On the order of ζ(1 2+it)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 13 (1986) no. 3, pp. 449-472.
@article{ASNSP_1986_4_13_3_449_0,
     author = {Bombieri, E. and Iwaniec, H.},
     title = {On the order of $\zeta (\frac{1}{2} + it)$},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {449--472},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 13},
     number = {3},
     year = {1986},
     zbl = {0615.10047},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_1986_4_13_3_449_0/}
}
TY  - JOUR
AU  - Bombieri, E.
AU  - Iwaniec, H.
TI  - On the order of $\zeta (\frac{1}{2} + it)$
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1986
SP  - 449
EP  - 472
VL  - 13
IS  - 3
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_1986_4_13_3_449_0/
LA  - en
ID  - ASNSP_1986_4_13_3_449_0
ER  - 
%0 Journal Article
%A Bombieri, E.
%A Iwaniec, H.
%T On the order of $\zeta (\frac{1}{2} + it)$
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1986
%P 449-472
%V 13
%N 3
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_1986_4_13_3_449_0/
%G en
%F ASNSP_1986_4_13_3_449_0
Bombieri, E.; Iwaniec, H. On the order of $\zeta (\frac{1}{2} + it)$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 13 (1986) no. 3, pp. 449-472. http://archive.numdam.org/item/ASNSP_1986_4_13_3_449_0/

[1] E. Bombieri - H. Iwaniec, Some mean-value theorems jor exponential sums, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13, no. 3 (1986), pp. 473-486. | Numdam | MR | Zbl

[2] J.-M. Deshouillers - H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math., 70 (1982), pp. 219-288. | MR | Zbl

[3] J.B. Friedlander - H. Iwaniec, On the distribution of the sequence , to appear in the Canadian J. Math. | Zbl

[4] S.W. Graham - G. Kolesnik, One and two dimensional exponential sums, preprint 1984 (to be published in the Proceedings from the Conference on Number Theory Held at the OSU in July 1984). | MR | Zbl

[5] G.H. Hardy, On certain definite integrals considered by Airy and by Stokes, Quart. J. Math., 44 (1910), pp. 226-240. | JFM

[6] G. Kolesnik, On the method of exponent pairs, Acta Arith., 55 (1985), pp.115-143. | MR | Zbl

[7] E. Phillips, The zeta-function of Riemann: further developments of van der Corput's method, Quart. J. Math., 4 (1933), pp. 209-225. | JFM | Zbl

[8] R.A. Rankin, Van der Corput's method and the theory of exponent pairs, Quart. J. Math., 6 (1955), pp. 147-153. | MR | Zbl

[9] E.C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford 1951. | MR | Zbl

[10] J.D. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc., 42 (2) (1985), pp. 183-216. | MR | Zbl