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Holomorphic Generators of Some Ideals in C~(D)

PAOLO DE BARTOLOMEIS

dedicated to B.V. Shabat

0. Introduction, notations and statement of the main results

Let D c be a bounded domain with C°°-smooth boundary, V a complex
submanifold of a neighbourhood of D such that D n V = Jir the
sheaf of ideals of V and set:

It is well known (see e.g. [7]) that if E 0(D) 
1  j  k, represent a complete defining system for V (i.e. for every x E D,

generates over Oz), then generate Et" (V)
over C°°(D) if and only if D and V are regularly separated in the sense of
-Lojasiewicz, i.e. there exist h E Z I and C &#x3E; 0 such that for every x E D we

-

Fig. 1

Pervenuto alla Redazione il 20 Gennaio 1986.



200

have:

It is a natural question to ask under which assumptions, more in general,
I °° (V ) U I °° (V ) generates over 

It is clear that is not always the case:
take e.g.: V = L = Iz,,,, = O}, Q any bounded domain with COO-smooth

boundary such that Q n L = S2 n L fl 0 and 11 and L are not regularly separated
somewhere; let B a ball containing Q and let finally D = B B Q. Obviously
we have = so lOO(V) is generated by (cf. [1] ] [4]), while
(zn+), C 

Q 
. 

Of course, pseudoconcavity of D plays an essential role in this example.
The main result of this paper is the following:

THEOREM. Let D c be a bounded strictly pseudoconvex domain with

Coo -smooth boundary, let V be a complex submanifold of a neighbourhood of
D such that D n V = D n V fl ø, and let gl , ... , gk be a complete defining system
for V.

Then there exists m such that for every f E one can find
Ai,...,A,, E 100(V), a),...,ak, b),...,bk, cl,...,cm, d),...,dm E COO(D) in

such a way that:

Note that no requirement other than is made about the
mutual position of D and V.

The general ideas of the proof are the following:

1. Investigating the geometry of D n V (Lemmas 1.1 and 1.2) we prove that,
in the strictly pseudoconvex case, the area of bad contact (i.e. non regular separa-
tion)
between D and V, can be locally included in a totally real submanifold E of bD
2. Since E is totally real, functions in are (relatively) flabby on E and
so, in some sense, they can be deformed on E (Proposition 2.1) in order to

reproduce locally any (possibly bad) behaviour of functions in 
3. Using some arguments from [4], we pass from the local result to the Theorem
(Lemma 3.1 I and proposition 3.2).

As a corollary of the main Theorem, we obtain (Corollary 3.3) that regular
separation is necessary and sufficient condition for to be generated over
A°°(D) by 9~ , ... , g~.

The result of Corollary 3.3 can be found in the paper by E. Amar [2], which
represented one of the starting points of the present investigation.

Some of the results presented in this paper where announced in [3].
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1. - The geometrical situation.

The first step of the proof of the Theorem is to investigate the local geometry
of D n V, especially at those points where V and bD meet non-transversally.

In order to perform this investigation, let D c 1 be a strictly
pseudoconvex domain with C°°-smooth boundary and let L be a complex
hyperplane such that and L and bD are not transversal at

x E L n bD ; then it is possible to choose local complex coordinates (z, Zn+ I),
z = (zl, ... , zn) in a neighbourhood N of x in such a way that

where:

with

LEMMA 1.1. Up to complex linear changes of coordinates, we can assume
there exist k, r E Z +, 0  k  n, 0  r  n - k, such that setting zj = Xj + iyj
and T = (Xk+l, - - -, Xn, Yk+l,..., yn) we have

J-.

where P is a non-singular symmetric element of M2(n-k),2(n-k)(R) such that:
P is positive definite on

and negative definite on

PROOF.
1. Up to an obvious complex linear change of coordinates (c.l.c.c.) we can

assume p(z) = + Re zBtz.
2. The space of degeneracy of p is given by W = {dp = 0} = I’~~ + = 0 }

and thus it is totally real: up to another c.l.c.c. we can assume there exists
0  k ::; n such that
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This is equivalent to say

and so we obtain the description of p we are looking for, setting:

3. By means of the ordinary spectral theorem, we can find an Euclidean-
orthonormal, P-orthogonal basis B = {v1, ... , v2(n-k)}of assume the

index of negativity of P is r and Iv i Pvj  0, 1  j  r; thus P is

positive definite on V+ =-[V,+I,---,V2(n-k)], which is the Euclidean-orthogonal
complement of V- = [v 1, ... , vr ]; since p is strictly subharmonic when restricted
to any complex direction in then V - is totally real and so with a
final orthogonal c.l.c.c., we can assume

and consequently:

LEMMA 1.2. Assume complex coordinates are chosen in such a way that p
appears in the normalized form given by Lemma 1.1; thus:
a) if k = 0, then there exist a neighbourhood U of 0 and K &#x3E; 0 such that if
xE UnD then

and so, in particular L and D are regularly separated at 0;
b) if k &#x3E; 0, then there exists a totally real (k + r)-dimensional Coo -submanifold

S of L, passing through 0 for which there exist a neighbourhood U of 0
and K &#x3E; 0 such that if 1: = (S x Re C Zn+1 ) f1 bD and Z = L u 1: then for every
x E U f1 D we have

and so, in particular Z and D are regularly separated at 0.

PROOF. First of all note that if x = (z, E D then we have
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and so

a) Assume k = 0. 
_

1. Since we are interested only in those points x = (z, zn+1 ) E D where h(z) &#x3E; 0,
in order to get (#a), it is enough to prove

and this condition, of course has nothing to do with the complex structure.
2. Up to a real linear change of coordinates, we can assume

where

Recall that and so,

given
setting

in the ball B(O, p) we have:

and therefore

so we have to consider only

Let C = {p = 0 } and let v be the outward pointing normal unit vector field
to C - {0}, extended to Ca - 101; for a fixed small A, v defines a projection
~: (0) - C - {0} thus, for x = (u, v) E CA, we have

so if x E Ca n L n bD is a point on the line from x parallel to v(7r(x)), we
have
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and since , we obtain

b) Assume k &#x3E; 0.

1. Let

we have 0 E S and so, in virtue of the implicit functions theorem, there exists
a neighbourhood U of 0 such that in L n U:

for C°°-smooth functions qi, am : so S is totally real (cf. e.g. [5]); set

E=(,S x and Z = L U L.
2. Write D n U = lVIK U NK where:
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then

3. We have the following

CLAIM 1. Let

if 7r: L is the natural projection, then there exists K &#x3E; 0 such that if
x E D n U and 7r(x) E Q, then x E MK.

PROOF OF CLAIM 1. I with

where is the Hessian quadratic form of h at i: we have

Hess(h) =Hess(p)+Hess(~p) and, since p is positive definite on L+ = {z E 
0, p(z) = o(lzI2), we obtain

so

dist(:

Now we have:

i) dist(x’, x")  C2 dist(x’, S)
ii) since (~, h(z)) E L:

so:
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and the proof of claim 1 is complete.
4. Next step is the following:

, then there exists K &#x3E; 0 such that

PROOF OF CLAIM 2. It is enough to show that if x = (z, zn+1 ) E D f1 U and
z V Q U (L n D) then h(z) &#x3E; L n D); now for such an x we have h(z) &#x3E; 0

while =  0; in the segment li, z],
consider the last point z such that h(z) = 0 and let f (t) = h(( 1 - since

f "(t) = t)z + tz) [z - 2] ~ clz - il2, then f (t) is a convex increasing
function in [0,1]; moreover we have:

since we obtain precisely

5. Summing up: 
_

given x E D n U, if 1r(x) E Q, then by claim 1, x E MK and so dist2(x, 
c, dist(x, Z) ; if 1r(x) ft Q, then by claim 2, dist2(x, L n D)  C2 dist(x, L) and so

dist2(x, Z n D) = min(dist(z, ~), dist2(x, L n D)}
 cmin(dist(z, ~), dist(x, L)}
= C2 dist(x, Z)

and the proof of Lemma 1.2 is complete.

REMARK 1.3. a) lemma 1.2 asserts essentially that if D is strictly
pseudoconvex, then D and L are not regularly separated at most "along" a
totally real submanifold X of bD (see [2] for some partial results in this

direction);
b) it follows from Lemma 1.2 and Whitney extension theorems (cf. e.g. [7])

that if f E and f is infinitely flat on I then it is possible to find a
C°°-smooth extension F of f around D n U, vanishing on L fl U.

2. - The semi-local case.

Lemma 1.2 enables us to prove the following semi-local version of the main
Theorem:

PROPOSITION 2.1. Let bounded strictly pseudoconvex domain
with COO -smooth boundary and let g E 0(D’), where D CC D’, such that, if
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v = {g = 0}, then V n D = V n 0; let x E D such that 0: then for
every neighbourhood U of x, there exists another neighbourhood W of x such
that if f E C°°(U) and f lundnv 0 then for every pseudoconvex domain D
with COO -smooth boundary such that D c D cc D’ and D fl W = ÏJ fl w, we
can find A E A°° (D) such that E I °° (V ), and a 1, ..., a4 E C°° (D), in such a
way that on W n D we have

PROOF. 1. We can assume x E bD n V otherwise there is almost nothing to
prove.

2. If V and bD are transversal at x, we obtain the result with A m 0, using
the well-known techniques for the regularly separated case.

3. If V and bD are not transversal at x, then we can choose complex
coordinates near in such a way that (and so we can identify near
x, V with L = (zn+1 = 0} = 7fbD); performing the c.l.c.c. as in Lemma 1.1,
again we can assume k &#x3E; 0 and construct S, ~, Z as in Lemma 1.2 b), in a
neighbourhood U of O.

4. Let f E C°°(U) such that f lundnv 0; choose j E Z + in such a way that
if f = f + j g then

in W’; let M = { x E W’li = 0} : then it is possible to find p E C°°(L, C) such
that m 0 and

then we have

we want to factorize p.
We need two preliminary lemmas; first of all let

then we have:

it is possible to find
in such a way that
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PROOF. For any F &#x3E; 0, let { z E L) dist(z, L n D) :5 e7l and let

A(e) = sup thus we have: A(c) g 0 if c ~ 0 and = O(êk) for every
Ke ~

so it is possible to find ~, A E ~ such that:

and set

thus and

LEMMA 2.3. Let a E C°° (L, C~ ) such that 0; set A(z 1, - - - ,
Znl Zn+l) = a(z, , ... , zn): then the facts are equivalent:
i) a(z) = z - L n D f1 W’ and every k 

ii) admits a Coo-snl00th extension around D n W’ vanishing on L n W’.

PROOF. i)*ii) we claim that,
setting

then the are, under assumption i), Whitney data on
i.e. for any a E (Z +)2n+2, , any m E Z +

uniformly for Ix - yl -~ 0; in fact:

1) if x, y E D n W’ or x, y E L n W’, we have nothing to prove;
2) if y E L n W’, from i) it follows that, for any a E (1: +)2n+2

such that I = 0 and any m setting x = (z, ), we have:
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any

and so ii) follows from Whitney extension theorems (cf. e.g. [7]).
ii)=&#x3E;i) let F be the extension in assumption ii); if z c let x = (z, h(z)),

y = (z, 0): if of = (o;t,..., an, 0, ~,..., aiT, 0) C (Z’) 2n+2 then we have:

Going back to the proof of Proposition 2.1, using Lemma 2.2, we can find
ø E C°°(L, R) and a E E such that 10 = 01 = L n D and ~(~p(z)) &#x3E; 

We can find also w, q, a e f such that

and so setting s = a 0 cp we obtain

for when h(z)  0, we have
also

for and every

Let now defined by

and

be C°°-smooth changes of coordinates: then
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where

and so

Setting

using (#) and Lemma 2.3, we obtain that admits an extension which is

C°°-smooth around F(D n W’) and vanishes on M = {wn+1 = O} and so 
admits an extension which is C°°-smooth around D n W’ and vanishes on

since 4S is n + 1-flat on implies (cf. [4]) that it is possible to
find c E C°°(D) such that on D n W’ we have

We want to factorize q(s).

5. Let W c Bn+I(O,e/2) C c W’ be a neighbourhood of 0 and let
x 6 n L), x - 1 on W n L; set s = X - s. Since ,S is totally real we can
find (cf. [5]) 9 E C"(L, C) such that

up to infinite order

let Q E Cü(C) such that supp{3 I ): thus setting

we have that as, as element of is infinitely flat on 2: and since
Z = L U 1: and D are, by Lemma 1.2 b), regularly separated at 0, then the data

as Whitney data coinciding on the intersection, are Whitney data on (D U Z) n W
(cf. e.g. [7]) i.e. a0160|Dnw admits an extension C°°-smooth around D n W

vanishing on L n W, and so
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since, for a suitable c, supp I we have

for any domain 17 as in the statement of Proposition 2.1; thus, following [6],
it is possible to find u E C°°(D) such that au = a on D and

6. Extend now q to C~ in the obvious way: q(~) = then we have

we obtain on W n D

and

where q(s - s) as element of C°° (D n W ) is infinitely flat on E and, by the
same argument as before,

thus we have on W n D

and, putting everything together, we obtain finally:

with

REMARK 2.4. In general it is not possible to simplify the representation of a
C°°-smooth function by means of holomorphic functions, given in Proposition
2.1, i.e., given f E in general it is not possible to find a single A E I’ (V)
such that, at least locally

In fact, let such that:
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(and this is possible whenever L has an infinite order of contact with bD along
some real direction); if f = aA + bA with A c and a, b e C’(D), from i)
we obtain 

. - - . 1)

and

thus {À = 0 } is a complex submanifold of D containing If = 0}: contradiction.

3. - The general case.

Our next step is to extend Proposition 2.1 to the case of arbitrary
codimension.

Consider first the case V is a linear submanifold; in this direction, we have
the following

LEMMA 3.1. Let D C Cn, 1 be a bounded strictly pseudoconvex domain with
C°° -smooth boundary and let V = = ... = zn+ 1 = ~ } ~ assume

let x E D: then for every neighbourhood U of x, there exists another

neighbourhood W of x such that, if f E C°°(U) and f lundnv = 0, then it

is possible to find A E lOO(V) and a, b, ak, 1, - - - bk+ i , ... , bn+ I E C°° (D) in
such a way that on W n D we have .

PROOF. 1. We can assume x E bD f1 V, V and bD are not transversal at x
and therefore, e.g. = L = = O}.

2. Let M = 1 = ... = zn - O}: thus bD and M are transversal at x
and therefore in a neighbourhood W C U of x : thus we can find another

strictly pseudoconvex domain D D D such that D n W = D n W and M and
bD are transversal everywhere, so DO) = M n 17 is a strictly pseudoconvex
(k + 1 )-dimensional domain with C°°-smooth boundary.

Let f E C°°(U) such that 0; since V is 1-codimensional in

applying proposition 2.1. to and f lunm, we can find an+l,bn+¡,a,b E
COO (D), ~c E = o such that, on fJO) n W
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Now, since M and bD are transversal, by [4] (Lemma 2 ii)), it is possible to
find A E such that ÀIDI) = it, so if

we have (F - = 0 and again on

for ~, so the proof of Lemma 3.1 is complete.

We have now the following

PROPOSITION 3.2. Let D, V, gl,..., gk as in the main Theorem and assume
gj E 0 (D’) 1  j  k, where D’ D D; then, for every neighbourhood U
of x there exists another neighbourhood W of x such that for every function
f E C°°(U) such that f (Dn_vnv = 0, it is possible to find A E I°°(Y) and a, b,
a 1, ... , ak, bi bk E COO (D) in such a way that in W n D we have

PROOF 1. As usual, we can assume x E V f1 bD; let G : D’ ---+ C k be the
holomorphic map given by G (z) = (9 1 (Z), - - - , gk (z)) and let r be its graph.

2. Let f E C°°(U) such that f IDnunv = 0; since (gI,..., gk) is a complete
defining system for V, we can find (cf. [4], Lemma 5) a neighbourhood A of
x in C n, and complex coordinates v I.... lvq, q = n + 1 + k, in such a way
that

where thus, since 1

3. Let now W C C W’ two neighbourhoods of x in C " I such that
A n cn+l D W’ and let p = Cü(W’) such that p - 1 on W ; set f = pf; setting

we obtain 0 so we can construct in D’ x a strictly
pseudoconvex domain B with C°°-smooth boundary such that
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and we can extend F to an element F of C"(B) in such a way that FlrnB == 0
and FIDnw = I.

4. Now r n B is holomorphically equivalent to a plane section, thus, using
Lemma 3.1., we can find a neighbourhood W of x in x C~, A E AOO(B)
such that AlrnB --_ o, a, h, a 1, ... , ak, E C°° (B ) in such a way that on
BnW

and therefore, setting

we obtain precisely

We are now in the position to prove our main Theorem: using Proposition
3.2, we can construct an open cover U = of D in such a way that,
for every f E ~°°(V ) one can find A 1, - - - , am E 7°°(V), al ,..., ak’ 1 ..., 
c (h) , d~h~ e C°°(D) 1  h  m such that on D f1 W ~h~

Let A be the sheaf on D of germs of functions C°°-smooth up to bD and let

thus f E B).
Consider the exact sequence of sheaves

where:
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cohomology sequence, we obtain:

is exact and this concludes the proof of the main Theorem.

From the main Theorem we can deduce the following (cf. also [2]).

COROLLARY 3.3. Let D, V, 91, gk as in the main Theorem; then the

following statements are equivalent:
i) D and V are regularly separated;
ii) generate I °° (V ) over A°° (D).

PROOF. i)=*ii): see [1] and [4].
ii)=*i) if gl , ... , gk generate over A°°(D), from the main Theorem

it follows that generate over C’(D), so (see
introduction) D and V are regularly separated.
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