@article{ASNSP_1984_4_11_4_559_0, author = {Straube, Emil J.}, title = {Harmonic and analytic functions admitting a distribution boundary value}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {559--591}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 11}, number = {4}, year = {1984}, mrnumber = {808424}, zbl = {0582.31003}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1984_4_11_4_559_0/} }
TY - JOUR AU - Straube, Emil J. TI - Harmonic and analytic functions admitting a distribution boundary value JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1984 SP - 559 EP - 591 VL - 11 IS - 4 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1984_4_11_4_559_0/ LA - en ID - ASNSP_1984_4_11_4_559_0 ER -
%0 Journal Article %A Straube, Emil J. %T Harmonic and analytic functions admitting a distribution boundary value %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1984 %P 559-591 %V 11 %N 4 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1984_4_11_4_559_0/ %G en %F ASNSP_1984_4_11_4_559_0
Straube, Emil J. Harmonic and analytic functions admitting a distribution boundary value. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 11 (1984) no. 4, pp. 559-591. http://archive.numdam.org/item/ASNSP_1984_4_11_4_559_0/
[1] Regularity of the Bergman Projection on Domains with Transverse Symmetries, Math. Ann., 258 (1982), pp. 441-446. | MR | Zbl
,[2] Biholomorphic Mappings and the ∂-problem, Ann. of Math., 114 (1981), pp. 103-113. | Zbl
,[3] A Representation Theorem in Strictly Pseudoconvex Domains, Illinois J. Math., 26, No. 1 (1982), pp. 19-26. | MR | Zbl
,[4] A Sobolev Inequality for Pluriharmonic Functions, Proc. Amer. Math. Soc., 85, No. 3 (1982), pp. 350-352. | MR | Zbl
,[5] A Duality Theorem for Harmonic Functions, Michigan Math. J., 29 (1982), pp. 123-128. | MR | Zbl
,[6] Boundary Regularity of Proper Holmorphic Mappings, Duke Math. J., 49 (1982), pp. 385-396. | MR | Zbl
- ,[7] Regularity of the Bergman Projection in Weakly Pseudoconvex Domains, Math. Ann., 257 (1981), pp. 23-30. | MR | Zbl
- ,[8] Regularity of the Bergman Projection and Duality of Function Spaces, Math. Ann. 267 (1984). 473-478. | MR | Zbl
- ,[9] Regularity of the Szegö Projection in Weakly Pseudoconvex Domains, Indiana Univ. Math. J., in print. | MR | Zbl
,[10] Boundary Properties of Holomorphic Functions of Several Complex Variables, J. Soviet Math., 5 (1976), pp. 612-687. | Zbl
- ,[11] Projective and Injective Limits of Weakly Compact Sequences of Locally Convex Spaces, J. Math. Soc. Japan, 19, No. 3 (1967), pp. 366-383. | MR | Zbl
,[12] Boundedness of the Bergman Projector and Bells's Duality Theorem, Tôhoku Math. J. 36 (1984), 453-467. | MR | Zbl
,[13] Theorem, Acta Math., 138 (1977), pp. 265-293. | MR | Zbl
,[14] Function Theory of Several Complex Variables, Wiley-Interscience, Pure and Appl. Math. Series, 1982. | MR | Zbl
,[15] Nonhomogeneous Boundary Value Problems and Applications I, Grundlehren Math. Wiss., Band 181, Springer, 1972. | Zbl
- ,[16] Nonhomogeneous Boundary Value Problems and Applications III, Grundlehren Math. Wiss., Band 183, Springer, 1973. | Zbl
- ,[17] Bogoljubov's Theorem on the Edge of the Wedge for Generic Manifolds, Math. USSR-Sb., 23, No. 3 (1974), pp. 441-455. | Zbl
,[18] Boundary Uniqueness Theorem for Holomorphic Functions of Several Complex Variables, Math. Notes, 15 (1974), pp. 116-120. | MR | Zbl
, A.[19] Théorie des distributions, Hermann, Paris, 1978. | MR | Zbl
,[20] CR-Distributions and Analytic Continuation at Generating Edges, Math. Z., in print | MR | Zbl
,[21] Topological Vector Spaces, Distributions and Kernels, Academic Press, Pure and Appl. Math., 25 (1967). | MR | Zbl
,[22] An Approximation Theorem for ∂-closed Forms of Type (n, n - 1), Proc. Amer. Math. Soc., 26, No. 4 (1970), pp. 625-628. | Zbl
,[23] Boundary Values of Dolbeault Cohomology Classes and a Generalized Bochner-Hartogs Theorem, Abh. Math. Sem. Univ. Hamburg, 47 (1978), pp. 3-24. | MR | Zbl
- ,