(X; q) if and
only if all the homological obstructions [01(n - 4k)]x and [6,(n - m)]x vanish
(note the special case q = n + 2). p

4.11 THEOREM..Let [P]xEDn(X;q) and 0rq. Suppo8e that, for
04kr-2, Hn-4k(X) has no n-torsion for any odd prime n (r + 1)/2.
Then [P]x is zero in Qn(X; r) if and only if [01(n - 4k) ]x = 0 for 04kr-2
and [Óh(n-m)]x = 0 for 0  m  r - 2 . F-1

4.12 FINAL PXMARKS. Let T be either smooth or P.L unoriented bor-

dism. The procedure for desingularising cycles described in this paper is

considerably simplified when applied to unoriented smooth (or P.L)
cycles, using Stiefel-Whitney (resp. P L) characteristic numbers ; note that

0153(n, T) = 1, Vn.
In this case the procedure gives a direct construction of an unoriented

smooth (resp. PI) manifold representing a Z2-homology class (Thom [8]).
Moreover, using the same kind of arguments as those of 4.8, one can
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construct an explicit equivalence of homology theories T *(X, A) 
H*(x7 A; Z,) &#x26; T* on the category of all pairs of topological spaces.

For instance, this can be used to define a priori homological obstructions
to the existence of a blow-up of a smooth (or PE) cycle which improves
on a result of Kato (see [41, 4.5)..is an example, one can prove

4.13 THEOREM (we refer to [4], 4.5 for notation and definitions). Let

(P, Q) be a jPZ (resp. smooth) m-va’fiety. Suppose Q is conlpact and of dimen-
sion q. Then there is a PL (resp. smooth) blow-up f : (P’, Q’) - (P, Q) with
dim Q’ k if and only if 1’i(P,Q)2 = 0 1014 i&#x3E;k +1. 0
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