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Oblique Derivative Problems and Invariant Measures (*).

I. CAPUZZO DOLCETTA - M. G. GARRONI

0. - Introduction.

The present paper is devoted to the study of some second-order oblique
derivative problems for an operator A not in the divergence form and for
a boundary operator B with Holder continuous coefficients.

One major purpose is to describe the limiting behaviour of the solutions
11-;. of the unilateral problem:

in

on

as the positive parameter A tends to zero. This is motivated by the control
theory of stochastic processes. The above boundary value problem actually
comprises the Bellman conditions for the optimal stopping of a diffusion
process in Q reflected at the boundary (see [3]). The case 1 &#x3E; 0 corresponds
to discounted cost functionals while A = 0 is related to long run average
costs (see [19] and [6] for the case of finite Markov chains).

This problem has been studied by A. Bensoussan and J. L. Lions

(see [4]) in the case of regular coefficients. Their main result is that the

asymptotic behaviour of ux, as I tends to zero, depends on the sign of the
average value of f with respect to the measure mdx, m being the solution
of the problem

in

on

(*) Partially supported by Ministero P.I., Progetto Nazionale «Calcolo delle
Variazioni ».

Pervenuto alla Redazione il 6 Dicembre 1984 ed in forma definitiva il 28 Gen-
naio 1986.



690

In the general framework considered in this paper the main difficulties.
arise from the non-divergence structure of A. Actually, the fairly low
regularity of the coefficients does not allow a Fredholm alternative approach
by integration by parts. Nevertheless, using the Green’s function G(x, y, t)
for the initial boundary value problem associated with A and B as constructed
in ([13]), we prove the existence of a unique positive function mE Loo(Q).
such that 

Here, JA is the resolvant of the stationary problem

in , 

on

and J§J its adjoint operator. Moreover, the identity

holds for every f E Lv; I p  + oo.
The probability measure d,u = -IIIQlmdx can be interpreted then as the

invariant measure for a Feller process defined by the transition functions.

.E Bore] subset of Q.

This, together with a crucial ergodic property proved in Theorem 3.1,
is the key to prove that if the condition f fdp, &#x3E; 0 is satisfied, then the Wg

D

norms of ui are uniformly bounded with respect to A and that u = lim u.
in the weak topology of -W,, is the unique solution of

in

on

We send to Theorem 4.2 for this result and for the limiting behaviour
in the case ffdlzo.

’I

To conclude this introduction we would like to point out that the analyt-
ical approach adopted in this paper to the stochastic control problem
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mentioned above yields a complete description of the asymptotic behaviour
and of compatibility conditions for the solvability of the limit problem
without the restrictions on the regularity of the data required by prob-
abilistic methods (see [19]).

Let us also mention that Theorem 2.1 in Section 2 generalizes various
known existence and uniqueness results (see for example [8], [23]) for the
unconstrained problem

in .

on

We finally mention that extensions of the results of this paper to integro-
differential operators associated to diffusion processes with interior jumps.
are considered in a forthcoming paper by M. G. Garroni and J. L. Menal-
di [12].

The authors are grateful to A. Gerardi and G. M. Troianiello for useful
discussions.

1. - Basic assumptions and preliminary results.

Let Q be a bounded open subset of RN, N &#x3E; 2, with boundary r of class
C2. We shall denote by Qp the cylinder D X 10, T[, 0  T  + oo, and by
ET= Tx [0, T] its lateral boundary. Consider the operators i

whose coefficients are assumed to satisfy

Here v == (v,,, ..., vN) is the outward normal vector to r.
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We shall denote by W;, w;,r the usual Sobolev spaces for elliptic and
parabolic problems with possibly non-integer s, r and by If. If 8,1" If. II s,r,fI the
corresponding norms (see [11) and by 11 - 11, the usual L1’(Q) norm.

We shall always assume

This condition guarantees that Bu E W-l/D(r) for any u E W;(Q).
We shall make use of regularized versions of operators A, B.
These are defined by

where the coefficients a" , b" are chosen in such a way that

in

with constants a, fl as in (1.3), (1.4). In this setting An can also be written
in divergence form, namely

as

in

The symbol JEJ stands for the Lebesgue measure of the subset B 9 Q,
while xE denotes the characteristic function of E.

All equalities and inequalities between LlI functions will be meant to
hold almost everywhere. Different constants occurring in various estimates
"will be denoted by the same letter C.
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We are interested in the following oblique derivative problems

in

on

and

in

on

Here, A&#x3E; 0 is a constant, f, V are given i unctions.
Our approach to problems (I), (II) relies on the use of the Green

function G = G(x, y, t) for the parabolic initial-boundary value problem
associated with A, B. The following results is contained, in a more general
setting in Garroni-Solonnikov [13] :

THEOREM 1.1. Under the assumptions (1.3), (1.4), there exists a function,
G(x, y, t) such that

in

in

on

and
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Here above s, r are non negative integers such that 2s + r = 2, e(x)
denotes the distance of x from F, aVb stands for the greatest between the
num.bers a, b and t &#x3E; t’ &#x3E; 0.

Let us consider the parabolic mixed problem

in

in

on

with satisfying the compatibility conditions

on

As a consequence of Theorem 1.1 and a result of Solonnikov ([21]) the
following holds :

THEOREM 1.2. Let us assume (1.3), (1.4), (1.5). Then, for any T&#x3E; 0,
f E Lp(QT), rp E W;-2/D(Dp) satysf ying (1.18), there exists a unique solution

1) E W=,l(QT) o f (1.17) given b y

Moreover,

for some constant C = C(T ) with polynomial growth in T.
The next lemma exploits some properties of G that will be useful later.

LEMMA 1.1. The Green’s function G satisfies

(1.22) for every ball B c Q and t &#x3E; 0 there exists y &#x3E; 0 such that

for every
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PROOF. By construction (see [13], Part 2) G is the sam Go + 01, where

locally, 

Hence, 

with

Let us fix an arbitrary Y E Q. From (1.24) it follows that, for any suffi-
ciently small positive e,

Also,

in

in

on

By the estimates (1.15), (1.16), G belongs to

and is Cl+", (1 +1X)/2 up to the lateral boundary of
Let us assume that is attained at

some point
Then the parabolic maximum principle (see [18]) yields G = m on

Qi - °e(Y) and, in particular, on the lateral boundary of °e(Y).
Since e was arbitrary, this contradicts (1.24).
On the other hand, m cannot be attained on Zr since this would contradict

the oblique derivative conditon in (1.26). Therefore, m is attained at some
point (x, 0). The initial condition in (1.26) then implies

in

This, together with (1.25), proves that (1.21) holds true.
Let us choose now t such that 0  t C Q2 - The same argument as above

shows that the infimum m of G on QT - Q¡ - Ce(y) is attained at some
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point (x, y, t) . If it were G(x, y, 1) = 0 then, as a consequence of the magimum
principle when applied to QT - Co (y), it would be

in

This is a contradiction, since G is strictly positive on a CIP(Y) (see (1 .25)).
Therefore, m&#x3E;0 and (1.22) is proved.
To prove (1.23), it is enough to combine the representation formula

(1.19) with the observation that the solution of problem (1.17) with f == 0
and fir::::::. 1 is w- 1, 0

2. - The case A&#x3E; 0 -

In this section we shall deal with the case Â &#x3E; 0 and prove existence,
uniqueness and Wj estimates for the solution of (I) and (II).

For more regular coefficients (that is aij b i Lipschitz continuous ) problem
(I) has been extensively studied (see, for example [2]). In the non-variational
case (I) has been studied under various type of assumptions by C. Miranda [17],
M. Chicco [8] and G. M. Troianiello [23].

The following theorem is related to the results mentioned above. Let

us point out, however, that the boundary coefficients bi are not required
to be Lipschitz continuous and that exponents 1  p  2 are allowed.

THEOREM 2.1. Let us assume (1.3), (1.4), (1.5). Then, for any A &#x3E; 0,
f c L,(,Q) , problem (I) has a unique solution given by

Moreover, the estimates

hold, where C denotes different positive constants depending on p, p, # and
the Holder norms of the coefficients, but independent o f A &#x3E; 0.
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PROOF. Let v = v(x, t) be the solution of problem (1.17) with (p = 0.
Then (2.1) becomes

Hence, 

with O(Â) = Â-l/V’ .
Taking (1.20) into account, we obtain

and (2.2) is proved.
In a similar way,

By a standard interpolation argument, (2.7) and (2.2) give (2.3).
The next step is to show that ui is actually a solution of (I). To this

purpose observe that

Hence, integrating by parts and taking the homogeneous initial condi-
tion on v into account, 

in

On the other hand,

on

since satisfies the homogeneous boundary condition in (1.17).
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Let us prove now that (I) has a unique solution. This amounts to show

that if z G-WI(S2) is such that

in

on

then z = 0.

Let us denote to this purpose by wi and v2, the solutions of

in

in

on

It is easy to check that v, - z and

problem, namely
ds satisfy the same mixed

in

in

on

By the uniqueness result in Theorem 1.2 it follows then that

These yield

(2.8)

and, consequently, 

Hence, exp [- Ât]Vl equals some function of x only, say C(x). The

limit relations,

(2.9) lim ilexp [- Ât}V1 BB Lp(Qt) == 0, lim llexp [- Ât]Vl - ØBBLp(Qt) = 0,
t-. t-

which follow from (1.20) and Theorem 1.2 imply z = 0. 0
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REMARK 2.1. The case of an inhomogeneous boundary condition

Bu = Bh EW-l/P(r) in (I) can be treated in a similar way, via a suitable
change of unknown function.

COROLLARY 2.1. The solution u). of (I) is also given by

PROOF. Let us assume temporarily f E W’-’I"(D) and observe that

is the unique solution of

in

in

onon
A verification similar to the one in the proof of Theorem 2.1 shows

that ua given by (2.10) is a solution of (I). By the uniqueness part of
Theorem 2.1 the representations (2.1), (2.10) must coincide. The validity
of (2.10) for general f c- L,(D) follows by a density argument, taking (2.3)
into account.

Let us consider now the unilateral problem (II). The following result
holds:

THEOREM 2.2. Let us assume (1.3), (1.4), (1.5), f E Lp(Q) ancl

on

Then, for any 2 &#x3E; 0 there exists a unique solution u of (II). Moreover,

in on

and u satisfies the Lewy-Stampacchia inequality

in
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PROOF. Let us consider regularized operators An, Bn(n = 1, 2, ...) as

described in § 1 and the auxiliary problems

in

on

where y? is the unique solution of

in

on

The method of variational inequalities applies to problem (2.14)
(see [3], [23]). Hence, (2.14) has a unique solution un and the Lewy-Stam-
pacchia inequality holds;

in

on

From (2.15) it follows that

in ,

for some

Hence, taking estimate (2.2), (2.3) into account,

independent of n .

Therefore at least a subsequence of un converges weakly in W;(Q) as
n --+ + oo to some u EW:(Q).

The passage to the limit in (2.14), (2.15) shows that u is a solution of (II)
and (2.13) holds.

Let us prove now that any solution of (II) satisfies (2.12). Of course

this will imply uniqueness of the solution.
Let v be an arbitrary function satisfying the inequalities in (2.12).

Mimicking an argument due to Troianiello [24], let us define vn as the solu-

(*) Inequality (2.15) can be proved in the case 1  p  2 using the results of [11].
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tion of

where u is a solution of (II).
It is easy to check that

in

on

from which it follows that v,,  v  V. It is also clear that

in on

On the other hand any solution u of (II) satisfies

in

on

Hence, known results in the variational case (see [23]) yield

Since vn -&#x3E; v in W,(,Q), the statement (2.12) is proved. 0

REMARK 2.2. The same result holds for less regular obstacle of the type

the inequality (2.12) being substituted by j 

Non-homogeneous boundary conditions can be treated by suitable

change of variables.

3. - Fredholm alternative and invariant measures.

Let us denote by JA(Â&#x3E; 0) the Green operator of problem (I), which
associates to any f E Lp(Q), 1  p  1/(l - Lx) the unique solution i&#x3E;. = JAf
of problem (I).
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LEMMA 3.1. Ji is a compact operator acting on Lj)(Q), (1  p  1/1 - a),
and Ker (I - AJA) = R.

PROOF. The first statement is an immediate consequence of estimate (2.2)
and the Rellich compactness theorem.

Since, as it is obvious, Ker (I - 2Jx) is independent of A we can take
A = 1. Taking (2.10) and Lemma 1.1 into account, we find that

in

for any
Since Jl C = C for any real constant C, the theorem 6.6 of [20] applies,

yielding that It = 1 is a simple eigenvalue of Jl . This proves the Lemma. D

Now, by the Fredholm alternative, the adjoint equation

has a one dimensional space of solutions and

is solvable if and only if g satisfies the compatibility condition

The next theorem provides further information on Ker (I - ÂJi), which
will be of essential use for the result in § 4.

THEOREM 3.1. Let us assume (1.3), (1.4), (1.5).
Then, for every Â &#x3E; 0, equation (3.1) has a unique solution m such that
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Moreover, for any t &#x3E; 0 and

with K, v independent o f f (*).

PROOF. From (3.1) it follows that

Then

Therefore, the choice q’ &#x3E; N/2 yields

Let us start by showing that any solution m of (3.1) has a constant
sign almost everywhere in Q.

At this purpose, set

and assume that 0  I!J+I  IDI.
Multiplying (3.1) by Xn- one finds that

(*) Further regularity properties of the function m will be the object of another
paper (see [12]).
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The representation (2.10), together with (1.22), (1.23) of Lemma 1.1,
yields

in

Use this in (3.8) to get

which is absurd. Hence ItJ+1 = I!JI and the statement is proved.
Since Ker (I - 2J*) is one-dimensional, this must contain some k &#x3E; 0,

gh # 0. Then, (3.4) is satisfied by m = fal (IQ lfkdx) -
0

Actually, m &#x3E; 0 in Q. Assume by contradiction that tJo _ {x E Qfm = 0}
has positive measure and multiply (3.1) by Xno. Then,

since Jz Z.Q.. &#x3E; 0 (see the proof of Lemma 3.1).
In order to prove (3.5), let us multiply (3.1) by an arbitrary f E Lp(Q)

to obtain

Since the above yields

The term in square brackets in (3.9) being a continuous function of t,
(3.5) is proved.
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Let us prove now the estimate (3.6). Following [5], Thm. 3.1 p. 365,
we consider, for n = 1, 2, ... , and for any Borel subset E in S2, the measures

Since

we obtain

If we define now the set Q+ =,Q+ by

we have, taking (1.23) of Lemma 1.1, into account,

Hence, by (1.22) of Lemma 1.1,

Using this in (3.10), we obtain
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and, by iteration,

Let us estimate now

or, which is the same, thanks to (3.5),

Now, the obvious inequalities

(3.4) and (3.14) yield

At this point from (3.15) it follows that

for some constant .K depending only on Q.
If we choose now v = - P log (1 - riB!), the inequality (3.6) is proved

for positive integer t = [t] and f = xE .
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Now for t &#x3E; [t], we have

Using a density argument we obtain (3.6). D

We want to give now a probabilistic interpretation of Theorem 3.1.
By means of the Green’s function one can define a family of probability
measures P(x, t, E) on S2 in the following standard way,

where E is any Borel subset on Q. To P(x, t, E) it corresponds a l inear
operator 0(t) defined by

The easy estimate

together with the estimates of Theorem 1.1, implies that .P(t) is a continuous
operator on C(D). Taking the result of § I and (3.17) into account it is

straightforward to check that

In probabilistic terminology (see [9]) this means that P() is a Feller

semigroup on O(tJ). Actually, 0(t) is associated with a diffusion process
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in Q, reflected at its boundary r according to the vector field b = (bl ... bN),
(see [22] and for recent results, [15]).

Let us recall for the convenience of the reader the notion of invariant

probability measure for such a semigroup. A probability measure p on 17,
endowed with the Borel or-algebra, is invariant for 0(t) ff

(see [9]). From Theorem 3.1 it follows then that

can be interpreted as an invariant probability measure for the semigroup
defined by (3.16). The estimate (3.6) still holds with respect to the norm
in C(D) and this implies that Iz is the unique invariant measure of 0(t),
(see [5]).

When the operator A has Lipschitz continuous coefficients and b is C1,
an integration by parts shows that (3.1) becomes the adjoint homogeneous
differential problem of (I), namely

in , 

on

(see [17], p. 14-15, for an explicit formula for the adjoint operator B*)-
We conclude this section by showing that even in the present frame-

work the function m can be constructed purely by PDE methods. At this
purpose, let us consider the problems

in

on

where A* n 7 B* are the adjoints of the regularized operators An, Bn given
by (1.6), (1.7).

It is known (see for example [4]) that (3.22) has a unique solution mn
such that
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Define now probability measures /-In on 17 by

dx

and denote by 0,,,(t) the Feller semigroup associated with .A.n, Bn. Then,
we have the following :

THEOREM 3.2. Let us assume (1.3), (1.4), (1.5) and a &#x3E; (N + 2)/2. Then,
the measures /In defined by (3.23) are invariant for Øn(t) and converge weakly
in the sense of measures, as n -&#x3E; + 00, to the invariant measure It of 0(t),
,defined by (3.20).

PROOF. Consider the function

where f is arbitrary in Then,

An integration by parts, taking (3.22) into account, shows that 0’(t) = 0,
Vt &#x3E; 0 hence O.,,(t) == On(O) = 0.

A standard density argument completes the proof of the first part of
the theorem.

The weak convergence of un to some probability measure j1i being
immediate, the next step is to identify with ,u. To this end, let f E W;-2/D(Q),
p &#x3E; (N + 2)/2, and zn = (0,,,(t) - 0(t)) f. Then, zn satisfies

in

in

on

for any T &#x3E; 0. By the parabolic estimates (see Theorem 1.2)

with C independent of n.
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The right-hand term of (3.24) tends to zero as n -&#x3E; + o and so

uniformly in x .

Hence,

and by density the same holds true for
Since, trivially,

the measure í1 is invariant for 0(t). From (3.6) of Theorem 3.1 it follows

that

a.e. in

at least for a subsequence tk. Therefore, by the Lebesgue dominated con-
vergence theorem,

Since [t is invariant for 0(t), we have also

Hence, comparing this with (3.25), [t = p. D

4. - The limiting case Â = 0. 

This section is devoted to the study of problems (I) and (II) in the

case Â = 0. Let us observe that

in

on

is equivalent to
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Hence, by the results of § 3, (4.1) is solvable if and only if f E Lf)(Q}
satisfies

for any solution m of (3.1) or, which is the same,

An immediate consequence of the definition of J;. and m which will
be useful later on, is that the solution ua, of (I) satisfies

Let us state now the main result concerning problem (4.1) and then
behaviour as Â -70 of the solutions UÂ of (I).

THEOREM 4.1..Let us assume (1.3), (1.4), (1.5), f E Lj)(Q). A necessary
and sufficient condition for (4.1) to have a solution is that

If (4.6) holds then,

C independent o f Â &#x3E; 0

and (4.1) has a unique solution u such that

given by

weakly in
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PROOF. If (4.1) or, eqlúvalently, (4.2) has a solution u for a given
j E Lp(Q), then

On the other hand,

and the necessity of condition (4.6) is established.

Let ui, u, be two solutions of (4.1). Then,

and so, by Lemma 3.1, Ul - U2 = C. If then

and therefore C = 0.

Let us prove now that if (4.6) is satisfied, then

C independent of A &#x3E; 0 .

Using the Holder inequality in the integral with respect to t in repre-
sentation (2.10), one obtains

Hence, taking (3.6) into account,

for some constant C depending on v, p not on Â.
Therefore, the fundamental estimates (2.3) and (4.11) give (4.7). Now

standard arguments show that ua converge weakly in TV,2(Q) as A __&#x3E;_ 0 to

a solution u of (4.1) such that fum dx = 0. This last fact follows from (4.5).
D

The estimate (3.6) guarantees that u is given by (4.8). D
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REMARK 4.1. The uniform convergence of ux to u has been proved by
Robin [19] in the case f E C(Q) and for Lipschitz continuous boundary
vectorfield b. This result follows, of course, from Theorem 4.1, if p &#x3E; N..

REMARK 4.2. As a consequence of Theorem 4.1

in on

has a unique solution v E W;(Q) such that Ivmdx = 0, for any given.
h E L1)(Q). 12

From (4.8) it follows that v satisfies

and the estimate (3.6) shows that

Hence, the ergodic formula

as

as

holds for any hE Lp(Q).
We are interested now in the behaviour of the solution ua, of the uni--

lateral problem as A ---&#x3E; 0.

Let us assume, for simplicity, 1p = 0. For the case of V # 0, see

Remark 4.5 below. The next lemma contains two estimates which will be

useful later.

LEMMA 4.1. There exist constants 01, C2 independent of A&#x3E; 0 such that.
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PROOF. From the Lewy-Stampacchia estimate (2.13) follows that for
some gÂELp(Q), 0 c ga, c f +,

in

on .

Hence (see 4.5), 

Set Ca, = 1 / I D I f u).mdx and w). = ui - Ca, . From (4.14) it easily follows
that w). satisfies

in

on

Taking into account (4.5) we have necessarily

Hence, estimate (4.7) of Theorem 4.1 yields

for some C independent of A, and (4.13) follows through the basic estimate
(2.3). D

The next theorem describes the behaviour as Â - 0 of the solutions ’It,B

of problem (II).

THEOREM 4.2. Let us assume (1.3), (1.4), (1.5), f E Lp(Q). Then, as

A ---&#x3E; 0,

1 ) if I fmdx &#x3E; 0, the solutions u). o f (II) converge weakly in ’W,(D)
n 

,to the unique solution u of

in

on
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2) if ffm dx  0, then wA = uA - 1- / I Q f uA m dx converge weakly in
Q 0

W,2(,Q) to the unique solution w of

in

on

3) i f ffmdx = 0, and p &#x3E; N12 then ua converge weakly in W;(Q) to
sa 

p

the maximum solution u of

in

on

PROOF. Let us consider the functions

Of course,

in

on

By Lemma 4.1, at least a subsequence of wi converges weakly in W,(.Q)
as I ----&#x3E; 0 to some w such that fwA m dx = 0 and Z C). --&#x3E;- L  0.

n

Consider the sets Then,

Since the left hand term has a finite limit as 1 --&#x3E;- 0, (4.20) shows that if

then ISAI --&#x3E;O as Â -7 o.
From (4.19) it follows that

in
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Passing to the limit in the above equations we find that w satisfies

in J

on 

(observe, to justify this, that

Let us assume now

From (4.22) it follows that Ef m dx = ffm dx, which contradicts (4.2 3), since
- D

E  0. Therefore, if (4.23) holds, then Ci is bounded. This yields immediately
the boundedness of uA in W;(Q), (see Lemma 4.1). A passage to the limit
in (II) shows that the weak limit u of uz is a solution of (4.16). Let 4t- be anoth-

er solution of (4.16). Then 4t’ satisfies the inequalities u °, Au + Âùf
in Q and Bu = 0 on F. Hence, by Theorem 2.2, uu;. for every A &#x3E; 0,
so that

From (4.16) it follows that

and, taking (4.24) into account, this gives A(u - u) °. Hence u - U

satisfies

in

on

for some g  o. The necessary condition of Theorem 4.1 implies that g = 0,
and as a consequence of Lemma 3.1 one obtains u - U = C for some

constant C. If C &#x3E; 0 then ft = u - 0  - C  0 and therefore (4.16)
reduces to

in

on .

By taking the necessary condition (4.6) into account we obtain ifmdx - 0
contradicting (4.23). Hence, by virtue of (4.24), C = 0 and u = 2c.
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Assume now

and suppose that CA is bounded below. Then CA - C, 2Ck ---&#x3E;- 0 and, passing
to the limit in (4.19) as 1 --&#x3E; 0 one finds that the weak limit w of wi satisfies

in

on

Hence, for some y&#x3E;0y

So that necessarily, j(f - g)mdx = O. But this contradicts (4.26) and

therefore Ct --&#x3E;- - oo. Hence, (4.22) must hold and the necessary condi-
tion (4.6) yields Jfmd0153 = LIQI.

D

This proves the second part of the theorem.
Let us consider finally the case

By Theorem 4.1 and the assumption p &#x3E; N/2, the solutions ZÄ of

in

on

are bounded in W:(Q) and Loo(Q), uniformly in Â.

It is easy to check that zt - Ilz).lIoo is a subsolution of (II). Hence, taking
(2.12) into account,

From Lemma 4.1 it follows that

and therefore II u).1I2,fJ 0, for some constant C independent of A. By the
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Lewy-Stampacchia inequality (2.13), UÂ satisfies

in

on

for some gA &#x3E; 0 with 11 gA ll,,  C. Let u, g be weak subsequential limits of U;.

and ga,, respectively. Letting A --* 0 in (4.29) one finds that u is a solution of

in 

on j 

Then, necessarily, 

so that g = 0. This proves that u satisfies (4.18).
To prove the maximality of u = ii-N ua, let i be another solution of

(4.18). Then, for every 1 &#x3E; 0, 

in

Hence by (2.12) -,

so that

This shows also that the whole family u). converges and the proof is com-
plete. 0

REMARK 4.3. The proof of the theorem shows that also for ilmdx = 0,
the functions wa = uz - I / IQ I f ua m dx converge weakly in ’W,’ , (92) to the

!J

unique solution of (4.17) without the restriction p &#x3E; N12.

REMARK 4.4. The above theorem extends previous results of Bensous-
san-Lions [4] and Robin [19].

REMARK 4.5. The case of an obstacle 1p :t= 0 with By = 0 in (II) can
be dealt with by means of the translation z). = ua - 1p. Then z,B satisfies

Max
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It is easy to check that if then

for sufficiently small 2. Hence by theorem 4.2, UÂ converges to the solution u
of Max [u - V; Au - f] =- 0 in Q, Bu = 0 on V.

Conversely, if ffm dx  0, then aA  0 for small 2 and the result is
s2

that wg = UÂ - OÂ converges to the unique solution w of

in , 1 on

Finally, if ffm dx = 0 = f ym dx and p &#x3E; N/2 , then u). converge weakly
!J S2

to the maximum solution u of

in on
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