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Algebraic Varieties of Dimension Three
Whose Hyperplane Sections Are Enriques Surfaces.

A. CONTE - J. P. MURRE (*)

Introduction.

In recent years there has been a renewed interest in the study of Fano
threefolds; see for instance [24], [14], [15] and [13]. From the modern point
of view Fano threefolds are projective varieties of dimension three with

ample anti-canonical class. Of special interest are those which can be

embedded in projective space by the anti-canonical class itself; such varie-
ties have then as hyperplane sections K3-surfaces. From this point of view
it is then also natural to study threefolds whose hyperplane sections are
Enriques surfaces. In fact this has been done by Fano himself in a paper [11]
published in 1938. Like his papers on Fano threefolds this paper of Fano’s

is very interesting and full of geometry; by means of ingenious arguments
and constructions Fano obtains striking results and gives a classification
of varieties of the mentioned type. However, as in the case of his papers
on Fano threefolds, also this paper contains serious gaps and from a modern
point of view the arguments of Fano give only an indication for a pos-
sible proof.

It is our purpose to take up again this paper of Fano’s and to provide
proofs for the theorems he stated. In this paper we treat the general
theory for such threefolds with Enriques surfaces as hyperplane sections.

The first two sections are preparations on surfaces. In section three

we begin to state explicitely the conditions under which the main theorem
(7.2) is proved. These conditions (see also sections 4 and 5) seem to have

(*) This work has been supported by a joint contract between the University
of Torino and the University of Leiden, financed by the Italian C.N.R. (Consiglio
Nazionale delle Ricerche); the first named auther has also been supported by a
grant of the Dutch Z.W.O. (Nederlandse Stichting voor Zuiver-Wetenscbappelijk
,,Onderzoek).
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been made also by Fano himself, partially explicitely but also partially
implicitely. Roughly speaking they may be summarized by saying that we
do restrict our study to the « general case ».

As has been shown by Godeaux [12] and Fano, such threefolds carry
also a linear system of surfaces which have the property that their linear
curve sections are canonically embedded curves. It should be noted, how-
ever, that these surfaces are singular, a fact which does not seem to have
bothered Godeaux and Fano. The key points of our paper, treated in sec-
tion 4, 5 and 6, are on the one hand the study of the nature of these surfaces
and on the other hand the study of the rational map associated to this linear
system. The surfaces turn out to be indeed, as predicted by Godeaux and
Fano, K3-surfaces.

The present paper differs considerably from our preliminary paper [5].
A major difference is that there we assumed that the above mentioned map
is birational, whereas here we prove this as a fact, provided the genus of the
linear curve section is larger than five.

Section 7 contains the main theorem, due to Fano [11], saying that
the hypothesis that the hyperplane sections of a threefold W are Enriques
surfaces implies that W itself has precisely eight singular points which are
quadruple and which have as tangent cone the cone over the Veronese
surface. Furthermore the above mentioned birational transformation asso-

ciated to the linear system of K3-surfaces transforms W into a (singular)
Fano threefold, in the classical sense, in such a way that the «images »
of the eight singular points are eight planes.

Finally in section 8 we give the list of the known examples of such

threefolds with Enriques surfaces as hyperplane sections. The list is again
due to Fano and, moreover, according to him this is the complete list.

In this paper we do not enter into this classification problem, intending
to return to it on a future occasion.

Part of the work has been done during a stay of both authors at the

Mittag-Leffler Institute in Djursholm; we like to thank this Institute for
its support and for the splendid hospitality.

Some conventions and notations.

We work over an algebraically closed field k of characteristic zero.
If V is a variety and D a divisor on V then we often write shortly

instead of Hi(V, Ov(D)); for its dimension we write hi(D). For

the rational map associated with the linear system IDI we write ÅD or
sometimes For linear equivalence we use the symbol - and for numer-
ical equivalence the symbol ==. Finally, we denote the canonical class

of TT by 
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1. - Auxiliary results on special surfaces.

In this section we prove some results for a special type of singular sur-
faces which will be needed in the following. In our applications these
surfaces are either the surfaces obtained by taking a sufficiently general
hyperplane section through one of the singular points Pi (see 3.3) of the

threefold W or a sufficiently general member of the system (see 3.8).

LEMMA 1.1. Let S be a (projective) surface with one singular point P.
resolution of singularities:

Assume :

is an irreducible, smooth curve,

ii) for the canonical class K.. s we have K.. s - (numerical equivalence)
with e E 2 ~. 

~ 

most, the following cases are possible :

then ~S is ruled and

then S either is ruled or rational and

then S is rational, and

then and

then and

PROOF. Consider the Stein factorization:

(1) In case e = 1 the resolution is not the minimal one because now we can
blow down the curve C. Also note that in case the surface S is normal then it
is automatically smooth in case ~o = 1 (by ZMT).
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where S’’ is the normalization of S. Since the fibres of n are connected

we have that , is one to one and the fibres of n and ~’ are th esame.
Hence by Mumford [18] we have that C2 = - s with s &#x3E; 0.

Next consider the arithmetic genus of C. We have

Hence and the following cases are left

information on

It suffices now to consider the case e  0. From K- - oC we have
that ~S’ must be ruled or rational. 

Consider first the case is ruled. So let z : 8 - B, with a curve B
with g(B) &#x3E; 0 and for a general b E B the fibre 7:-1(b) =- 1 is a line. By the

adjunction formula

Let ~(C ~ t) denote the intersection number. We have ~’~(C’~)==20132y so
C is not on a fibre of the ruling and we have the following possibilities

It suffices now to see that p = - 2 is not possible (in case /§ is ruled).
Applying the Hurwitz formula for C 2013~ B, we get

where R denotes the ramification. Hence g(C) &#x3E; 1, but we have already
seen that g(C) = 0 (see (2)), 

Next consider the case that 9 is rational.
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Suppose first that /§ dominates minimal model that is ruled and con-
sider again a general fibre of the ruling 1. Applying the same formula (3)
and using again 12 --- 0 we have again only the possibilities e = - 2,
~ _ -1 and e = - 2 . Now we must see 2 is not possible.
We have 7:: with B == _ - 2 gives ~( C ~ Z) = 1 and hence C
and B are birational, hence g(C) = g(B) = 0, but we have already seen
in (2) that g( C) &#x3E; 1, a contradiction.

Finally suppose that ~§ dominates only the minimal model PJ. Now
let 1 be a general line in P2 and denote its proper transform in S by the
same letter. We get

Since = 1 we _ - 3 and, always for 0, we
have the following possibilities

We have only to show that e === - 3 is not possible. 3, we have

# ( C ~ L ) = 1, hence

with ai e Z and E2 , ..., En curves obtained by blowing up in that order.
Then

However from the known expression for gs on such a ~S we know that the
coefficient of En in gs must be -1- 1. Hence an - 0, next an-l = 0, etc.

Hence C = 1, but this is impossible because now C2 = 1 and we must

have C2  0.

1.2. Next we consider the case of a finite number of singular points.

LIF,MMA 1.2. Let S be a (projective) surface with isolated singularities
P,, P2, ...,Pn (n &#x3E; 1 ). Let 7c: be a resolution. Assume :

i) 0 s) == 0, dim 82(,S’, 0 s) = 1,

ii) = Ci is an irreducible, smooth curve (i = 1, ..., n),
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with

iv) the points Pi are « similar» (see remark below).

Then we have:

1 ) S is ac normal surface,

2) at most the following cases are possible:

then and S is a ruled surface over a curve B and

then and

then and

REMARK. « Similar » means that all points Pi behave in the same way,
i. e. in particular

PROOF. As in the proof of 1.1 we consider the Stein factorization S’
,of the morphism and we have the same diagram. As in 1.1 we see that

~u is one to one, i.e. S and ~" are the same (Zariski) topological space. Con-

sider on S = Sf the exact sequence

where Q is the quotient sheaf. From the corresponding exact cohomology
sequence and using the fact that = 0 we get H°(S, Q ) = 0 and
since Q is a skyscraper sheaf we get Q = 0, hence S = ~S’ as algebraic
variety. Hence S is normal since S’ is normal.

From the result of Mumford we have again that C2 = - s with si &#x3E; 0;
by similarity we have si = s (i = 1, ..., n). Next looking again to the
arithmetic genus of Ci we get from the formula (1) the following possibili-
ties :

then

then

; then

then

For e = 1, by blowing down the curves Ci we get a non-singular surface
which, since ~S is normal, is isomorphic with S by hence S was already
non-singular.
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It suffices now to consider the  0. From we see

that S is ruled or rational.

Case /§ ruled: T: ~S’ --~ B. It is impossible that a curve Ci is lying on
a fibre of the ruling because then g(Ci) = 0 contradicting the fact that

&#x3E; 0 in the case ~O  0. Hence &#x3E; 0. For a general fibre of the
ruling I we have

By looking to degrees left and right we 2; next also ~O = - 2

is impossible because there are at least two points PI, P2 (for: n &#x3E; 1 ) .
Hence, if ~o  0, then ~O = -1 and there are two points P1 and P2 and

=1. Hence C¡ and C2 are birational with B and g(C.1) = g(C2) ==

= ~) = 1.

rational. We use the spectral sequence (cf. [1]) for the morphism
~c and obtain an exact sequence

Hence we get, since S is normal and hence

The sheaf is concentrated in the points Pi (i = 1, ..., n) and hence
the stalks are equal to their formal completion, so by the theorem of Gro-
thendieck on formal functions we get ([13, Th. 11.1, p. 277)

where On the other hand we have an exact

sequence

(for some sheaf X. on and this gives via induction that
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Hence (4) gives

In our case Therefore hence (by simi-

larity) since n &#x3E; 1. However, this is impossible
since we have seen above in (2’) that for ~O  0 the

REMARK. In the meantime surfaces of the nature described in this

section have been studied by Epema, a student of one of ours (see his forth-
coming paper [9]). Rational surfaces of this type have alredy been studied
in 1933 by Du Val ([8]).

2. - Auxiliary facts about Enriques surfaces.

2.1. For the convenience of the reader we collect some know facts

about (smooth) Enriques surfaces which will be needed later on.
First recall that on an Enriques surface S we have Ks ~- 0, but = 0

in Pic (S).

LEMMA 2.1. Let 8 be an Enriques surface r c 8 a smooth, irreducible
curve of genus p &#x3E; 1. Let 0 in Pic (.1~). Then :

there exists a such a h’ is connected,
and -,

PROOF. The assertion about ~’2 follows immediately from the adjunc-
tion formula. Next look at the exact sequence of sheaves:

and at the corresponding exact cohomology sequence

We see dim hence there is moreover we
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have and Next look at the exact sequence

and the corresponding exact sequence

Since 0 we have ~’-’~ ~ .Kr and we obtain from this sequence im-

mediately Moreover, h2(r) = 0 is trivial. Now look at

From we get, using that

hence T’ is connected and

REMARK 2.2. Let S be an Enriques surface and put h = S ~ H for a
sufficiently general hyperplane section. Then h satisfies the condition of 2.1.

PROOF. Since 0 we have 0 by the Weil equivalence cri-
terium which can be applied in the case of an Enriques surface ([27, p. 120).
Also since p = = by the same argument as before, we have
p&#x3E; 1.

COROLLARY 2.3. Let S be an Enriques surface embedded in projective space
such that the hyperplanes cut out a complete system. Let T = S H (H hyper-
plane). Then:

has no fixed components and no base points,

2) there exists a which is smooth and irreducible,

4) such a r’ is a canonically embedded curve,

4) 2r, is a finite morphism.

PROOF. Take H sufficiently general such that r is smooth and irre-
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ducible. Look at the same exact sequence of sheaves as in the proof of 2.1,
tensor with We get an exact sequence of cohomology groups

and

Hence Trr is complete, but since is the adjoint system of 
this is the canonical system on .h. Hence it has no base points, but then

itself has no fixed components.
Next suppose is a base point of Take a hyperplane .g°

through P° sufficiently general such that T’o = is a smooth irreducible,,

curve. This is possible because by Bertini and the transversality of Neo
with the tangent plane to ~’ at P° it follows that is smooth and, since
To is an ample divisor, that it is connected. We repeat the above argument
with Fo instead of .1~ and we obtain that Trro is the canonical system;
since this is free of base points the system is itself free of base points.

Next, in order to prove 2, it suffices, by Bertini, to see that I is not

composed with a pencil. However, then the image of S by [ is a curve

and then by taking hyperplane sections we have that the 1~’ are disconnected,
contrary to 2.1.

As to 3, writing again p for the genus of 1~’ it follows from = p
that ~’ spans Since 1~’ cannot be lying in a hyperplane the 1~’ spans
also PP-1, moreover by 2.1 we have also g(T’) = p and the system [0(1)[
= cuts out canonical divisors; hence 1~’’ is canonically embedded in 

Finally, 4 follows from the fact that IT’! ] is base-point free (by 1) and
ample by Nakai’s criterion since (numerical equivalence).

REMARKS 2.4.

i) For further reference we recall that for

ii) Since we have seen above that is not composed with a pencil ,
we have that the corresponding rational map 

’

has a 2-dimensional image.

such that we have a splitting in effec-

.ve curves with Arl contracting r¿2 into a point.

(PROOF. Follows immediately from the fact that is finite.)
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3. - Basic assumptions and preliminary results.

3.1. BASIC ASSUMPTIONS. In the following We PN denotes a three dimen-
sional algebraic variety (shortly: threefold) satisfying the following assump-
tions :

i) W is projectively normal,

ii) if .H is a (sufficiently general) hyperplane then W ~ H = F is a
smooth Enriques surface,

iii) the genus of a «general curve section » is denoted by p, i. e.

9(~’$’g’) =1~~

iv) ~P is not a cone.

LEMMA 3.2. W has isolated singularities.

PROOF. First of all yV has at most isolated singularities, for W ~ .H = F
is smooth. Next: W is singular. For, suppose W was smooth. By the
adjunction formula (Kw + F) -F = Kp. Write T = Kw + F then, since

2Kp = 0 we have 2 T - F = 0. Hence by Weil’s equivalence criterium

([26], Theorem 2) we have 2T = 0. Therefore T = 0 (numerical equival-
ence), _--_ F. Hence-Kw is ample (Nakai-criterium). However, then
W is a Fano threefold. For a Fano threefold Pic ( W ) has no torsion

([14, I. 1.1.1~) ; this yields T = 0, then .E~=0, which is a contradiction.

3.3. NOTATIONS. In the following denote the singular
points of yV’.

Furthermore -V:= denotes a (sufficiently) general curve
section, so by the above assumption = p.

LEMMA 3.4. Hi(W, = 0 for i = 1, 2, 3 and n &#x3E; 0.

PROOF. Consider the exact sequence

and the corresponding exact sequence for cohomology
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Now apply decreasing induction starting with n » 0, and use the fact that
for and

by Kodaira vanishing theorem; we get the result for i = 2 and 3. On the
other hand we have since W is normal, by a result
of Mumford [19]. Therefore applying usual induction, starting with n --- -1
and using = 0, we get the result also f or i = 1. Moreover, this
argument gives also:

COROLLARY 3.5. is surjective for

COROLLARY 3.6. If with then

and the degree o f W is (2p - 2), i. e. we have

PROOF. Note that the hyperplanes cut out a complete linear system
on W by assumption and now also on F by Corollary 3.5. Apply now
Lemma 2.1, then we see that W c PN with N == p.

LEMMA 3.7 (Godeaux [12]). On W there linear of
such that

ii) for a (sufficiently) general cp the hyperplane section is a

canonically embedded curve (2),

iii) for a (sufficiently) general F we have

where is the system of Lemma 2.1.

iv) has no base points except possibly in the singular points PI, ..., 

PROOF. We follow the reasoning given by Godeaux and Fano. Consider

a general pencil Fa = of Enriques surfaces on Wand let jTo == ~’~.1 ~ F;’2
be the axis of this pencil, then p = Choose on To (p -1) points

(2) Both Godeaux and Fano seem to draw from this fact immediately the con-
clusion that is a K3-surface (see for instance [11], p. 42, line 7). However, this
is not justified since g may have singular points (namely the fixed points Pi , ..., I P,
of ~g~~) and then there are also rational surfaces [8] and ruled surfaces [9] with
canonical curve sections.
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A1, ... , -4p-l , independent and in general position (or, if you prefer, inde-
pendent generic points in the sense of Weil). Note that this (p - 1-)-tuple
determines a unique (2p - 2 )-tuple AI, A2, ..., AD A~ , ... , A2P-2 which
makes up a canonical divisor on To . Now take a generic member Fz of the

pencil, then-since the points A1, ..., are independent-there exists a
unique curve from the system IK,,, -~- To I going through A1, ... , 
(and « a fortiori » also through A2n ..., ~2~-2)’ Varying the surface FA within
the pencil the locus of the curve is a surface 99 on W.

By construction F, _ 7~. Moreover, by choosing the points ... , Ap-I
generically independent on To we get a generic member 1~~ of the system.
By Corollary 2.3 this proves ii). Another choice A i, ... , A~_ 1 gives a sur-

face cp* such that (linear equivalence) hence, by [26], The-
orem 2, we have cp.

Now consider the linear system Icpl. Since we can get, in the above
a generic member J we get by specializing that

which proves iii). Moreover, this shows that dim . However,
looking at the exact sequence

and at the corresponding cohomology sequence we see that dim 199 1 p
should imply that there exists a divisor 99 &#x3E; Now deg ffJ = deg (7-7"")
- 2p - 2 - deg (Fa), hence this should imply that 1p1 _ )F[ I which is a

contradiction since in that case on F,, we would have 1 == This

proves i).
For iv), let Pi (i == 1, ..., n) be a base point. Take a hyperplane

section .~o generic through Po ; this gives a (non-singular) Enriques sur-

face By specialization we have on Fo

and hence a base point of different from the singular points gives a
base point of which contradicts 2.3.

Finally v) is a consequence of the following lemma.

3.8..~et S be a surface with at most isolated singularities, 
PP. Assume that = I" is a canonical curve. Then

and dim
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PROOF. Consider the exact sequence

Looking at the corresponding cohomology sequence and using the fact

that r’ is a canonical curve, so that, by Noether’s theorem, it is projec-
tively normal, the assertions follow easily by applying decreasing induc-
tion on n.

3.9. NOTATIONS. Let be the variety obtained by blowing up W in
the singular points P1, ..., P,,; let n : W-W be the corresponding mor-
phism and

If A c W is a subvariety then we denote by A the proper transform
of A on T%y ; we denote the restriction of n to A in order to simplify nota-
tions-by the same letter 7l.

We continue to denote the linear system of hyperplane sections
of Wand we denote by c IFI the linear subspace consisting of the

hyperplane sections going through Pi : Note that according to the above
introduced convention of notations we have now since

3.10. FURTHER ASSUMPTIONS.

1 ) W is smooth.

2) Ei is smooth.

(REMARK. Actually 2 implies 1.)

LEMMA 3.11.

i) A general member 1B of IF i I is smooth,

iii) for general F, i we have -Pi-Ei = d i is smooth and irreducible and

I is very ample on Ei.

PROOF. We have W c PN. Let P be the blow up of PN in Pi, write

again n: P - PN, and put Bi = ~c-1 (Pi ) . Now Bi ^, PN-1 and if is the

system of hyperplanes through Pi then Tr B, In i I is the complete system
of hyperplanes on Bi and therefore


