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A Classification

of Strictly Pseudoconcave Homogeneous Manifolds.

A. T. HUCKLEBERRY - D. SNOW

Dedicated to the memory of Aldo Andreotti

1. - Introduction.

A non-compact complex manifold X is strictly pseudoconcave if it can

be exhausted by relatively compact open sets whose boundaries are smooth
and strictly pseudoconcave. In [9], under the further assumption that a
complex Lie group acts holomorphically and transitively on X, we show
that X is the total space of a positive line bundle over a compact homogeneous
rational manifold Q. The bundle map is given by the natural map of coset
spaces a: X = GjH -+ GIBH = Q where B is the radical of G. Furthermore,
since every positive line boundle over a compact homogeneous rational
manifold is homogeneous and ample, [8], X can be equivariantly imbedded
as a homogeneous cone in complex projective space as follows. Let {80 ... , 8n}
be a basis of the vector space of sections and let z be a local fiber coordinate.

Then the map U: X -* Pn+l defined by lt(p) = [z(p):so(n(p)):... :sn(n(p))]
realizes X as the union of projective lines connecting the hyperplane sec-
tion u(X) n {z = o} Q to the point [1 : 0 :... :0], with the vertex [1 :0 :... :0]
itself removed. Any such cone over a compact homogeneous rational mani-
fold is clearly strictly pseudoconcave and homogeneous under a complex
Lie group.

In this paper we extend the above classification to strictly pseudoconcave
manifolds X which are homogeneous in the classical sense, i.e. given two
points p, q E X, there exists an automorphism g E Aut (X) such that g(p) = q.
(If dimc .X = 2 we must also assume that X has a compactification to a
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complex space.) Note that this is a priori a much weaker assumption since
a non-compact complex manifold can be homogeneous in this sense and not
be homogeneous under a Lie group (see e.g. [10]). However, the first step
of our classification is to show that G : = Aut (X) is in fact a Lie group (§2).
Thus, the major part of this paper is devoted to the case in which X is homo-
geneous via the group G, but where no complex Lie group acts holomorphically
and transitively on X. Under these hypotheses, we show (§ 4) that X has an
equivariant compactification V which is a homogeneous rational manifold
under the action of a complex semi-simple Lie group S. The Lie group G

is simple and is a real form of S (§5).
If A := VBX has interior, then, due to the strict pseudoconcavity of X,

A is a non-compact hermitian symmetric space and V is its compact dual.
In addition, X can be realized as a tube neighborhood in the normal bundle
of a codimension 1 complex orbit of a maximal compact subgroup KG of G (§ 6).
A theorem of E. Oeljeklaus, [16], then implies that V= Pn and X is the com-
plement of a closed euclidean ball Bn. It seems worth noting that this is
the only way that a homogeneous Stein manifold can be imbedded as a domain
in a connected compact complex manifold so that the complement of its clo-
sure is also homogeneous.

If A has no interior, then the methods of analytic continuation along
with the algebraic techniques of J. Wolf, [25], show (§ 6, § 7, § 8) that A is
a totally real submanifold of V with dim, A = dimc V. Moreover, both G
and .gG act transitively on A and the generic KG orbit in V is a strictly
pseudoconvex hypersurface contained in a Stein submanifold of V. Due to
the work of A. Morimoto and T. Nagano, [13], and T. Nagano, [15], this
situation is well-understood. The following is a typical example: V is com-

plex projective space Pn, with G = PSL(n + 1, R) acting on V in the usual
way, and X is the complement of A := RPn c Pn. In § 3 we discuss all of
the possible examples. A detailed statement of our classification is con-

tained in § 9, Theorem 9.2.

2. - Preliminaries.

Let X be a complex manifold with dime X&#x3E;2, and let Q be a relatively
compact open subset of X with smooth boundary, aS2. We say that aS2

is strictly pseudoconcave if, for every point p E aS2, there is a smooth local
defining function for 8Q in some coordinate neighborhood U containing p,
such that D r) U = (z E U/1J’(x) &#x3E; 0} and such that the Levi-form of 1p at p,
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is positive definite on the unique maximal complex subspace of the (real)
tangent space of aS2 at p. This definition is easily shown to be independent
of both the choice of y and the choice of local coordinates, so that strict
pseudoconcavity is a holomorphic invariant of aS2. It is well known that the

defining function 1p may be chosen so that C(1p)p is positive definite on the
full complex tangent space of X at p. In this case, V is said to be strictly
plurisubharmonic at p. It is clear that there exists a smooth function 99
defined in an open neighborhood W of the boundary aD c TV, such that
Q r1 W = {x E -Wlgg(x) &#x3E; 0}, and such that cp is strictly plurisubharmonic
at every point of W. Consequently, for almost all values of 8 &#x3E; 0 sufficiently
near 0, the relatively compact open sets

have strictly pseudoconcave boundaries.
A complex manifold X with dime X&#x3E; 2 is defined to be strictly pseudo-

concave if there exists open subsets Xv of X, v E N, such that

1) X, is relatively compact in X, + for all v c- N,

2 ) X = U {Xlv c N}, and

3) 8X, is strictly pseudoconcave, for all v E N.

The collection of open sets X,, ’V E N, is called a strictly pseudoconcave
. exhaustion for X. From the remarks in the preceding paragraph, we see
immediately that this definition is equivalent to the following: There exists
a smooth function cp : X - R and a decreasing sequence of numbers c" E R
such that

1) X, := {x E Xlcp(x) &#x3E; c,l is relatively compact in Xv + 1, for all v E N,

3) g is strictly plurisubharmonic in an open neighborhood of aX,.

The function (p is called a strictly pseudoconcave exhaustion f unction for X.
The advantage of this latter definition is that the boundaries, aXv, are not
required to be smooth. This is convenient for proving that closed complex
submanifold Y of a strictly pseudoconcave manifold X is also strictly pseudo-
concave, whenever dime Y;&#x3E;2. One merely restricts the above exhaustion
function 99 to Y and notes that the restricted function is strictly plurisubhar-
monic in a neighborhood of a Yy . Throughout this paper we will make use
of the above notation for a strictly pseudoconcave exhaustion (function)
without further comment.
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For a strictly pseudoconcave manifold X of dimension greater than 2, 
it is known that X has a minimal normal compactification, V. That is, X can
be realized as an open submanifold of a normal compact complex space V,
where V is minimal in the sense that VBX contains no positive dimensional
compact complex analytic sets. The minimal compactification V is essen-
tially obtained by taking the « Stein completion » of the manifold XV+I"’XV’
and gluing this completion back onto X (see [1], [21]). Thus, Vni, is a
Stein space, which, for appropriate choice of v, can be realized as a bounded
subspace of CN. We shall make frequent use of this fact. Indeed, it is the
primary way in which we apply the notion of strict pseudoconcavity in
this paper. Compactifications may not exist in general for a strictly pseudo-
concave manifold X of dimension 2, [21]. However, we will only consider
the case when, in fact a compactification V does exist for X. We can take
this compactification V to be minimal and normal by blowing down any
exceptional sets in VBX, and then taking its normalization.
We now prove an extension lemma for strictly pseudoconcave manifolds.

LEMMA 2.1. Let X be a strictly pseudoconcave manifold and let V be a

minimal normal compactification of X. Let g: X --&#x3E; X be a biholomorphic
map of X onto itself. Then there exists a biholomorphic rnap g: V --&#x3E; V such

that g = goi, whej’e c : X -&#x3E; V is the inclusion map.

PROOF. Choose v such that VBB-Xl can be realized as a bounded subspace
of CN. Let j : V",Xv -+ Cy be the imbedding. We note that there exists
a p &#x3E; v such that g(X",Xp) c XBX,. Otherwise, we could construct a se-
quence of points xn E X such that v : = lim (xn) E VBX and such that g(xn) E
E Xv. But then g(xn) contains a subsequence which converges to a point
x E Xv. By continuity, v = g-’(x) c- X, a contradiction. Now, let g:= jog:
XBX, --&#x3E; CN. Then g’ has components g’: XUX, - C. By a general Har-
togs’ Theorem [20], each gi extends as a holomorphic function to VBX,.,,
since V",Xp is Stein. Thus, we obtain a holomorphic map g’ : v",Xp -+ CN7
and it is clear that g’(VBXu) cj(VBXp). Define the holomorphic map
g : V -&#x3E; V to be j-1og’ on VB,Yg and g on X. Doing the same for g-1 (which
can also be arranged to map XB-X,, into XBX-,), we obtain another holo-
morphic map g-1: V - V. Since g o g-1 = id on the open set X, we see that
gog-I = id on V. Thus, g is invertible and therefore is the desired biholo-
morphic map of V onto itself extending g. ~

A biholomorphic m ap of a complex manifold (or space) X onto itself
is called an automorphism. The group of all automorphisms of X is denoted
by Aut (X). We give Aut (X) the compact-open topology by declaring the
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open sets of Aut (X) to be generated by sets of the form

for compact subsets K c X and open subsets U c X. If X is compact it is

well-known that Aut (X) with the compact-open topology has the structure
of a complex Lie group ([2], [11]). With the help of Lemma 2.1 we show
that a similar result holds for strictly pseudoconcave manifolds.

THEOREM 2.2. Let X be a strictly pseudoconcave manifold and let V be a
minimal normal compactification of X. Then Aut (X) with the compact-open
topology is homeomorphically isomorphic to a closed Lie subgroup of Aut (V).

PROOF. Let G be the stabilizer in Aut (V) of the closed set A : = VgX,
G = {g E Aut (V) lg(A) c A}. The subgroup G is clearly closed and therefore
is a closed Lie subgroup of Aut (V), [6]. Furthermore, we obtain from
Lemma 2.1 a monomorphism Aut (X) -&#x3E; Aut (V), g - g, which is easily
seen to be surjective onto G. Thus, it remains to show that the isomorphism
of groups Aut (X) --&#x3E; G is also a homeomorphism. Since any compact (resp.
open) subset of X is again compact (resp. open) in V, this isomorphism is
open with respect to the compact-open topology. To show that it is also

continuous, we need only prove that if {gn} is a sequence of automorphisms
of V which converges uniformly on X to an automorphism g of V, then {gn}
also converges uniformly to g on V. We choose Xv such that TTBXv is a
bounded Stein space as in Lemma 2.1, so that all of the automorphisms gn
can be expressed on VBB.Y, in terms of bounded holomorphic functions.
Therefore, since these functions converge uniformly on Xl,BBX,, Iz &#x3E; v, they
converge uniformly on V BX v by the maximum principle. The limit map
which these functions define together with got (where c : X -&#x3E; V is the in-

clusion) defines an automorphism of V which is clearly equal to g. There-

fore, {gn} converges uniformly to g on V. 0

Thus, if X is a homogeneous strictly pseudoconcave manifold, we can
identify the underlying real analytic manifold of X with the coset space
GIH where G = Aut (X ) and H is the isotropy subgroup of some point
x E X, H : _ fg E Glg(x) = x}.

Let G be a connected real Lie subgroup of a complex Lie group S. We
define Gc, the complexification of G in S, to be the smallest, not necessarily
closed, connected complex Lie subgroup of S which contains G. Equivalently,
if g and f are the Lie algebras of G and S repectively, then g is a real linear

subspace of f. We define gc to be the complex Lie algebra g + Jg where J
is the real linear transformation defining the complex structure of f. Then Gc
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is the connected complex Lie subgroup of S canonically associated to gc-
The group G is said to be a real form of S if f = g + Jg as a direct sum.
Note that if G and S are as above, and if both act holomorphically on a
complex manifold (or space) V, then Gc acts holomorphically on V in the
sense that the map Gc X V - V is holomorphic. We refer the reader to [6]
for more details on Lie groups and group actions.

We now prove a useful fibration lemma for homogeneous strictly pseu-
doconcave manifolds.

LEMMA 2.3. Let G be a connected Lie group and H a closed subgroup of G
such that X : = GIH is a strictly pseudoconcave manifold. (I f dimc X = 2,
we also assume that X has a compactification.) Let J be any closed subgroup
of G containing H such that Y : = GIJ is a complex manifold and the canonical
map of coset spaces GjH -+ GIJ is holomorphic. If the fiber JjH has positive
dimension, then Y is eompact.

PROOF. We may clearly assume that G is a closed subgroup of Aut° (X).
Let V be a minimal normal compactification of X. By Theorem 2.2 we may
identify G with a closed Lie subgroup of Aut (V). Choose an exhaustion

set Xv such that VB-Y, is a bounded Stein space. We claim that the

fiber JIH, and hence every fiber, must intersect the fixed compact set X,,
showing that Y is compact. For suppose J(x) = J/H c X did not intersect .Xy.
Then, since J’(x) = (JO)c(x) n X we have (JO)c(x) c VBX where (JO)c is
the complexification of Jo in Aut (Y). However, (JO)c is positive dimensional,
so we obtain non-constant bounded holomorphic functions on the complex
Lie algebra of (Jo)c (which is biholomorphic to Ck), a contradiction. ~

3. - Examples.

In this section we present examples of non-compact strictly pseudo-
concave homogeneous manifolds X of a real Lie group G. The main purpose
of this paper is to prove that the following list of examples exhausts all

possibilities. 

(1) The first example is X = P"BjB", P, &#x3E; 2, where

It is clear that X is strictly pseudoconcave, e.g. by defining the exhaustion
function to be gg(z) = tzz - 1 inside the ball of radius 2 (say) in Cn =

= P"BP"-’. (We always take P"-’ to be fz,, = 0} unless otherwise noted.)
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To see that X is homogeneous under a Lie group we consider the cone over X
in Cn+1, .X : = P-1 (X ), where P: C"+iu(0) - Pn is the defining map of P".
Note that 1 = {(z,,, z) E Cn+I""-{O}ltzz &#x3E; zozo}. Thus, the stabilizer of X in
SL(n + 1, C) is simply the stabilizer of aX = {(zo, z) e Cn+l",,-{Ol}tzz = zozo}
in SL(n + 17 C). This group coincides with the stabilizer of P-1(Bn), and

can be defined as follows. Let E be the matrix Then E defines

a hermitian form on C-+’, z, W)E := tivEz. The stabilizer of X is then
the group of isometries with respect to this form,

Since G is obviously closed in SL(n + 1, C), it is itself a Lie group. Given

any two points z°, Wo E X, we can use the Gram-Schmidt method to con-
struct orthonormal (with respect to E) bases for Cn+l, (z°, zli ..., zn} and
(w°, w 1, ..., wn}, such that go = IlzolIEzo and WO = IIwollEwo. Let A be the

change of basis matrix such that A (zi) = w’, i = 0, ..., n. Then A E G,
and A takes the complex line containing z° onto the complex line containing
2v°. Thus, X is homogeneous under the Lie group G. Note that this proof
shows that G also has Bn and the (2n - 1)-sphere S2n-1 = aBn as homoge-
neous manifolds. The group G is often denoted by SUl(n + 1) and called
the indefinite unitary group. It is a real form of SE(n + 1, C).

In this example, X can be realized as a real analytic homogeneous fiber
bundle over pn-I with fiber isomorphic to the 1-dimensional disk, D. This

is seen by restricting the projection p : Pnu(0) - Pn+l to X and observing
that p is equivariant under SUI(N -)-!). In this way X can be thought of
as a tube neighborhood of the zero-section of the hyperplane section bundle
over P’-’. This bundle structure on X cannot be holomorphically locally
trivialized because otherwise we would obtain a holomorphic local triviali-
zation for Bn",{o} as a punctured disk bundle over pn-l which is impos-
sible ([7]).

The remaining examples all share a common property: They are defined
as the complement in a compact homogeneous rational manifold of a totally
real imbedded symmetric space of rank 1. For each symmetric space of
rank 1 (i.e. Sn, Rpn, Pn, quaternionic projective space QPn, and the Cayley
projective plane), we give this construction. Wherever the geometry is
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transparent, we show explicitly that the complement is in fact a strictly
pseudoconcave homogeneous manifold of a Lie group.

(2) Consider the n-dimensional projective quadric hypersurface, Qn =
:= {z E pn+lltzz = O}, with the n-sphere Sn:= {[i:Xl:." :Xn+l] E pn+llx; E R,
txx = 1} imbedded as a totally real submanifold. Note that Sn = Q n n V R,
where YR is the totally real projective subspace f [ixo: XI:... : Xn+ll E pn+llx; E RI,
and that Sn = Qn () S2n+1 where S2,n+l = {Z E pn+lltzz = zozo} is the unit

sphere in Cn+l = P"+iUPfll . In addition, Sn is the set of fixed points in Qn
of the involution [z] 1-+ [z].

Now define X = QnBSn. We claim that X is strictly pseudoconcave
and homogeneous under a Lie group. To see that X is strictly pseudocon-
cave, we first consider the real analytic function fP: Cn+lBpn - R defined
by fP(z) = tzz - 1. Then, C(fP)p = I for all p E Cn+1, so g is strictly pluri-
subharmonic. Let Y = Qn n Cn+l = QnUP§l and c : Y -&#x3E; Cn+l be the inclu-
sion. If we define g = §5oi, then g(z) = tzz - 1 = 2 ( tIm (z) . Im (z) ) . In ad-

dition, g is strictly plurisubharmonic since fP is strictly plurisubharmonic
on Cn+1. Now smooth g to a constant function outside the ball of radius 2
(say) in Cn+l = Pn+lBp" . Then 99: X- R is a strictly pseudoconcave ex-
haustion for X. Note that Sn . {M E Qnlcp([z]) = 01.

To see that X is a homogeneous manifold of a Lie group, we define G
to be the stabilizer of X in SO (n + 2, C). Then we have

Here we have, as before, that E: and SUI(N + 2) is the indefinite
B I

unitary group in SL(n + 2, C). Therefore, G is a Lie group which acts

holomorphically on X. Note that G also stabilizes the real projective sub-
space V R = {[ixo :XI:." :Xn] Ix; E R} c pn+l, so that G can be explicitly de-
scribed in matrix form as
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the indefinite orthogonal group in SL(n + 2, R). This group is easily seen
to be a real form of 80(n + 2, C).

Now let [z] and [w] be two distinct points in X. Since X is not contained
in a hyperplane, and since X 0 P’-’ Qn-l, it is clear that we can choose
bases for Cn+2 {zo, z.+,} , and {wo, ".,Wn+l} such that [zi], [wi] E X for
i = 0, ..., n + 1, and such that [zo] = [z] and [wo] = [w]. Also, since any
[x] E X satisfies txEx =1= 0, we can choose the zi and wi such that tZiEzi = 1
and tWiEwi = 1. If A is the change of basis matrix such that A(zi) = wi,
then we have that A E G, and [A (z) ] = [w]. Thus, G acts transitively on X.

(3) Our next example is X = pn""-Rpn, where RPn = {[to :... : tn] Iti E -Ri
is clearly a totally real submanifold of P". Note that RPn is the set of fixed
points of the involution [z] i- [z] of Pn. Here again, X is strictly pseudo-
concave and homogeneous under a Lie group. Before we show this, let us
first discuss some connections that exist between this example and the pre-
vious one. Define p : Qn -&#x3E; Pn to be the restriction of the projection map
Pn+lB{O}-&#x3E; Pno’. Then, p is surjective onto Pn , for it [z] E Pn , tzz = A2 
then [+iA:Z] C_ Qn . Thus, p is a 2-to-1 ramified covering map with rami-
fication set Qn m P" = Qn-1. In addition, the n-sphere, Sn c Qn""-p:, is.

mapped 2-to-1 onto RPn c p:",,-Qn-l under p. We can now utilize p to con-
struct a strictly pseudoconcave exhaustion for X. Recall, we defined §5 : Y =

QnBP.o’ - R by cp([l :z]) = tzz - 1. Since cp is constant on the p-fibers,
we obtain a strictly plurisubharmonic function (p = cpOp-l: p:",,-Qn-l-+ R.
Note that {zlcp(z) = 01 = p(Sn) = RPn c p:",,-Qn-l, and g(z) &#x3E; 0 for z E

E p:",(Qn-l u Rpn). If we smooth (p to a constant function in some neigh-
borhood of Qn-1 c Pn , then (p becomes a strictly pseudoconcave exhaustion
for X.

To show that X is a homogeneous manifold of a Lie group, we define G
to be the stabilizer of X in SL(n + 1, C). Then we obtain:

Thus, G is a Lie group acting holomorphically on X, and is obviously a
real form of SL(n + 1, C). To see that G acts transitively on X, let [zl
and [w] be any two distinct points in X = PNBRPI. Choose representatives
Zo = x + iy and wo = u + iv in Cn+1 such that [zo] = [z] and [wo] = [w].
Note that both {x, y} and {U, v} are linearly independent sets of vectors.
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in Rn+1 (e.g. if x = 2y, then [zo] = [(Â + i)y] = [y] E RPn). Expand these
sets to bases for R-+’, and letj E GL(n + 1, R) be the change of basis matrix
such thatg(x) = u and Ã(y) = v. Define A = (det (J))-l J E SL(n + 1, C).
Then we have that [Az] = [(det (1))-l wo] = [w], showing that SL(n + 1,
R) acts transitively on X.

(4) The example is X = P’ x PNBPR, where PR = (([z], [w]) E Pn X
xpnl[z] = [w]} is a totally real submanifold of Pn X Pn which is real analy-
tically isomorphic to complex projective space, Pn. Note that P£ is the set
of fixed points of the involution ([z], [w] ) « ([w], [ z] ) . We first show that X
is strictly pseudoconcave by inspecting the Segre imbedding s : P" X P- -&#x3E; PN
(N = (n + 1)2 - 1 ) given by

For convenience, we will denote the homogeneous coordinates of .

so that

Therefore,
and define coordinates in

the example of the quadrics, we define I and

is strictly plurisubharmonic on Y, since is strictly plurisubharmonic on CN.
Note that

If we smooth g to a constant function outside a relatively compact neigh-
borhood of Pn c pn X Pn we obtain a strictly pseudoconcave exhaustion
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for X. It is interesting to note that the above construction provides a more
or less canonical way to imbed Pn in S2N-l c CN, N = n2 + 2n, using only
a real analytic map of degree 2.

Let G be the stabilizer of X in S : := SL(n + 1, C) X SL(n + 1, C). Then,

We observe that G is a real form of S and that it is real analytically
isomorphic to the complex Lie group SL(n + 1, C). (Thus, G is a simple
Lie group while its complexification is not.) Although G could be given the
structure of a complex Lie group via this isomorphism, the map G x X -&#x3E; X
would then not be holomorphic in both variables.

To show that G acts transitively on X, let ([zo], [wo]) and ([Zl]’ [WI]) be
two points of X. Then, the sets of vectors in Cn+l, {zo, wo} and {Zl, WI}’
are linearly independent over C. As in the previous example, it follows that
there exists an A E SL(n + 1, C) such that

(5) The next example is a little more difficult to describe. Recall that

the quaternions, which we denote by Q, are defined as the 4-dimensional
R-module over the finite group {iL 1, ± i, ± j, + k lij = k, jk = i, ki = j,
i2 = j2 = k 2 = - 1}. The quaternions form a non-commutative field, the
inverse of a typical element a + ib + jo + kd being (a - ib - jo - kd)j(a2 +
+ b2 + c2 + d2). Since Q contains a subfield, {a + ib la, b c R}, isomorphic
to C, it can also be realized as a 2-dimensional vector space over C. A typical
element a -f- ib + jc + kd has the form (a + ib) + (c + id)j, so that {11 j}
is a basis for Q over C. Let Qn denote the left vector space of dimension n
over Q. Then Qn is isomorphic to C2n over R and a Q-linear transformation
from Qn to Q- is a C-linear transformation from C2n to C2n which commutes
with « multiplication by j ». Let {el, ..., en} be the usual basis for Cn. With
respect to the basis {eL, jol 7 ... , e,. , je.}, multiplication by j on C2n takes
(a,, bl, ..., an, bn) to (- hI, aI, ..., - bn, an). Denote this real linear transfor-
mation of C2n by 7:. Note that z always takes a complex subspace of C2n
to another complex subspace of C2n, since io z = - zoi.

Now consider the set of all 2-dimensional complex linear subspaces of C2n
which are invariant under 7:. These are precisely the set of quaternionic
lines in Qn (under the bove isomorphism), which is by definition the quater-
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nionic projective space of dimension n - 1, QP,,-’. In this way we obtain

an imbedding of Qpn-1 into the Grassmannian manifold G2,2n of 2-dimensional
complex subspaces of C2n. This Qpn-1 is totally real in G2,2n because it

is the set of points [P] E G2,2n such that [P] = [z(P)] =: i[P], where i is
the anti-holomorphic involution of G2,2n induced by 7:. One can see this

explicitly by taking a basis {Xl’ YI, ..., 7 X-7 Y-1 for C2n such that T(xi) =:= yi
and r(y;) = - xi, and representing a point

We find that [-r(P)l = [P] means 

or, aij =: ÂëBi, bii = lbji, Cii = Âaij, for some Â, IÂI = 1.
We define X = G2,2n"""QPn-l. · Again, it turns out that X is strictly pseu-

doconcave and homogeneous under a Lie group. At this point, however,
we appeal to the theoretical results in § 9 for the proof, since the geometry
is not so clear as in the previous examples. We mention only that the Lie
group which acts holomorphically and transitively on X is the subgroup
of SL(2n, C) (acting on G2,2n) which stabilizes X (or equivalently, QPn-I).
This group is isomorphic to the special linear group of quaternionic trans-
formations, 

The compact group G r1 U(2n) =: Sp(n) is called the symplectic group and
is a maximal compact subgroup of G which acts transitively on Qpn-1.
The complexification of Sp(n) in SL(2n, C) is denoted by Sp(n, C) and is
usually denoted by SU*(n), a real form of SL(2n, C). 

(6) The final example is very difficult to describe geometrically, so we
will only give its definition in terms of quotients of Lie groups. Let (EIII ) =
= E6j(Spin (10) X SO(2)). The Cayley projective plane, .F’’4/Spin (9), can be
imbedded in (EIII ) in such a way that X = (EIII )B(Cayley projective
plane) is strictly pseudoconcave and homogeneous under the Lie group G = E3 7
(see [6] for the definitions of these groups). Again, we appeal to the results
in § 9 for the proof of this fact.
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4. - Compactification to a homogeneous rational manifold.

Let X be a non-compact homogeneous strictly pseudoconcave manifold,
and let V be a minimal normal compactification of X. Recall that this

compactification always exists if dim X &#x3E; 3. Then, by the remarks in § 2,
we may assume X = G/H, where G := Aut° (X) is realized as a closed (not
necessarily complex) Lie subgroup of the complex Lie group Aut° ( Y).

Assuming that no complex Lie group acts transitively on X, we first
show that V is a compact homogeneous rational manifold and then study
the structure of the group G.

PROPOSITION 4.1. Let X be a non-compact homogeneous strictly pseudocon-
cave mani f otd, and let V be a minimal normal cornpactification of X. Assume
that no complex Lie group acts transitively on X. Then V is a compact homoge-
neous rational manifold.

PROOF. The first step of the proof is to show that V is homogeneous.
We define S = GC, the complexification of G in Aut° (V). Then, for any
Xo E X, we have X = G(xo) is open in S(zo) cV, showing that V is almost

homogeneous. Let E be the compact complex analytic set VBS(xo). Since

.E c VBX c VB-X,, and VBX,, is Stein, it follows that E is a finite set of

points. If j67 = {e,, e,, ..., e,} is not empty, then S(zo) = VBE is non-compact,
strictly pseudoconcave, and a homogeneous manifold of a complex Lie
group. Therefore (see § 1) S(zo) is a homogeneous cone over a compact
homogeneous rational manifold Q. Let n: S(0153o) - Q be the canonical projec-
tion with fiber C. Note that now the set V""S(xo) consists of a single point,
say p. This bundle is equivariant under S and so it is equivariant under G.

Thus, we can realize the restricted holomorphic map n: X - Q as a homo-
geneous fibration n’: GjH -+ G/J. By Lemma 2.3, n’ is surjective, i.e. Q =

= GjJ. It is important to note that this fibration may not be holomorphically
locally trivial, even though it is real analytically locally trivial and the map
n’ itself is holomorphic. The n’-fiber is connected (by the homotopy sequence
for this fibration) and is a homogeneous complex submanifold of X contained
in the original n-fiber C. That is, F = J/g is a homogeneous connected
subset of C. It is well-known that the homogeneous connected subsets of C
are biholomorphic to either C itself, C*, or the unit disk, D. We now show
that each of these possibilities leads us to a contradiction.

If F -z C, then of course X = S(xo), contradicting our assumption that
no complex Lie group acts transitively on X. If F C*, then in each
n-fiber, n-l(q), there is a point a(q) such that {a(q)} = :n;-I(q)""-:n;’-l(q) (corre-
sponding to fo} = CBC*). Thus, we obtain a real analytic section (1: Q
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-+ S(x,,) with a(Q) S(x,)BX. By the G-equivariance of the fibration,
we have that g(J(q) ) = a(g(q)) for all g E G (here, g denotes the automorphism
of Q induced by g), so that a(Q) is actually an orbit of G in S(xo). Since a(Q)
is compact and simply connected, any maximal compact subgroup Ka of G
acts transitively on o’(Q). Let Ks be a maximal compact subgroup of S
containing KO. Since Ks fixes the vertex p of the cone S(0153o), it stabilizes

and acts transitively on a complementary hyperplane section 9) (the repre-
sentation of Ks is semisimple; see §1). However, since the cone is a topo-
logically non-trivial line bundle, cr(Q) intersects D non-trivially. Thus, we
must have that (y(Q) = 0. This implies that X = S(xo)""-Ð = 7BD U {?}
which is contrary to the fact that no complex Lie group acts transitively
on X.

The last possibility is .F = JjH ro.J D. In this case we realize a fixed

n-fiber as the complex plane C and the n’-fiber F as a subdomain. Thus,
we have a representation Q: J -+ Aut (C) such that e(J) stabilizes and acts
transitively on the domain F. Now, Aut (F) is a semisimple real Lie group
(isomorphic to PSL(2, R)), and no proper Lie subgroup of Aut (F) acts

transitively on F. Therefore, e(J) gg Aut (F). This contradicts the fact

that Aut (C) contains no semisimple Lie subgroups, real or complex.
The above shows that E = 0. Therefore, V is in fact a compact homo-

geneous manifold under the complex Lie group S, i.e. V = SIP, where P
is chosen to be the isotropy of some fixed point zo G X c Y.

Our last step in the proof is to show that V is a compact rational
manifold. We begin with the normalizer fibration p: SjP -+ SIN, where
N=NS(P°). In the category of compact homogeneous manifolds, it is well-
known (see e.g. [3]) that SIN is a compact national manifold and the fiber
NIP = (NIPO)I(PIPO) = SIF is connected and parallelizable (i.e. F is dis-
crete). We want to show, of course, that dim NIP = 0 so that S/P = SJN,
finishing the proof.

We first observe that this fibration is equivariant under G. As before,
it follows that the restricted holomorphic map p’: X -&#x3E; SIN is a homogeneous
fibration, GjH -+ G/J. If dim JIH &#x3E; 0, then, by Lemma 2.3, Il’ is surjec-
tive. Consequently, SIN = GIJ, and dim JIH = dim N/P. Note that

H = GnP, J= GnN, and H°= (GnP)°= (GnP°)°. Thus, if j E J
and g e H°, then jgj-1 E G r) P°. Therefore, since jH°j-1 is connected, con-
tains the identity, and is contained in G r) P°, we have jH°j-1 c HO and H°
is a normal subgroup of J. This allows us to express the It’ fiber J/H as
(JIHO)I(HIHO) = JIF’C Njr. Since J c N and H° c PO, we have the natu-
ral homomorphism a : J - N, whose kernel is discrete because J m POIHO c
c G n POI(GPO)O. Thus, we can identify J/ker oc with a subgroup J c N.
It is clear that J(x) == J(z) = 7(x) = 70(x), and N(x) = N(x) = N°(x) for
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XEX. Now,

so that, as real Lie groups, N° = J°. This implies that J(x) = N(x) so that
X = V is compact! ~ This contradiction followed from the assumption that
dim JfH &#x3E; 0. Therefore, dim J/H = 0, showing that dim N/P = 0
(dim G/H = dim S/P = dim SjN). Since N/P is connected, we must have
that SjP = SIN and S/P is a compact homogeneous rational manifold as
claimed. 0

5. - The structure o f the groups.

As in the previous section, let X be a non-compact strictly pseudoconcave
homogeneous manifold and V a minimal normal compactification of X.

We have seen that X = GjH, where G := A.ut° (X ) is a Lie subgroup of
Aut° (V), and that if no complex Lie group acts transitively on X, then
V = S/P is a compact homogeneous manifold of the complex Lie group
S:= Gc.

We gather here a few facts about the groups G and S.

PROPOSITION 5.1. Under the above assumptions, G is a real form of S.
(That is, if g and 5 denote the Lie algebras of G and S respectively, and if J
is the complex structure on S, then # = g (D Jg.) Moreover, S is a semisimple
eomptex Lie group and G is a simple real Lie group (*).

PROOF. By the definition of the complexification of G we have 5 = gc :=
:= g + Jg. We show g: = g n Jg is {0} as follows. Let G = exp ( g ) c G
be the connected complex Lie group associated to g. Then, for point p in
the compact set .E = VUX, we must have 0(p) c E c VB. This orbit

is the image of a holomorphic map from g (which is biholomorphic to Ck)
into the bounded Stein manifold VBX, showing that G(p) = {p}. Let

F(G) := {q E VIG(q) = q}. Clearly, F(G) is a compact complex analytic sub-
set ofV and E c F(O). Consider the complex analytic set .F’ : = r1 {gF(G) Igs G) .
Since g(E’) = E for all g E G, we have that c F. If X 0 F = 0, then F = E,
showing that E is a compact complex analytic set. Thus, there is a complex
Lie group acting transitively on X, contrary to our assumption. Therefore,
X n F =A 0. Now, for any q E X m F and for all 9 E G we know g(q) G F,
so that X = G(q) c F. Therefore, F(O) = X, showing that G = {1} and
9 = {0}.

(*) B y simple we mean that the Lie algebras of G is simple.
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To see that S is semisimple, let .R(S) denote the radical of S. A standard
flag argument [3] shows that B(S) fixes every point of V. Now, since R(S) c
c S c AutO (V), we must have that R(S) = {11. Thus, S is a semisimple
complex Lie group.

Since G is a real form of S, it follows that G is also semisimple [6]. To
show that G is simple, we express g as a direct sum of its simple ideals,
g = 91 EB ...@ 9t. Then, the Lie algebras of Sand P have the form # =

sl(D ... EB 5t t and p = P,(D ... (D P,, where si = gc and pi == p n 5i. From
these decompositions, it follows that V= V, x V, x... X V where Vi = Si/Pi, 
and Si (resp. Pi) is the Lie subgroup of S whose Lie algebra is 5i (resp.
pi) .Thus, for anypoint x E X cY, we have x = (xl, ..., xt) so that G(x) =
Gl(xi) x... x Gt(xt), where Gi is the Lie subgroup of G whose Lie algebra
is g i . Since X = G(x) is open in V, we have that Gi(xi) is open in Vi.
Since X is non-compact, we may assume that G,(xl) is non-compact. Now,
by Lemma 2.3, the fiber G2(X2) X... X Gt(xt) of the holomorphic projection
X - Gl(x,,) cannot have positive dimension, otherwise Gl(xl) would be

compact. Therefore, since G acts effectively on X, g = g,. 
In the above proposition it should be noted that S need not be simple

(see § 3, example (4)).

6. - The special case of fBB".

So far we have shown that, if X is a non-compact strictly pseudoconcave
homogeneous manifold with no complex Lie group acting transitively on X,
then the minimal normal compactification of X is a compact homogeneous
rational manifold V = S/P with S semisimple and G = Aut° (X) a simple
real form of S. We are now in a position to utilize the results of J. A. Wolf
[25] on the structure of the orbits of such a real form G acting on a compact
homogeneous rational manifold V = S/P.

This section is devoted to proving the following theorem.

THEOREM 6.1. Let X and V be as above. If YBX contains an open set,
then V - pn and X - pn""’Bn.

PROOF. Easy computations show that G has only a finite number of
orbits on V ([25] Thm. 2.6). Therefore, if VBX contains an open set, it

must also contain an open orbit of G, say G(y) for some y E VB,BX. Now,
G(y) c FBJTc VB-Y, , where VB-Y, is a Stein manifold, so that, in parti-
cular, the holomorphic functions on G ( y ) separate the point of G(y). Under
this assumption, it follows ([25] Thm. 5.4, Cor. 5.8) that G(y) = GjKG is a
hermitian symmetric space with KG a maximal compact subgroup of G.
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Let .Ks be a maximal compact subgroup of S containing KG. We now show
that V = S/P is the compact hermitian symmetric space dual to GjKG’
which is by definition KsjKG. Since V is simply-connected we know that Ks
acts transitively on V. Thus, V = Ksf(P r1 .Ks). We may choose P to be
the isotropy of the point y so that ga c P r1 Ks. Now consider the homo-
geneous fibration a: KSIK, --&#x3E; Ksj(P r1 .Ks). By construction, G(y) is open
in KsjKG (see e.g. [6]), and we know G(y) is open in V = Ks/(P r1 gs).
Therefore, a is a finite map. But, V is simply-connected so that a is one-to-
one. Therefore, KG = P n Ks and V = gs/.Ka is the compact hermitian

symmetric space dual of G(y).
Again we quote Wolf ([25] Cor. 11.11) who shows that every open G-

orbit, G(x), on such a compact hermitian symmetric space V = SIP has a
holomorphic fibration fl: G(xo) -+ KG(xo) for some xo E G(x), where KG(xo) is

a compact homogeneous rational manifold contained in G(xo). In addition,
G(xo) is biholomorphically equivalent to a relatively compact open subset of
the holomorphic normal bundle, N, of K,(xo) in G(xo), in such a way that
the fl fibration becomes a (not necessarily holomorphically locally trivial)
subbundle of N. Furthermore, the (J-fiber F is a non-compact hermitian

symmetric space.
Now, let G(xo) be the open orbit X. If dim F &#x3E; 1, then F inherits the

strict pseudoconcavity of X and so F cannot possess non-constant holo-
morphic functions. But, by the above remarks, we know that F is open and
relatively compact in the fibers of N, i.e. in Ck, K &#x3E; 1. This contradiction
implies that dim F = 1, so that the fibration (J: G(xo) - Ka(xo) is then a

disk subbundle of the tine bundle N. Since X is strictly pseudoconcave we
have that N is a positive line bundle. If we compactify N by adding the
point at infinity to each fiber, we obtain a new compactification for X. We
can make this compactification a minimal normal compactification, 9, by
blowing down the newly added infinity section to a point Po E V and then
normalizing, if necessary. By Proposition 4.1 we again have that 9 is a
compact homogeneous rational manifolds with respect to the complex Lie
group S = GC. By [1], such minimal compactifications of X to manifolds
are unique, so that we must have -P ct: V. We claim that VB{po} !2-- N is a
homogeneous manifold with respect to some complex Lie group. This fol-

lows from the fact that a positive line bundle over a compact homogeneous
rational manifold is always homogeneous with respect to a complex group
of bundle preserving automorphisms (see e.g. [8]). Note that any auto-

morphism of N trivially extends to V, so that a result of E. Oeljeklaus [16]
now applies: If a complex Lie group acts almost transitively on a compact
manifold, and if its fixed set contains an isolated point, then the manifold
is projective n-space, pn! This implies that V r’J Pn and that G(y) is the
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non-compact symmetric space dual of Pn, i.e. G(y) Bn and G r--.J Aut (Bn).
It follows that P-BB-, as claimed. 0

7. - The minimal orbit.

A real form G of S acting on a compact homogeneous rational manifold
V = S/P has exactly one closed orbit, G(v) for some v E V. This closed

orbit can be characterized by the condition that G(v) is the lowest dimensio-
nal G-orbit on V, or that some (equivalently every) maximal compact sub-
group of G acts transitively on G(v), or that G(v) is contained in the closure
of every G-orbit on V. Furthermore, for any orbit G(v) we have 2 dim, G(V) &#x3E;
"&#x3E;dimR V ([25], Thm. 3.6).

In this section we wish to continue our investigation of X = G(x), a
non-compact strictly pseudoconcave open subset of the compact homo-
geneous rational manifold V = SjP, S = Gc. In § 6 we showed that if VBX
contains an open set, then V = Pn and X = PnBBn. (In this case it is clear
that the unique closed orbit of G is the (2n - 1)-sphere, S2n-l = alin.) In

the present section we assume that VBX does not contain an open set of V.
Since the action of G is real analytic, we can say that A := VBBX = (v e
c V idim, G(v)  diMR V is a closed, proper, real analytic subvariety
of V. In fact, we prove the following:

PROPOSITION 7.1. Let X be a non-compact, strictly pseudoconcave, open
G-orbit on the compact homogeneous rational mani f old V = SIP, S = GC,
as above. If A = YBX does not contain an open set, then A is the unique closed
orbit o,f G on V, and 2 dimR A = dimR V.

PROOF. For every orbit, G(v), v E V, there is an intrinsically defined
closed complex Lie subgroup Q of S such that Qo z= (G n Q) 0 is a real form
of Q, and such that Q°(v) and Q(v) are both (not necessarily closed) sub-
manifolds of V = SIP, with Q°(v) open in Q(v) ([25] Lemma 8.4 and Thm. 8.5).
It can be shown that if Q°(v) = {v} then G(v) is the unique closed orbit of G
on V ([25] Cor. 8.20).

Consider G(v) c A for any v E A. By a real analytic identity principle,
we must have that Q(v) c A, since Q°(v) c A and Q°(v) is open in Q(v). But
A c VBX,, can be realized as a bounded Stein space in CN. Therefore,
Q can never have a non-trivial orbit in A (otherwise we would obtain non-
constant bounded holomorphic functions on the Lie algebra of Q), and so
Qo(v) = Q(v) = {v}. As mentioned above, G(v) must then be the unique
closed orbit of G on V. Since v was an arbitrary point of A, it follows that
A = G(v).
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To show that 2 dimR A = dimr V, we first note that A is « holomorphi-
cally convex)) in the sense that the envelope of holomorphy of A, E(A),
is equal to A itself. This follows from [19] Thm. 2.12, by noting that A is
the intersection of the countable number of Stein manifolds Uy : = VnXv =
= {x E V ix 0 X, or x E X and !p(x)  cv) . However, if 2k = 2 dimR A &#x3E;

&#x3E;’dimr V, then E(A) contains a differentiable submanifold of real dimen-
sion k + 1 (see [24]). Therefore, 2 dimR A = dimR V. 0

From now on, we will refer to A as the minimal orbit of G. It should be

noted that in this setting it is possible to realize V as a complex projective
variety defined over R in such a way that A is the set of « real points »

([25] Thm. 3.6).

8. - An orbit decomposition of the compactification.

We now investigate the compactification V = SIP of the non-compact
strictly pseudoconcave homogeneous manifold X obtained in the previous
sections, by studying the orbits of .gG and Kc where .gG is a maximal com-
pact subgroup in G. As before, we assume A = VBX does not contain
an open set so that by Proposition 7.1, A is the minimal orbit (necessarily
compact) of G in V. Thus, we already have a decomposition of V into two
G-orbits : X, a unique open orbit of G in V, and A, a unique closed orbit
of G in V. With respect to the complex Lie group Kc we have the following:

PROPOSITION 8.1. There are exactly two Kc-orbits in V - SIP. For v E A,
Kc(v) is an open Stein submanifold of V; and for some xo E X, .gG(xo) =
- VnK£(v) is a compact complex rational submanifold of V of complex codi-
mension 1.

PROOF. Our first step is to show that M := gG(v), for v E A, is an open
submanifold of V. Note that A = KG(v) is contained in M. We define Wv
to be the connected component of UlI r1 M containing A, where U, : = VBBX,
are Stein manifolds. Thus, we have that A is a countable intersection of
Stein manifolds, Wv . As in the proof of Proposition 7.1, using envelopes
of holomorphy, it follows that 2 dimR A = dimR M. But, from the same

proposition, 2 dimR A = dimR V. Therefore, .M is open in V.

To show that .M is Stein, we write A = KGIE c M = KGCI" where L
(resp. I) is the isotropy in gG (resp. Kc) of some point v E A. Clearly, Lc c I.

Now, since 2 dimR A = dimR M, we have dimR K£(v) = dimR K£ - dimR I =
- 2 (dimR .Ka - dimR E) so that dimR I = 2 diMR .L = dimR Ic. These facts
imply that (Lo)c - (Lc)o = 1°. Furthermore, since KG is compact, we can
choose a representation for S such that Kc is an algebraic subgroup of S
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acting algebraically on V (see [4]). Therefore, I is an algebraic subgroup
of Kg and w e obtain the homogeneous fibration KgjLc-+ KgjI with finite
fiber IjLc(Io c LC). A theorem of Matsushima [12] implies that KgLc in a
Stein manifold. Therefore, Kg(v) = KgjI, which is the image of KgLc
under the finite map above, is also Stein.

We now turn our attention to 0:= mM. Since C is the complement of
an open orbit of a complex Lie group acting on V, we know that C is a proper
complex analytic set. On the other hand, M = VnC is Stein, so that C
is pure (n - 1 )-dimensional.

It is easy to show that every open orbit of G contains a KG-orbit, KG(xo),
which is a compact complex rational submanifold of G(xo), i.e. KG(xo) =
= Kg(xo), and that G(xo) has a deformation retraction onto KG(xo) ([25]
Lemma 5.1, Thm. 5.4). If we take the open orbit to be X = G(xo), then
clearly KG(xo) = .KG(xo) c C. The retraction gives us an isomorphism
H*(Kg(xo), Z) H*(X, Z). Now, since the homology class of C is non-

trivial in H2n-2(V, Z), it is non-trivial in H2n-2(X, Z). Therefore, by the
above isomorphism, there exists a non-trivial element in H2n-2(Kg(xo), Z),
showing that dimR Kg(xo) &#x3E; 2n - 2. But Kg(xo) c C, so dimR gG(xo) = 2n - 2,
and KG(xo) is a branch of C. Note that, since Kg must stabilize the branch
locus B of C, we have B (B Kg(xo) = ø, and thus KG (xo ) is a connectivity
component of C. However, a homogeneous Stein manifold (other than C*)
can only have one end (see [23]), that is, C must be connected and thus
C = Kg(xo) as claimed. D

For the maximal compact group j8"c of G we have the following:

PROPOSITION 8.2. There acre exactly three orbit types of KG in V. For
1) E A, the minimal orbit o f G in V, we have KG(v) = A and so 2 dimR KG(v) =
- dimR Y. For Xl EO = Kg(xo), the divisor given in Proposition 8.1, we
have KG(XI) = C and so dimR KG(XI) = dimR V - 2. For Y E V",,(A u C’);
KG(y) is a real hypersurface in V, dimR KG(y) = dimR V-I.

PROOF. We have already seen that Ko(v) = A, 1) E A, and .ga(x1) = C,
Xl E C. To prove the last assertion, we use the deformation retraction r :

X -+ KG(xo) = C mentioned in the proof of Proposition 8.1. We may assume
that r is Kc-equivariant by taking a Ka-equivariant imbedding of X into
some RN, averaging the coordinate functions over the compact group KG,
and pulling this new retraction back to X. Thus, we obtain a surjective
map r1l = roi: KG(y) -? KG(xo) (where i: Ka(Y) -+ X is the inclusion), such
that r1l(k(x)) = k(r1l(x)) for X E Ka(Y) and k E Ka.

Suppose, for some y E YB(A u C), the orbit Ka(y) is not a real hyper-
surface. Then, necessarily, dimR KG(y) = dimR V - 2, and rv is a covering
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map of K,,(y) onto K,,(x,,). But KG(xo) is simply-connected, so, in fact, ry is
a diffeomorphism. Since r y is the restriction of the deformation retraction r,
we have that r*[O’] = [C] E H2n-2(O, Z) = H2n-2(X, Z), where C’ : _ KG(y).
Therefore, since C’ is homologous to C (in V), the line bundles E. and .LC,
over V defined by C and C’, respectively, are topologically equivalent ([5]
Prop. (A.1.9)). Let m and m’ be smooth (not necessarily holomorphic) sec-
tions of Lc L,,,, such that C = fp evlm(p) === 0} and C’= fp c-Vlm’(p)
01. The section i*m is now a smooth non-vanishing section of i*Ec (where
i : C -&#x3E; V is the inclusion) because C n C= 0. Therefore, i*LC is topolo-
gically trivial, and in fact holomorphically trivial, since C is a compact
homogeneous rational manifold and H’(C, 0) = 0. On the other hand,
XBC is Stein so that gC 0 C =,4 0 for all g E G. Since i*Lo is G-equivariant
(the Picard variety of C is trivial), gC defines a holomorphic section a, of

i* LC Choosing g E G such that gC # C, we see that ag is a non-constant

holomorphic section, which is a contradiction. Therefore, Kc(y) is a real

hypersurface in V for any y E VBB(A u C). 0

9. - A classification.

We retain the assumption and notation of § 8. The existence of hyper-
surface orbits of .KG in the Stein manifold M = KG(x), x E A, leads us to a
final classification for the non-compact strictly pseudoconcave manifold

X c V = SIP. Given such a hypersurface, K(y) for y c M, Morimoto and
Nagano ([15] Thm. 2) show that M is differentiably and K-equivariantly
the tangent bundle of A = ga(x) in M, and that A is a compact symmetric
space of rank 1. (In [13] it is assumed that the hypersurface is simply-con-
nected. However, to obtain the above conclusion, one need only require that
the fundamental group of the hypersurface be finite. See [22] A(2 ), p. 133.)
The list of compact symmetric spaces of rank 1 is actually quite short. In

fact, the only possibilities for A are the following:

1) the n-sphere, Sn, n&#x3E;2;

2) real projective space, RPn, n&#x3E;2;

3) complex projective space, Pn, n&#x3E;l;

4) quaternionic projective space, Qpn, n&#x3E;1;

5) the Cayley projective plane.

The question then arises, which of these compact symmetric spaces of
rank 1 actually gives rise to an example of a strictly pseudoconcave homo-
geneous manifold of a Lie group, and can a given symmetric space of rank 1
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produce more than one example. The answers to these questions are impli-
citly contained in the work of T. Nagano [15]. The following theorem is
essentially due to him.

THEOREM 9.1. Any compact symmetric space A o f rank 1 can be imbedded
in a compact complex homogeneous rational manifold V in such a way that
X = VBA is a strictly pseudoconcave homogeneous manifold.

PROOF. Let A = E/L be a compact symmetric space of rank 1, with
.K the connected isometry group. Then, by [15], the Lie algebra f of K is
always contained in a simple Lie algebra g of a Lie group G which has the
following properties:

i) g is generated by t and a single element z of g ;

ii) g is precisely t + [z, m] + [[z, m], m] as a vector space, where

m is the complementary space of f, the Lie algebra of L, in the
Cartan decomposition, f = t + m; [I, m] c m, and [m, m] c I ;

iii) the Lie algebra structure of g is completely determined by the
following: the adjoint ad (z) has eigenvalues + 1, - 1, and 0 on g
with corresponding eigenspaces

and

The isotropy subgroup H of G acting on A = KfL = GfH has the Lie
algebra 1) = f + m_. The complexification gC == g + ig contains the com-
pact form

Also, f,:= f + [[iz, m], m] is the Lie algebra of the isotropy group of G.
acting on V : = GC/Hc = Guffu, where HC of course has the Lie algebra

The imbedding A -V is induced by the monomorphism K- Gu.
We now check that

(1) A is totally real in V;

(2 ) G is transitive on VBA;

(3) VBA is strictly pseudoconcave.
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To prove (1), we observe that the tangent spaces to A and V at the point
fixed by Fu may be identified with m and m + im, respectively. This i

corresponds to the complex structure of V. On the Lie algebra level we have
the complex conjugation x + iy F-&#x3E; x - iy in gc, for x and y in g. This auto-

morphism extends to that of Gc (see e.g. [4] p. 49), leaving invariant .F’u
and HC. Thus, « conjugation » is well-defined on V and fixes A pointwise.
That no other points are fixed follows from (2). To show (2), we note that
the Stein manifold X : = Kcl-Lc c V is differentiably and K-equivariantly
the tangent bundle of A = K/L c M with the orbits of .g in -MBA being
hypersurfaces, by Morimoto and Nagano ([13] Prop. 2). Therefore, the
orbit of G of any point y on such a hypersurface must properly contain the
hypersurface, for otherwise G would have more than one closed orbit on V
(see § 7). Thus, G(y) is open and the connected component of VgG(y) which
contains A must be A itself. Similarly, if VgG(y) contained other compo-
nents, then these components would contain other closed orbits of G. There-
fore, G acts transitively on the complement of A in V. For (3), we observe
that the hypersurface orbits of .K are strongly pseudoconvex, since they
lie in the Stein manifold M = KC/Lc and are the boundaries of open sub-
manifolds, namely, the tube neighborhoods of the zero section in the above
mentioned identification with the tangent bundle of A. This identification

then yields a natural strictly pseudoconcave exhaustion for X = VBA. ~

In summary, we state the final classification.

THEOREM 9.2. Let X be a non-compact strictly pseudoconcave homogeneous
manifolds. Assume that no complex Lie group acts holomorphically and tran-
sitively on X. (I f dime X = 2, we also assume that X has a compactification.)
Then X is equivariantly biholomorphic to one of the following (see § 3) :
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PROOF. Let V be the compactification of X given in Proposition 4.1.
If YBX contains an open set, then Theorem 6.1 applies and X  P"BB".
If VBX does not contain an open set, then § 7, § 8, and the opening para-
graph of this section imply that X= V BA, where A is a compact symmetric
space of rank 1. Theorem 9.1 shows that any compact symmetric space A
of rank 1 determines V and therefore determines X = WgA. The uni-

queness of V follows from the fact that G is simple so that V must be contained
in Nagano’s list of indecomposable possibilities ([15], § 5). The construction

of V in Theorem 9.1 leads to (2), (3), (4), (5) and (6). 0
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