Bombieri's theorem in short intervals
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 11 (1984) no. 4, pp. 529-539.
@article{ASNSP_1984_4_11_4_529_0,
     author = {Perelli, A. and Pintz, J. and Salerno, S.},
     title = {Bombieri's theorem in short intervals},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {529--539},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 11},
     number = {4},
     year = {1984},
     mrnumber = {808422},
     zbl = {0579.10019},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_1984_4_11_4_529_0/}
}
TY  - JOUR
AU  - Perelli, A.
AU  - Pintz, J.
AU  - Salerno, S.
TI  - Bombieri's theorem in short intervals
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1984
SP  - 529
EP  - 539
VL  - 11
IS  - 4
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_1984_4_11_4_529_0/
LA  - en
ID  - ASNSP_1984_4_11_4_529_0
ER  - 
%0 Journal Article
%A Perelli, A.
%A Pintz, J.
%A Salerno, S.
%T Bombieri's theorem in short intervals
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1984
%P 529-539
%V 11
%N 4
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_1984_4_11_4_529_0/
%G en
%F ASNSP_1984_4_11_4_529_0
Perelli, A.; Pintz, J.; Salerno, S. Bombieri's theorem in short intervals. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 11 (1984) no. 4, pp. 529-539. http://archive.numdam.org/item/ASNSP_1984_4_11_4_529_0/

[1] E. Bombieri, Le Grand Crible dans la Théorie Analytique des Nombres, Astérisque, no. 18 (1974). | Numdam | MR | Zbl

[2] H. Davenport, Multiplicative Number Theory, II edition, Springer-Verlag, 1980. | MR | Zbl

[3] P.X. Gallagher, Bombieri's mean value theorem, Mathematika, 15 (1968), pp. 1-6. | MR | Zbl

[4] D.R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan identity, Canad. J. Math., 34 (1982), pp. 1365-1377. | MR | Zbl

[5] D.R. Heath-Brown, Sieve identities and gaps between primes, Astérisque, no. 94 (1982), pp. 61-65. | Numdam | Zbl

[6] M.N. Huxley - H. Iwaniec, Bombieri's theorem in short intervals, Mathematika, 22 (1975), pp. 188-194. | MR | Zbl

[7] M. Jutila, A. statistical density theorem for L-functions with applications, Acta Arith., 16 (1969), pp. 207-216. | MR | Zbl

[8] A.F. Lavrik, An approximate functional equation for the Dirichlet L-functions, Trans. Moscow Math. Soc., 18 (1968), pp. 101-115. | MR | Zbl

[9] H.L. Montgomery, Topics in Multiplicative Number Theory, Springer L.N. no. 227 (1971). | MR | Zbl

[10] Y. Motohashi, On a mean value theorem for the remainder term in the prime number theorem for short arithmetical progressions, Proc. Japan Acad. Ser A Math. Sci., 47 (1971), pp. 653-657. | MR | Zbl

[11] K. Prachar, Primzahtverteitung, Springer-Verlag (1957). | MR | Zbl

[12] S.J. Ricci, Mean-values theorems for primes in short intervals, Proc. London Math. Soc., (3) 37 (1978), pp. 230-242. | MR | Zbl

[13] R.C. Vaughan, Mean value theorems in prime number theory, J. London Math. Soc., (2) 10 (1975), pp. 153-162. | MR | Zbl

[14] R.C. Vaughan, An elementary method in prime number theory, Acta Arith., 37 (1980), pp. 111-115. | MR | Zbl