@article{ASNSP_1985_4_12_4_641_0, author = {Lasiecka, I. and Triggiani, R.}, title = {Finite rank, relatively bounded perturbations of semigroups generators}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {641--668}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 12}, number = {4}, year = {1985}, mrnumber = {848843}, zbl = {0602.47029}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1985_4_12_4_641_0/} }
TY - JOUR AU - Lasiecka, I. AU - Triggiani, R. TI - Finite rank, relatively bounded perturbations of semigroups generators JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1985 SP - 641 EP - 668 VL - 12 IS - 4 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1985_4_12_4_641_0/ LA - en ID - ASNSP_1985_4_12_4_641_0 ER -
%0 Journal Article %A Lasiecka, I. %A Triggiani, R. %T Finite rank, relatively bounded perturbations of semigroups generators %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1985 %P 641-668 %V 12 %N 4 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1985_4_12_4_641_0/ %G en %F ASNSP_1985_4_12_4_641_0
Lasiecka, I.; Triggiani, R. Finite rank, relatively bounded perturbations of semigroups generators. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 12 (1985) no. 4, pp. 641-668. http://archive.numdam.org/item/ASNSP_1985_4_12_4_641_0/
[B-N1] Fourier Analysis and Approximations, Vol. 1, Academic Press, New York, 1971. | MR | Zbl
- ,[D1] Introduction to the theory and Application of the Laplace transformation, Springer-verlag, New York, Heidelberg, Berlin, 1970. | MR | Zbl
,[D-S1] On relatively bounded perturbations of linear C0-semigroups, preprint May 1983, Institute für Mathematik, Technische Universität Graz, Austria.
- ,[F1] The Cauchy Problem, Encyclopedia Math. Appl., Addison-Wesley, 1983. | MR
,[H-P1] Functional Analysis and semigroups, Amer. Math. Soc., , 1957. | MR | Zbl
and ,[K1] Perturbation Theory of Linear Operators, Springer-Verlag, 1966. | MR | Zbl
,[K2] Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math., vol. XXIII (1970), pp. 277-298. | MR | Zbl
,[M1] Partial differential equations, MIR Publishers, Moscow (English translation), 1978. | MR | Zbl
,[P1] Semigroups of Operators and Applications to Partial Differential Equations, Lect. Notes # 10, Math. Dept. Univ. of Maryland, College Park (1974). | MR
,[L-T1] A cosine operator approach to modelling L2(O, T; L2(Γ))-input hyperbolic equations, Appl. Math. Optim., 7 (1981), pp. 35-93. | Zbl
- ,[L-T2] Hyperbolic equations with Dirichlet boundary feedback via position vector: regularity and almost periodic stabilization, I, Appl. Math. Optim., 8 (1981), pp. 1-37. | MR | Zbl
- ,[L-T3] Dirichlet boundary stabilization of the wave equation with damping feedback of finite range, J. Math. Anal. Appl., 97 (1983), pp. 112-130. | MR
- ,[L-T4] Feedback semigroups and cosine operators for boundary feedback parabolic and hyperbolic equations, J. Differential Equations, 47 (1983), pp. 246-272. | MR
- ,[L-T5] Nondissipative boundary stabilization of the wave equation via boundary observations, J. Math. Pures Appl., 63 (1984), pp. 59-80. | MR
- ,[L-T6] Regularity of hyperbolic equations under L2(O, T; L2(Γ))-Dirichtet boundary terms, Appl. Math. Optim., 40 (1983), pp. 275-286. | Zbl
- ,[L-T7] Hyperbolic equations with nonhomogeneous Neumann boundary terms. - I: Regularity. To appear.
- ,[L-T8] Dirichlet boundary control problem for parabolic equations with quadratic cost: analyticity and Riccati's feedback synthesis, SIAM J. Control Optim., 24 (1983), pp. 41-67. | MR | Zbl
,[L-T9[ Finite rank, relatively bounded perturbations of semi-groups generators. Part II : spectrum and Riesz basis assignment with applications to feedback systems, Ann. Mat. Pura Appl. to appear. | Zbl
- ,[R1] L2 is a continuable initial condition for Kreiss mixed problems, Comm. Pure Appl. Math., 25 (1972), pp. 265-285. | MR | Zbl
,[T1] Well posedness and regularity of boundary feedback parabolic systems, J. Differential Equations, 36 (1980), pp. 347-362. | MR | Zbl
,[T2[ Aε-bounded, finite rank perturbations of a s.c. group generators : counterexamples to generation and to another condition for well-posedness. Lecture Notes in Mathematics 1076, Infinite dimensional systems, Proceedings, Retzholf (1983), Springer-Verlag (1984), pp. 227-253. | Zbl
,[Y1] Functional Analysis, Springer-Verlag, 4th Edition, 1976.
,