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On the Theorem of Frobenius for Complex Vector Fields.

OLLE STORMARK

Generalizing some results of Lewy, Andreotti and Hill proved in [1]
that any system of first order homogeneous linear partial differential equa-
tions with complex valued real analytic coefficients locally may be reduced
to a real part, consisting of the de Rham system, and a complex part, which
consists of the tangential Cauchy-Riemann equations aM on a generic locally
closed real analytic submanifold .lVl of some Cn. Then the question arises
whether the j.-equations can be simplified in their turn, for instance in
such a way that they are composed of equations of Cauchy-Riemann and
Lewy type. Geometrically this would mean that ~f admits complex folia-
tions and Lewy foliations. In this paper we present a method for finding
such and related foliations, which is based on Vessiot’s theory for vector
field systems.

1. - Some theorems of Frobenius type.

Let

be m real linearly independent vector fields on an open set U in Rn, and
let Y be the vector field system generated by these. If we are only interested
in solutions ... , xn) of the system

we may as well assume (by maybe having added same brackets and thereby
increased m) that Y is complete, i.e., closed under Lie brackets.

Pervenuto alla Redazione il 14 Novembre 1980.
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Then the classical theorem of Frobenius says that it is possible to find local
coordinates (xi , ..., ~) such that the vector fields

form a basis for Y.

With these coordinates, (2) goes over into

i.e., u(x’ ) is a function of alone.

Or, in other words, to (1) there is associated a local foliation with the
leaves x~ + 1 = cm + 1, ... , xn = cn (where the ci , i = m -E- 1, ... , n, are con-

stants), such that the solutions of (2) are constant along the leaves, but
may vary arbitrarily from one leaf to another. In such a situation we say
that the variables ..., are principal, while ~+i? ..., x~ are parametric.

Another way of stating the Frobenius theorem (in a way so that it can
be generalized to the complex case) is by saying that (1) locally admits
n-m functionally independent invariants ~m+1, ..., ~n, i.e. functions 

satisfying (2) and the condition Namely, if one intro-

duces the $i and m other functions tj, such that d iA ... n dtm n d,+1 n ... / dn 0,
as new coordinates, then the Xk are expressed by means of the derivations
8j8t; only, and Gauss elimination yields (3). Thus the ~i , i = m + 1,..., 11,
appear as parametric variables.

In this paper we want to consider what happens when the vector fields
in (1) are allowed to be complex valued. To see what difference this makes,
we first look at the case of just one vector field, say P(x) = P’(x) + iP"(x),
where P’ and P" are real vector fields defined on U c R’. If P’ and P" are

linearly independent in U, P attaches to each point x E U two different
directions (instead of one, as in the real case), which together span a 2-dimen-
sional plane in Tx( U) (where denotes the real tangent space of a
(real or complex) manifold ~ at the point x). In the most favourable case

these planes fit together to form a foliation of U with 2-dimensional leaves.
By the real Frobenius theorem this occurs if and only if the vector field

system T spanned by P’ and P" is complete. Moreover, it may happen
that these leaves can be given the structure of complex 1-dimensional
manifolds, so that P appears as the Cauchy-Riemann equations on each
leaf. Then the solutions of Pu = 0 are holomorphic along all leaves
(instead of being constant, as in the real case), but are arbitrary in the
parametric variables.
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However, if J is not complete, it is natural to consider the vector field
;system 5" generated by P’, P’~ and [P’, P"]. If this is complete, one gets
a foliation of U with 3-dimensional leaves, so that P acts only within each
leaf. Then it may happen that each leaf can be imbedded in a complex
2-dimensional manifold in such a way that the restriction to any leaf of a

solution u(x) to Pu = 0 is the boundary value of a holomorphic function
(in two complex variables).

And if 5" is not complete, one adds more Lie brackets until a complete
system is obtained, whereupon the Frobenius theorem gives a foliation.

Let us now consider systems of complex valued C°° vector fields 
- P’(x) + k = 1, ... , m, where P’ and Pk are real. The simplest
(nonreal) case that occurs is handled by Nirenberg’s complex Frobenius
theorem (see [10]) :

THEOREM 1. Let 5’ be the vector field system generated by P,, ... , Pm on
an open neighbourhood of 0 in ltn, be the vector field system generated
by P1, ... , Pm . Assume that T has constant rank m and 

has constant rank m + r (where rmin (m, n - m)) . Then, if

and

it is possible to introduce new coordinat.es rj , yj ( j = 1, ..., r), tk (k _=- 1, ...,
..., m - r) and Sz (1 == 1, ..., n - m - r) f or Rn such that 5’ is generated by
the vectorfields 

’

and

,where zj = Xj + 

Here zj and tk are principal variables, while the 8z are parametric. And
the foliation associated to T has leaves of the form On the

acts as the de Rham system, and on the Cr-factor S forms the

Cauchy-Riemann system.
In the general case it is natural to preserve the condition [T, ~’,

,since this changes nothing as far as the solutions of 5u = 0 are concerned.
Under this assumption Andreotti and Hill have proved the following
generalization of the real Frobenius theorem (see [1]):

THEOREM 2. Suppose that the complete vector field system {f is real analytic.
Then locally one can f ind n - m functionally independent complex valued real
analytic invariants C1(Xl, ..., xn), ... , Cn-m(x1, ..., Xn) f or J , where m = rank T.
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We remark that Nirenberg has shown in [11] that this theorem is not
always true in the 000 category. For this reason (and for others, that will
emerge later on) we assume from now on that all vector fields considered,
as well as the manifolds they live on, are real analytic.

However, we do not want to make such a restrictive assumption on the
solutions of the system

may be a distribution or a hyperfunction for instance. But since we
are interested in foliations, it is natural to suppose that the solutions u may
be restricted to all leaves under consideration, and this we do from now on.

Now, just as in the real case, it is natural to use the invariants of J as
new coordinates in order to reduce J to canonical form. More precisely,
assume that T is complete, that rank T = m and that J } = m + r
(where on an open set U ~: Then the following has
been proved by Andreotti-Hill in [1]:

THEOREM 3. Consider the map ~‘ : U -&#x3E;- Cn-m defined by x F-* (’1 (X), ...,
".y~-w(~))y and a lifting 1p: of ~~ such that the diagram

commutes.

Then for each point x E U there is an neighbourhood o-) of x suck
that M:= C((o) is a generic locally closed real analytic submanifold of Cn-m
of real dimension equal to n - m + r, and such that N:= 1p(w) is diffeo-
morphic to w, is an open set in MxRm-r.

The system (4) on w is then equivalent to the system

on N c where the induced Ca2cchy-Riemann system on If
and the de Rham system on an open set in 

As usual, functions u on M satisfying ~M~ = 0 are called CR functions.
We see that when the system (4) is written in the form of (5), it is

splitted into a real part, namely the de Rham system, and a complex part.
Since the real part is more or less trivial (at least locally), we consider only
the complex part dM in the following.
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The J,,,-equations are in general not as pleasant as the de Rham or Cauchy-
Riemann equations. For instance, 3~ gives rise to a complex on if in a
natural way, corresponding to the de Rham and Dolbeault sequences on Rn
and C" respectively. But it turns out that the cohomology groups of this
complex are in general not locally trivial, as one can see from [2] or [14].
And this fact gives an explanation of the famous counter example of Lewy
(see [2], part 1, § 5).

However, in the situation of Theorem 1 the j,,,-equations are easy to
understand, because then if is locally of the form Cr, where Ran---r
is a parameter space, and aM equals the Cauchy-Riemann system on the
factor Cr. Thus = 0 means in this case that it is holomorphic on each
leaf of the form Cr , and is arbitrary in the parametric variables.

In the general case it can happen that M has a foliation where the
leaves are perhaps not complex manifolds, but where each leaf can be im-
bedded in a complex manifold with some (real) codimension k, such that
the restriction of a CR function u to each leaf is a boundary value of a
holomorphic function. In particular, if k =1 (in which case the foliation
is said to be a hypersurface foliation), we then have a lot of information
concerning the restrictions of tt to the different leaves thanks to the work
in [2] for instance. The purpose of this paper is to indicate how foliations

such as these may be found.
Since we shall have to deal a lot with vector field systems in the sequel,

we introduce the following convenient notation: If .X~ , ... , ~YN are real

analytic vector fields defined on a real analytic manifold M, then (Xl, ..., XN)
denotes the vector field system generated by X1, ... , (as a module over
the ring of real analytic functions on M).

2. - Examples.

Before proceeding further, we present some examples which show how
one in an intrinsic manner can find foliations related to the tangential Cauchy-
Riemann equations im. Since the foliations are eventually given by the
real Frobenius theorem, we will mainly work with real vector fields.

EXAMPLE 1. Define the real 4-dimensional submanifold .NI of C3 by

Then a holomorphic vector field on C3 is tangent to if
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al = 0 and -f -- = 0. The choice a2 = Z3 and a3 = - ~~, gives the

vector field

where .

and J is the complex structure of The system = 0 then consists

of the single equation Z2~ = 0.
Calculations show that

and that J[JX, X] commutes with X, JX and [JX, X].
Hence (X, JX) is not complete, so there is no complex foliation of -31.

However., (X, JX, [JX, X]) is complete, and it is easily seen that the cor-
responding foliation of JI has the leaves

i. e. , ri is a parametric variable.
But also (X, JX, [JX, X], J[JX, X]) is complete, and gives a foliation

of C3%(z E C3: Z2 = = 01. Since this vector field system is invariant

under J, the leaves inherit the complex structure J from C3, and hence
are complex manifolds. In fact, they are

Thus forms a hypersurface foliation of M.
Now the Bochner theorem shows that if u is a CR function on M then

for each is the boundary value of a holomorphic
function ùx, x defined on C3: Z, = X,, IZ212 2 -r- z3 2  1- (In case u.,,, is
a hyperfunction we refer to [12] or [14] for the existence of UX1.)

The idea behind the considerations above is the following: If (X, JX)
were a complete system, if would have a complex 1-dimensional foliation.
Since this is not the case, we first add [JX, X] so as to get the complete
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system (X, JX, [JX, X]), which gives the foliation However,
(X, JX, [JX, X]) is not invariant under J, so we enlarge this system to
(X, JX, [JX, X], J[JX, X]), which is both complete and invariant under J.
Hence it gives rise to a foliation with complex leaves, which is an
« analytic continuation » of 

REMARK 1. On J[JX, X]. Let M be a real hypersurface defined in a
neighbourhood of the origin in C2 by a real equation ~) = 0 such that
ç(0) = 0 and grad ç(0) ~ 0. We assume that the coordinates are chosen
such that is tangent to the hyperplane at 0,
i.e., I oplêJY1(0) = = 0, and = grad ç(0) ~ 0,
where zk = xk + = 1, 2.

Up to multiplication with a function, there is just one holomorphic
vector field which is tangent to M, namely,

where

Then XIM and generate the module of CR vector fields on .lVl

(i.e., the vector fields Y on M, such that also J Y is tangent to M).
Straightforward calculations now show that

where ô2cplozl is the Levi form of M at 0.

Hence the following statements are equivalent at 0:

1) J[JX, X]1,,, has a nonvanishing normal component;

2) the Levi form of M is nonvanishing;

3) if is strictly pseudoconvex.

Furthermore, the local Bochner theorem (see [12] or [14] for the hyper-
function case) shows that in this situation each CR function on if has an
analytic continuation to a one-sided neighbourhood of if in C2 at 0. And
by (6), this neighbourhood lies on that side of M into which J[JX, .~Y’]~M points.

Let co be a neighbourhood of 0 in M. Then (6) also implies that the
following statements are equivalent:
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1) the Levi form of .lVl vanishes identically in w;

2) the normal component of J[JX, vanishes identically in oi;

3) is a CR vector field;

4) co has a complex foliation.

Here 3) implies 4), since 3) shows that [JX, X] is a linear combination
of ,X and JX on OJ, so that (X, JX)1. is complete, and this vector field
system is obviously closed under J. Conversely, if c~ has a complex folia-
tion, this is associated to (X, which must therefore be complete.
Thus [JX, is a linear combination of XI. and and hence is

a OR vector field.

REMARK 1’. One-sided continuation and the heat Let M be a

strictly pseudoconvex hypersurface defined in an open set U in C2 , where U
is so small that the vector fields X, JX, [J.X, X] and J[JX, X], given in
the above remark, are defined and linearly independent in all of U.

Set Y : = J[JX, X] and Z : = X - iJX, W := Y - iJ Y. Then Z and 1V

form a basis for the holomorphic vector fields on U. Hence a function

is holomorphic in U if and only if

in U, that is,

and

Thus (7) is equivalent to the system of real equations

Now let f be a C°° OR function on M, and consider the following Cauchy
problem in U:
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Of course, this problem is not well-posed, but following [6] we can for-
mulate it in such a way that we at least obtain a formal solution. Namely,
by (8),

This equation remains true with replaced by F2, and hence

Now Y/M has a nonvanishing normal component, while XIM and 
are vector fields which are tangent to M. Thus

and an iteration of this equation shows that F is uniquely determined in
a formal neighbourhood of in U.

If J[JX, X] commutes with the vector field system (X, JX, X])
and if the latter is complete (as was the case in example 1), we can make
this argument more explicit in the following way (we give the calculations
in some detail, since they indicate a general procedure for finding suitable
local coordinates associated to complete vector field systems):

Let $1 , ~2 and ~3 be real functionally independent invariants of X],
and let be a real invariant of (X, [JX, .X]).

Then

The commutativity assumption shows that
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that is,

Analogously,

and

Since X, JX and [JX, ~] are linearly independent, this shows that
= 0 for i = 1, 2, 3. Hence ai, bi and Ci are functions of $ only, while h

only depends on q. Since M is an integral manifold of (X, JX, [JX, 
the functions = 1, 2, 3, form a system of local coordinates for M.
Setting

Since t is independent of ~, t is constant on M. Hence we can choose

the integration constant in (11) so that t = 0 on M. With these new co-

ordinates, (10) goes over into

where L1ç = XoX + JXoJX is a second order differential operator in the
~-variables. Hence the Cauchy problem (9) has the formal solution

As (12) resembles the heat equation, one suspects that (9) will have

an actual solution when t &#x3E; 0 (and small) and this is confirmed by the local
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Bochner theorem. Perhaps this observation (besides the usual disc arguments)
may give an intuitive explanation of the one-sidedness of analytic continua-
tion from pseudoconvex hypersurfaces.

EXAMPLE 2. The real 4-dimensional manifold M in C3 is defined by

Then there is (up to multiplication with a function) only one holomorphic
vector field which is tangent to M, namely

were

Furthermore,

and J[JX, X] commutes with X, JX and [JX, X].
The vector fields X, JX and [JX, X] are linearly independent on M

save on the exceptional set

Hence -Mo has a complex foliation, which one also sees directly:

On the complete vector field system (X, JX, [JX, X]) defines

a foliation with real 3-dimensional leaves
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To get an  analytic continuation &#x3E;&#x3E; of we add on J[JX, Xi
so as to get the complete J-invariant system (X, JX, [JX, X], J[JX, X]).
The rank of this is equal to 4 when y, ~ 0, and the associated foliation has
the leaves

Since J[JX, has a nonvanishing normal component, the local
Bochner theorem gives an analytic continuation of CR functions on L~3
into on that side of into which J[JX, points.

So if it is a OR function on M, u has the following properties:

i) u is arbitrary in the parametric variable y,;

ii) for fixed y,, =A 0, is the boundary value of a holomorphic
function defined in a one-sided neighbourhood of in 

is holomorphic along the leaves in the complex foliation of ifo’

Moreover, the exceptional case ~3 = 0 is related to the fact that the

analytic continuation of u from into changes side at the parameter
value y3 = 02013cf. figure 1.

Figure 1

EXAMPLE 3. We now consider a simple example where there are two

linearly independent holomorphic vector fields tangent to M.

Let -I’ Then is tangent

The choices

respectively, y give the holomorphic vector fields
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and

Here

and

Then (X, JX, [JX, X]) and (X, JX, [JX, X], J[JX, X]) are complete
and give foliations and respectively, where

Similarly, (Y, JY, [JY, Y]) and (Y, JY, [JY, Y], J[JY, Y]) are com-

plete. The associated foliations are and respectively, with

Here IZ21 = 1 is an exceptional case in the same way as y3 = 0 was in the
preceding example.

REMARK 2. Foliations of non degenerate hypersurfaces. The last example
can be generalized to arbitrary nondegenerate hypersurfaces in Cn by using
nonintrinsic methods (which, however, do not generally work when the
codimension is bigger than one).

In fact, let be such a hypersurface passing through the origin in Cn.
It follows from [4], sections 13, 14 and 18, that it is possible to introduce
so called normal coordinates near 0, such that M is the zero set of a function

where z’= ..., z~_1) and ~E~~~-i , with êj ==±1? is the signature of the
Levi form of M at 0.

From (14) it follows immediately that the foliations = 1, ...,
1,/; -1, where

have the property that for each is a real 3-dimen-

sional strictly pseudoconvex hypersurface in the complex 2-dimensional
manifold L~ near 0. Hence we get n -1 pairs of foliations 
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k = 1, ..., n -1, where each pair is of the same kind as those considered
in the examples above.

REMARK 3. On misleading examples. The examples discussed here are
somewhat misleading in the sense that the considered vector fields have
been defined on all of Cn, and not only on the real submanifold Me C".
This depends on the fact that the holomorphic vector fields Z have been
defined by requiring that Z(qJi) = 0 for a set of defining equations fggi = ol
for M, i.e., Z is tangent to all manifolds = constant} as well. But then
the definition of Z outside of M depends on the choice of the functions qJi,
and hence is rather arbitrary.

When considering J,,,-equations arising as in Theorem 3, there is in general
no obvious privileged extension of the vector fields in question outside of M.
As a consequence, the complex leaves Lt will no longer present themselves,
but require some construction.

3. - The theory of Vessiot.

In order to find complete vector field systems of the kind that we are
interested in, we will use the theory of Vessiot given in [15]. For the con-

venience of the reader, and in order to establish terminology, we give a
rough sketch of that theory in this section. We work in the real analytic
category throughout, and all functions and vector fields are real valued.

The problems to which the Vessiot theory can be applied are of the
following kind: For a given integer p and a given noncomplete vector field
system:F defined on an open set U in one wants to find a foliation of U

with p-dimensional leaves, such that all leaves are invariant under the

action of p linearly independent vector fields from 5-. By Frobenius this
is equivalent to finding a complete sub vector field system 9 of Y of rank p.

By Gauss elimination and by renumbering the indices if necessary,
we may suppose that Y has a basis of the form

i.e., the basis is in resolved form (with respect to alax,) in Vessiot’s termi-
nology. Assuming + [Y, Y] has the basis ... , Xm ; Zi , 7... ~ Zjy
there are structure functions ... , xn ) ) such that
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By above we look for a sub vector field system of Y with a basis

such that

shows that

so that the problem of finding Yi satisfying (16) can be divided into two
subproblems (where i, j = 1, ... , p ) :

which is a problem in linear algebra, y and

which is a system of partial differential equations of a rather special
type.

To solve (I), start with an arbitrary and determine

the coefficients in from

For fixed 1, ..., m, this is a system of linear equations in the a,,.
We suppose that the coefficients alY are chosen such that the rank of (Ii)
is maximal, in which case the a,, are said to be generic. If this rank equals y

then m - q1 of the a28, ~ = 1, ..., m, are left arbitrary.
~ m

Then we try to find a suitable Yg =,I a,,,(x) - X,, by solving
a=1

with Y2 the general solution of (11). Also here we choose a1y and the a2a
left arbitrary in a generic way, so that the rank q~ of (I,), as a system of
linear equations for is maximal.
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And then we continue in this way until at last

determined from

where again aly’ ..., a. - i, y ~ 7 - - 7 - .. ~ m, are chosen generically, so that the
rank of is maximal.

If all the systems (h)-(Ip_1) have nontrivial solutions, we say that Y is
involutive of order p, y and the vector fields Yl, ... , Yp found in this way
form an involution of p-th order. In this case we continue to solve (II).

Suppose that with a suitable choice of local coordinates one wants

"Oil ..., xp to be functionally independent on the sought-for integral mani-
folds. Then a basis for ( j’ = (Yi, ..., YJ can be written in the form

where, according to what was done above, all Vl(X are arbitrary (though
generic), y of the v2a are arbitrary, y and so on. Because of the

resolved form of V,, the partial differential equations for vka (x) corresponding
to (II) can now be solved by a clever induction argument using the Cauchy-
Kowalewski theorem repeatedly. This determines the up to the fol-

lowing arbitrariness:

The whole theory is really invariant under coordinate changes, except
for the last steps involving the Cauchy-Kowalewski theorem. And it is

precisely these which give the curious-looking result above. However, it

has been shown in [9], chapter I, that in such a result only the arbitrariness
in the biggest number of variables is really invariant (of course this was
known already to Cartan see e.g. letter XXXVII in [3]). So if ra is the

first nonzero integer in the sequence rl , r2 , ..., rp , we say that the solution
depends on « ra arbitrary functions of n - a + 1 variables)&#x3E; (see [9] for the
precise meaning of this). 

’
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The solutions found in this way (with generic are called regular.
Then there may also exist singular solutions corresponding to nongeneric vka(x).
However, each of these can under rather general circumstances-as is in-
dicated in [15], and proved in [9], chapter III, for the dual case of exterior
differential systems-be  regularized &#x3E;&#x3E; by means of a finite number of

prolongations, and then be obtained by the preceding method. We refer
to [15], section 15, for this.

4. - Complex submanifolds of Cn and the Cartan-Kihler theory.

The examples in section 2 show that the following problem is reasonable:
Given a real submanifold M of Cn we want to find a family (where t

belongs to some parameter space) of complex manifolds defined near M,
so that is a nondegenerate hypersurface in Lt for each t.

One way to find (ii) is by first constructing a suitable foliation (Li)
of lVl by means of the Vessiot theory, and then extending each E, to a complex
manifold. It is the latter step that we shall describe in this section.

Suppose that ~ is a complex m-dimensional submanifold of Cn . Then

locally one can find complex coordinates Zl’...’ Zm, 7 z~+1, ... , zn for Cn so

that ~ is defined by

where the functions f k (zl , ... , zm ) are holomorphic.
Hence

son A, so that

for all (m -+-1)-tuples (j1’ ..., By complex conjugation, also

Now let 3m be the differential ideal on Cn r’-I R2n generated by

or, in real form, by
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Then the argument above shows that ~ is an integral manifold of 3m
with the real dimension 2m.

Conversely, suppose that JV’ is a real analytic submanifold of ~2n

of real dimension 2m, such that JW is an integral manifold of 3m. Then

one can find local coordinates z~, ..., zn, Zl’’’.’ zn in Cn such that,

for certain j1, ..., jp, k1, ..., kq with p -p ~ == 2m.
In fact, since X is an integral manifold of 3-, necessarily p = q = m.

locally on Jf, where g,
is a convergent power series in the indicated variables. Hence

By hypothesis,

which by (17) shows that ogjlozkz = 0 for l = 1, ..., m.
Thus gj is a holomorphic function in the variables 3z,,,, ..., z,.. The fol-

lowing lemma is a consequence of all this:

LEMMA. A real analytic submanifold of en of real dimension 2m is complex
analytic (of complex dimension m) if and only if it is an integral manifold
of the differential ideal Jm.

The importance of this lemma is that it makes it possible to construct
complex m-dimensional submanifolds of ~n starting from real analytic
integral manifolds of m of real dimension  2 m by means of the Cartan-
Kähler theory (see e.g. [8] or [9]).

To be able to discuss integral elements of 3m, we first introduce a con-
venient notation:

Let V be a real vector subspace of TxCn , where x E C’, and let Y1 be
the orthogonal complement of V in Then the complex structure

and the projection together define a.

mapping Q : = If a vector X c V belongs to ker Q, then
also JX E ker Q since J(JX) = - X E V. So dimr ker Q is an even number,
equal to 2p say. In this situation we say that V is of the form CP X R

(where dimr V = 2p + q), or that the complex dimension of V is equal to p.
Then it is easy to see that the integral elements V c of the dif-

ferential ideal 3m are of the following form:
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1) any V with and

2) those V with (where for which the

complex dimension of TT is at least equal to a.

Furthermore, in the latter case V is a regular integral element of 3m
if the complex dimension of V is equal to a,, i.e., if V is of the form

Ca X Rm-a. .

So if L is a real analytic integral manifold of 3m of real dimension m + a,
such that Tx(L) is of the form Ca X Rm-a for some x E L, then L can be
locally extended near x to a complex submanifold L of Cn of complex
dimension m. And this extension is unique, as one can see for instance by
calculating the characters of 3m (cf. [8], pp. 60-61).

In particular, consider a foliation of a real submanifold .M in Cn

associated to a complete vector field system (X, JX, [JX, X]), where X,
JX and [JX, .X] are linearly independent vector fields on and J is the

complex structure of Cn. Then the tangent spaces of L, are of the form
C X R, where the « C » is formed by X and JX, and the « R » corresponds
to [JX, X]. Thus each L, can locally be extended to a unique complex
2-dimensional manifold Lt, such that J[JX, X] gives one of the two normal
directions for E, in Lt.

Moreover, the Cartan-Kiihler theory is valid also in the presence of

parameters, so that if (Li) depends real analytically on t, will do so too.

5. - The Levi module and its derivatives.

Now we want to consider the tangential Cauchy-Riemann equations
on a submanifold 31 as in Theorem 3, i.e., we assume that .M~ is a generic
locally closed real analytic submanifold of Cn of real dimension m, where
n  m  2n. That if is generic means that for each x in if the OR tangent
space to .lVl at x, defined by

is of minimal complex dimension, namely dimc = m - n.

Then

has the structure of a real analytic subbundle of T(M), and is called the
OR bundle of M.

To avoid confusion about what is regarded as real and as complex, we
will from now on try to consider everything from a real point of view.
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In particular, Cn is identified with the pair (R2n, J), where J is an integrable
complex structure.

or equivalently,

Then A is a module of vector fields (the so called CR vector fields) over the
ring of real analytic functions on M. It is called the Levi module.

- 

The connection between A and the j,,,-equations is the following: any
a.,,-operator Z is of the form X + iJX with X, JX E A, and conversely,
each X e A can be written as X = Re Z, with Z a j,,,-operator.

By definition A is invariant under the action of J. However, in general A
is not closed under Lie brackets. This makes it natural to consider the

derivatives of A (cf. [15]):

A’-c A" C ... C T(liT)), we assume (by shrinking .M if ne-
cessary) that all (as well as all other vector field systems on if to be
considered in the sequel) are of constant rank on M. Since rank T( ))) =
= dim if = m is finite, y there is an integer c such that all A (k) are equal
for k ~ c. Then is a complete vector field system, which is called the
Levi algebra of .112 (because it is a Lie algebra under the bracket operation).
The number e : = rank is sometimes called the excess dimen-

sion of M. Since rank A = 2 ( m - n ) and rank A(’)  rank = m,
we see that e 2n - m.

The simplest case occurs if c = 0. Then A is complete, and thus defines
a foliation of 31. Moreover, since A is invariant under J, the restriction
of J to the leaves of that foliation will provide them with an integrable
complex structure. Thus A defines a complex foliation of M. (This is really
just a special case of Theorem 1.) CR functions on M are then characterized
by being holomorphic along the complex leaves, but arbitrary in the para-
metric variables.

Suppose now that c &#x3E; 0. Then also e &#x3E; 0, and rank A(c) = 2(m - n) +
+ e  m. If e  2n - m, rank ~~~’ C m, and the complete vector field

system A(C) defines a nontrivial foliation of M, where the parameter
space R2n-m-e. Since the invariants of are also invariants of A,
CR functions may vary quite arbitrarily from one leaf to another, and only
their behaviour along the leaves Bt is restricted.

Consider now a fixed leaf B t , and let x E B be arbitrary. By definition
of A and ~~~’, Tx(Bt) will be of the form Hence Bt is a regular
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integral manifold of the differential ideal 3 on Cn. By the Cartan-
Kahler theory we can thus extend B, locally to a unique complex manifold Bt
of complex dimension m - n + e (which is less than ii, if e  2n - m).

Since no derivatives with respect to the parametric variables occur in
A and ~~~’, we can restrict these to Bt, so that they form vector field

systems and there. Then At is the Levi module of Bt considered
as a real submanifold of and = T(Bt)). Clearly the excess
dimension of Bt is equal to e.

Now from a deep result due to Hunt and Wells (see [7]) it follows that

if f is a C1 CR function on Bt, then f has a unique local extension to a
CR function I defined on a CR manifold U, c!3, i with dim Ut = dim Bt -~- e =
2(m - n + e) and Ut:2 Bt. Consequently dim Ut = dim-F3t, so that Ut is

in fact an open subset of Be, and f is holomorphic on 
Hence we have obtained the following

THEOREM. M has a foliation with leaves Bt of real dimension
2(m - n) -E- e (where e c 2n - m; if e = 2n - m, the foliation is trivial in

the sense that there is only one leaf, M itself). Each Bt has a unique local ex-
tension to a complex (m - n + e)-dimensional mani f otd Bt. If u is a CR func-
tion on M, then u is arbitrary in the parametric variables t. If Ut:= E

E C’(Bt), then Ut has ac unique local extensiorc to a holomorphic function i,
defined on an open set Ut t in Pt.

If e (which is equal to the real codimension of Bt in is big, ut is not
expected to inherit so many of the analytic properties of 4t-t. However, by
making local extensions of ut into Bt and gluing these together by means
of the unique continuation theorem for holomorphic functions on open
subsets of Bt, we have at least:

COROLLARY. C’ OR functions on M have the unique continuation property
along the leaves Bt.

In favourable cases there may exist subfoliations of such that the

corresponding e is smaller, and which give further information about the
C.R functions on M. The existence of such foliations will be investigated
in the following sections.

6. - Complex foliations.

As remarked before, when A is complete the leaves of the corresponding
foliation have a complex structure. But also when A is not complete there
may exist complex foliations of M, and in this section we will try to find
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maximal such foliations by means of the Vessiot theory. For the sake of

simplicity we only consider foliations which are regular in the sense of

section 3. We remark that similar problems have been treated by
Sommer ([13]), y Freeman ([5]) and others.

A foliation of M with complex leaves of as big dimension as possible
corresponds on the vector field level to a maximal sub vector field system 93
of A satisfying

i) 93] C ~3, and

ii) 

Let A, be the biggest regular (in the sense of Vessiot) submodule of A
satisfying i). To find A, we solve as many as possible of the systems of
linear equations (11), (I2), ... in section 3, with Y replaced by A, until we
reach a system (Ip) with no nontrivial solutions. This gives an involution
of order p, where p is maximal. Solving (II) for this involution then yields
the vector field system A,. With notations as in section 3 we suppose
that A has a basis (Xi , ..., 7 Xp ..., (where p + q = 2(m - n)),
and that A, has a basis

where xl , x2 , ... , xm are local coordinates for M.

As explained before, all the can be considered as determined func-

tions of ..., Xm) except ra = of the which depend in an
arbitrary way on m - a + 1 variables. So really ~1 is a family of vector
field systems parameterized by the « arbitrary » functions 

Now A, need not satisfy ii). So let ~2 be the biggest submodule of Al
which is invariant under J, i.e., ~2 = A,).

Suppose that the complex structure J : ~ -~ ~ is defined by

Then

where
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Hence if and only if the satisfy

The rank r of the system (18) may or may not depend on the « arbi-
trary » In the latter case we suppose that r is constant on X

(shrinking if necessary), and then we get a vector field system A2 of the
rank p - r. In the former case we can, by using linear algebra, for instance
choose the so that r is as small as possible (and constant on M). If this
minimal value is zero, then we are done. Otherwise we obtain an A2 which
satisfies ii), but not necessarily i), and which may depend on some arbitrary
functions.

If ~2 is not complete, let ~3 be the biggest regular submodule of ~2
satisfying i). The possible arbitrariness can here be exploited to get an
involution of as big order as possible. Since the Cauchy-Kowalewski theorem
is valid also in the presence of parametric functions (see e.g. [9], section 1).
the differential equations corresponding to (II) can be solved as before.

And so on.

Since the rank drops all the time, after a finite number of steps one will
find a regular vector field system ~o satisfying both i) and ii). If ~o is
nonempty and depends on a set of arbitrary functions in a certain number
of variables, then Ac corresponds to a family of complex foliations which
is parameterized by these functions.

If it is a OR function on -YI, then of course u is holomorphic along the
leaves of such a foliation.

7. - Lewy foliations.

A complex foliation with complex 1-dimensional leaves is by Frobenius
equivalent to a complete vector field system of the form (X, JX) with X E A.
A somewhat more complicated foliation is that associated to a complete
vector field system (X, JX, [JX, X]), where .X E A, and X, JX and
[JX, X] are linearly independent. By the results in section 4, the leaves {1,}
of such a foliation can locally be extended to complex 2-dimensional
leaves such that L, is a strictly pseudoconvex hypersurface in Lt for
each t in the parameter space. Since the tangential Cauchy-Riemann equa-
tions on Lt induced from the 0-equations on Lt give rise to a counter ex-
ample a la Lewy (cf. [2], part 1, §5), such a foliation is called a Lewy
foliation.
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By adding more brackets one obtains a partition of A into a finite number
of different classes:

and so on. Observe that the Ci are not vector field systems in general, but
just sets.

In this section we want to indicate a method by which one can determine
the sets C; . Since Co is rather simple, and is related to what was done in
the preceding section, we start with C1.

Suppose that X E Ci . Because X 0 Co, X, JX and [JX, X] are linearly
independent. By definition X and JX both belong to A. If also [JX, X] E A,
then J[JX, X] e A too, and we have two cases (assuming the ranks to be
constant, as always):

1) (X, JX, [JX, X], J[JX, X]) is complete. Then this vector field

system defines a foliation of M with complex 2-dimensional leaves.

2) (X, JX, [JX, X], J[JX, X]) is not complete. Then the complex
leaves L, obtained by Cartan-Kahler continuation of the foliation as-

sociated to (X, JX, [JX, X]) have a nontransversal intersection with if
along L t .

Since these cases seem to be rather nongeneric, we exclude them and
consider only e~:= [JX, ~X (X, JX, [JX, X]) is

complete and [JX, X] 0 A}. Then to each X E Ci there corresponds a

Lewy foliation such that the associated complex leaves L~ cut ~f
transversally along L~ .

Unfortunately the Vessiot theory cannot be applied directly in the

search for CT (since JX and [JX, X] are completely determined by X,
there are too few arbitrary coefficients to play around with), so we first
make a suitable « prolongation », inspired by section 15 in [15].

Choose a resolved basis Xl, ..., .~N (where N = 2(m - n)) for A, so

that each .X e A can be written in the form
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with the functions real analytic on M. If we regard such an ~’ as a
section of the CR bundle H(M), then for each (al(x), ..., aN(x)) can
be considered as coordinates for the N-dimensional fiber 

If the complex structure J : ~ -~ ~ is defined by

we have

and

With ~ :== (X, JX, [JX, X]) we want to determine X (and hence the
coefficients ai(x), i = 1, ... , N) so that and As a

first step we replace the condition Yh = :F x by the weaker Yh C ~’.
Suppose that ..., Yl , ..., Y,;

Zl, ..., Zj are bases for A’ and All respectively. Define the structure func-

tions and by

and

respectively. Then

and
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Thus the condition is satisfied if and only if

These equations define for each x E M a (real) algebraic set Ax c 
Then we have to take the condition [JX, into account. By (20), y

[JX, .X] e A if and only if

and these equations define likewise a (real) algebraic set in each 

Next w e set ‘l~~ : _ Then for each x E M, is a locally
closed real analytic set in Hx(M) such that for (a1(aJ), ..., aN(x)) E V,,, x E M,

N

the corresponding .X = ; ai(x) .Xi satisfies and Of
i=l

course it can happen that the sets are empty, and then there will be
no X E e;. However, suppose that it is not so.

To proceed further we have to assume that each Vx is locally smooth,
and that the varies smoothly in the parameter x. More

precisely, fix a point xo = (xo,..., 1 xm) E M and a point (ai(xo), ... , aN(xo)) E’lJxo;
and make the following three assumptions:

1. Local regularity of is a real analytic manifold of dimen-
sion r near (aO(xo)7 ..., in gxo(M).

This means (perhaps after having made a change of the indices) that ’tJxo
can be presented in the form ,

for (a 1(--’0) 1 - - -I near (a°(xo), ... , where the functions Fx- ° are
real analytic. 

1 N i

2. Regularity near (0153o, aO(xo)): Let n: .H( ~VI ) -~ -3t be the
canonical projection. Then there is a neighbourhood U of (XO, ..., x°~;

H(M) such that for each is a real

analytic r-dimensional manifold. 
"



83

3. Coherence. There are real analytic functions

defined on U such that for all x E the r-dimensional real analytic mani-
folds Wz n U can be represented by

In particular, - P;(xo; a(xo)). Hence with these assumptions
the conditions A’ and [JX, .~’] ~ ~ are satisfied for .~ of the form

Next we have to determine the functions al(x), ... , ar(x) so that 5,-’ x = Yx.
To do this we consider a,,..., a, no longer as functions of x, but as new
independent variables, and prolong the problem to the ..., Xm; aI, ... , ar)-
space. That is, we regard .X1, ..., XN as vector fields Xl’’’.’ XN on this
space, which are independent of the a-coordinates. Then we get the pro-
longed vector field

corresponding to (23). Note that X is a ’completely determined vector
field on the (x; a)-space. From X the vector fields JX and [JX X] are
constructed, where J is still defined by (19), i. e. is independent of the
a-variables.

If the variables ai are replaced by determined functions ai(x), then of
course 1 and JX go over into the corresponding X and JX. However,
[JX, X] does not necessarily turn into [JX, .~Y] (by (20) it does modulo A
though, and this is of some importance), since for instance ±jal = 0,
while need not vanish.

Let Sx be the vector field system on the (x ; a)-space generated by X,
i±, [J±7 ±] and alaai for i = 1, ..., r. Setting x = xo and ai = ao(xo),
i = 1, ... , r, for a moment, we get vectors (Jx)° and [JX, X]o in 
that together span a 3-dimensional subspace of Then we choose

local coordinates (xl , ... , xm ) near such that does

not vanish on this subspace. Near (x°; in the (x; a)-space it is then
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possible to find a basis in the following form:

The prolonged vector field system that we are looking for then has a
basis of the form

where the functions wik(x; a) are to be determined so that (TV", W2, W 3)
is complete.

Now, at last, our problem has been formulated in such a way that the
Vessiot theory can be applied. If (24) is involutive of order 3, then by
means of the methods in section 3 the coefficients a) are determined
(up to a set of arbitrary functions in a certain number of variables) so that
the vector field system (WI, W2, is complete. Otherwise we have to

make further prolongations (now in the standard form given in [15], sec-
tion 15), until we either arrive at a solution, or obtain an incompatible
system of linear equations.

Suppose now that we have found a solution in the form of a complete
vector field system (Wi, W2 , Then defines a foliation E* of

the (x; a)-space in a neighbourhood of (xo; with 3-dimensional leaves.
Since we have made sure that the coordinate functions x1, x2 and ~3 are func-

tionally independent on these leaves, we can find m -f- r - 3 invariants

$, (x; a), k = 4, ..., m + r, of V such that

ii) X2, Xa, ~ 4’ ... 7 $M+I’} form a system of local coordinates in a
neighbourhood S2 of (x,; a°(zo)) in the (x; a)-space;

If oi := a) c S~: ~k(x; a) = 0 for k = m + 1, ..., m + rl, then by iii)
there is a neighbourhood V of (xo; in m which is diffeomorphic to
an open neighbourhood TI of xo in M under the projection mapping e de-
fined by p(.r; a) := x. Furthermore, we can assume that on V
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and

where Ai(x) and are real analytic functions defined on U.
Because ~m+1, ..., are invariants for i0, C* can be restricted to V

to give a foliation £’ there with the invariants ..., m . By means of the
diffeomorphism e, ~’ defines a foliation £ = of U, with the invariants
tl(x), ..., Hence the parameter space T - Rm-3. We claim that t
is a Lewy foliation of U.

As a matter of fact, by the very construction ’ill contains vector fields
of the form

and

X and JX have restrictions X and JX to V, which are tangent to C’. Under
the projection mapping e, I is mapped to

and e*(J X) = JX. Obviously X and J.X are tangent to the foliation ~.

Because (22) is egcluded, [JX, 0 (mod A), so in particular X, and

[JX, X] are linearly independent. Hence they together span the tangent
spaces of each 3-dimensional leaf of L Consequently (X, JX, [JX, X]) is

complete, and t is a Lewy foliation.
It should be remarked that not all regular and transversal Lewy folia-

tions near ~1 are found in this way, but only those for which .X(xo) is
N

near the vector To find further ones we have to
z=~

repeat this procedure for other neighbourhoods in 
To each transversal Lewy foliation (Li) there corresponds an analytic

continuation ~Lt~, and also a nonvanishing normal vector field N defined
as the image of J[JX, X] under the projection mapping
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If u is a CR function on then for each t in the parameter space 
will have a one-sided local analytic continuation defined on that side of LL t
in Lt into which N points.

To each is associated the äM-operator Z = X + iJX. If Co,
Z is called a Cauchy-Riemann operator, since this is what Z is on the

leaves of the foliation defined by (X, JX). If .X’ E 7 the corresponding Z
is called a Lewy operator. Now, if we have found enough Cauchy-Riemann
and Lewy operators to form a basis for the j,,,-equations, we may stop
at this point. Otherwise we continue to determine the classes Ci for i &#x3E; 1.

However, since this is analogous (although a bit more complicated) to what
is done above, we do not give the details here.

8. - Hypersurface foliations.

DEFINITION. A (2q + transversal and nondegenerate hyper-
surface foliation of M in Cn is a foliation (where S is a parameter
space) so that each (2q + 1 )-dimensionaZ leaf H, can be extended to a complex
(q + I)-dimensional manifold Hs defined near 31 in such a 1cay that

i) HHS is a real nondegenerate hypersurface in Hs, and

ii) HS intersects M transversally alon g Hs, for cach s E S.

Let be such a hypersurface foliation of M. Then remark 2 in

section 2 shows that each regarded as a hypersurface in lIs, locally
admits q independent Lewy foliations i = 1, ... , q. It can then

happen that these behave nicely with respect to the parameter s, so that
they define foliations of M, with R = S X T, depending real analy-
tically on r, and thus making locally generated by q Lewy foliations.

Now we want to turn this around and construct hypersurface folia-

tions by means of triples JX, [JX, .X ]~ with X E A, using methods
similar to those in the preceding section.

Hence we want to find q N-tuples a"(x) = (ai(x), ..., oc = 1, ..., q,
of real analytic functions so that if

then the vector field system
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defines a (2q -}- l)-dimensional transversal and nondegenerate hypersurface
foliation. It is easy to see that this is the case if and only if the following
conditions are satisfied:

1) The vector fields X’9 JX1, ..., Xq, JX are linearly independent.

2) [JX-9 0 (mod A) for a = 1, ..., q.

3) Let ~: ~~--~ and set Y~ :== 

Then rank f yi, ..., yql - 1.

4) je is complete.

5) rank ~=2q-~-1.

The leaves HS of the corresponding foliation will have tangent spaces
of the form where Cq is formed by XI, J.X 1, ... , Xq, JX. Thus by
the Cartan-Kahler theory these leaves can locally be continued to com-
plex (q -E- I)-dimensional manifolds 2) assures that Hs will be a non-

degenerate hypersurface in 17,.
As a first step in the search for the N-tuples a"(x), condition 4) is replaced

by the weaker

4r) y c ,, ~n ,

Also introduce the complementary conditions to 1) and 2), i. e. ,

1 ~) ..., Xq, JXq are linearly dependent, and

2 ~) [JXx, X"] - 0 (mod A) for a = 1, ..., q.
11) means that a number of determinants involving the functions

ai(x) vanish, thus giving algebraic conditions on the ai(x) for each x.

By (22), 2 ~) is equivalent to the algebraic equations

in ai(x).
From (20) it follows that 3) is satisfied if and only if

for
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Finally, from (20) it follows that 4’) is equivalent to a number of homo-
geneous equations of fourth order in the functions ai(x).

For each x E .M we regard (ai(x), ... , aN(x), ... , ai (x), ..., as the

coordinates of the qN-dimensional fiber Then 3) and 4’)
together define an algebraic set Sx in each Similarly, y each of 1 ~)
and 2’) defines an algebraic set in for each x E M, and we let

be the union of these two sets. Then is a locally
closed real analytic set in for each x E M, such that the conditions 1),
2), 3) and 4 ~) are satisfied for those which belong to tltz.

Next fix a point zo E M for which Jtx. is nonempty (supposing that such
a point exists), and let be a regular point in y so that Jtx. is a real
analytic manifold of dimension r, say, near a°(xo). With the same kind of
regularity and coherence assumptions as in the last section, the sets ~i,x
can be described by equations of the form

near the point (x°; gq(M), where (ui , ..., ur) is a set of r real variables,
and the functions A,-(x; u) are real analytic.

Replacing at(x) in (25) by the right-hand side of (26) we obtain deter-
mined vector fields JXa and [JXcx, Xa], a = 1, ..., q, on the (x; 
such that the conditions 1), 2 ), 3) and 4’) are satisfied for the corresponding
vector fields on the x-space obtained by regarding the Ui, i = 1, ..., r, as
parameters. By 1) and 2) the vector field system generated by these 3q vector
fields on the (x; it)-space have a rank which is at least equal to 2q + 1.
To satisfy 5) we want it to be exactly 2q + 1. This is achieved by setting
a number of determinants, involving A~ (x; u), ci’j(x) and certain of

their x-derivatives, equal to zero, and hence defines a real analytic variety ‘l~
in the (x; u)-space. In order to obtain a hypersurface foliation of a whole
neighbourhood in the x-space in the end, we have to assume that the
x-coordinates locally are functionally independent on Moreover we sup-

pose that for some integer sr, V is an (m + s)-dimensional real analytic
manifold near a regular point P E Then ‘l7 can be defined by equations
of the form

near P, where wl, ..., ws are real variables, and the functions Ui(x; w) are
real analytic. Substituting (27) in (26) gives

with real analytic.
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Using (28) in the expression (25) we get determined vector fields

on the (x ; w)-space, such that the conditions 1), 2), 3), 4’ ) and 5) are satis-
fied for the corresponding vector fields on the x-space, which are parameterized
by WI’ ..., ws. be a resolved basis for the vector field system
generated by J±a7 a =1, ... , q, on the (x ; w)-space. Then

the prolonged vector field system that we are looking for has a basis which
can be written in the form

To satisfy 4), the functions vik(x; w) are to be determined so that

(Wi ... , is complete. Now this problem falls within the realm of the
Vessiot theory, which therefore shows the existence (or maybe nonexistence)
of a family of foliations of the (x ; w)-space with (2q + I)-dimensional leaves
associated to a complete vector field system of the form (Wi, ... , W2Q+1).
Projecting such a foliation down to the x-space (i.e., M) in a similar way
to what was done in the last section, we then get a transversal and non-
degenerate hypersurface foliation defined locally on M.

Suppose now that is such a hypersurface foliation of M with

associated analytic continuation ~Hs~, and let u be a CR function on M.
If Hs is strictly pseudoconvex in Ds, can be extended to

a holomorphic function defined on a one-sided neighbourhood of 2~ in 
However, if the Levi form of Hs (as a hypersurface in Ds) has both positive
and negative eigenvalues, then Us will be the restriction to Hs of a holo-
morphic function defined in a full neighbourhood of ~ in Ds (see e.g. [14]
for the case of hyperfunctions). In particular, u will then be real analytic
along ~.
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