@article{ASNSP_1985_4_12_1_1_0, author = {Bove, A. and Lewis, J. E. and Parenti, C.}, title = {Parametrix for a characteristic {Cauchy} problem}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {1--42}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 12}, number = {1}, year = {1985}, mrnumber = {818800}, zbl = {0593.35050}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1985_4_12_1_1_0/} }
TY - JOUR AU - Bove, A. AU - Lewis, J. E. AU - Parenti, C. TI - Parametrix for a characteristic Cauchy problem JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1985 SP - 1 EP - 42 VL - 12 IS - 1 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1985_4_12_1_1_0/ LA - en ID - ASNSP_1985_4_12_1_1_0 ER -
%0 Journal Article %A Bove, A. %A Lewis, J. E. %A Parenti, C. %T Parametrix for a characteristic Cauchy problem %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1985 %P 1-42 %V 12 %N 1 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1985_4_12_1_1_0/ %G en %F ASNSP_1985_4_12_1_1_0
Bove, A.; Lewis, J. E.; Parenti, C. Parametrix for a characteristic Cauchy problem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 12 (1985) no. 1, pp. 1-42. http://archive.numdam.org/item/ASNSP_1985_4_12_1_1_0/
[1] Solution explicite du problème de Cauchy pour des opérateurs effectivement hyperboliques, Duke Math. J., 45 (1978), pp. 225-258. | MR | Zbl
,[2] Hypoelliptic operators with double characteristics and related pseudo-differential operators, Comm. Pure Appl. Math., 27 (1974), pp. 585-639. | MR | Zbl
,[3] Fourier Integral Operators, Lecture Notes Courant Institute NYU, 1973. | MR | Zbl
,[4] Fourier Integral Operators II, Acta Math., 128 (1972), pp. 183-269. | MR | Zbl
- ,[5] Fourier Integral Operators I, Acta Math., 127 (1971), pp. 79-183. | MR | Zbl
,[6] Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed., Springer, 1966. | MR | Zbl
- - ,[7] A treatise on the theory of Bessel functions, Cambridge Univ. Press, 2nd ed., 1944. | MR | Zbl
,