@article{ASNSP_1986_4_13_3_449_0, author = {Bombieri, E. and Iwaniec, H.}, title = {On the order of $\zeta (\frac{1}{2} + it)$}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {449--472}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 13}, number = {3}, year = {1986}, zbl = {0615.10047}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1986_4_13_3_449_0/} }
TY - JOUR AU - Bombieri, E. AU - Iwaniec, H. TI - On the order of $\zeta (\frac{1}{2} + it)$ JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1986 SP - 449 EP - 472 VL - 13 IS - 3 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1986_4_13_3_449_0/ LA - en ID - ASNSP_1986_4_13_3_449_0 ER -
%0 Journal Article %A Bombieri, E. %A Iwaniec, H. %T On the order of $\zeta (\frac{1}{2} + it)$ %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1986 %P 449-472 %V 13 %N 3 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1986_4_13_3_449_0/ %G en %F ASNSP_1986_4_13_3_449_0
Bombieri, E.; Iwaniec, H. On the order of $\zeta (\frac{1}{2} + it)$. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 13 (1986) no. 3, pp. 449-472. http://archive.numdam.org/item/ASNSP_1986_4_13_3_449_0/
[1] Some mean-value theorems jor exponential sums, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13, no. 3 (1986), pp. 473-486. | Numdam | MR | Zbl
- ,[2] Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math., 70 (1982), pp. 219-288. | MR | Zbl
- ,[3] On the distribution of the sequence n2θ(mod 1), to appear in the Canadian J. Math. | Zbl
- ,[4] One and two dimensional exponential sums, preprint 1984 (to be published in the Proceedings from the Conference on Number Theory Held at the OSU in July 1984). | MR | Zbl
- ,[5] On certain definite integrals considered by Airy and by Stokes, Quart. J. Math., 44 (1910), pp. 226-240. | JFM
,[6] On the method of exponent pairs, Acta Arith., 55 (1985), pp.115-143. | MR | Zbl
,[7] The zeta-function of Riemann: further developments of van der Corput's method, Quart. J. Math., 4 (1933), pp. 209-225. | JFM | Zbl
,[8] Van der Corput's method and the theory of exponent pairs, Quart. J. Math., 6 (1955), pp. 147-153. | MR | Zbl
,[9] The Theory of the Riemann Zeta-Function, Oxford 1951. | MR | Zbl
,[10] Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc., 42 (2) (1985), pp. 183-216. | MR | Zbl
,