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Critical Points of Solutions of Elliptic Equations
in Two Variables

GIOVANNI ALESSANDRINI

Introduction

In this paper we consider solutions u to the two-dimensional elliptic
equation

where 12 is a bounded simply connected domain of R 1.
It was proven by Hartman and Wintner [7] that if the coefficients 

are sufficiently smooth, then the zeros of the gradient of u (critical points) are
isolated and have a finite integral multiplicity.

Here we consider the solution u of (1) subject to the Dirichlet condition

and we are interested in evaluating how many are the interior critical points
and how large are the respective multiplicities.

The main result of this paper, see Section 1, states the following. If
the set of points of relative maximum of g on an is made of N connected
components, then the interior critical points of u are finite in number, and,
denoting by m 1 , ... , m K the respective multiplicities, the following estimate
holds

Moreover, see Section 2, if ail and g are sufficiently smooth a lower bound
on Du ( can be obtained. Namely, for every SZ’ C C S2 there exists a positive
constant C depending only on on the coefficients in (1) and on g, such

Pervenuto alla Redazione ii 24 marzo 1986.
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that, for every x E S2’,

where x, , ... , xK are the interior critical points of u and are the

respective multiplicities.
In Section 3 we consider the case when g has relative maxima and minima

at two levels only and it has non-zero tangential derivative out of the extremal
points. With this additional assumption the equality sign hold in (3), that is the
inequality (3) is the best possible.

Another consequence of such an assumption is that the estimate (4) holds
up to the boundary.

In Section 4 we also treat the case when no smoothness assumption on
the coefficients is made. In such a case the estimate (3) does not necessarily
hold. However we prove that

where K stands for the number of critical points, and N is, as above, the
number of maxima of g on SZ.

Results like those of Sections 1 and 2 were originally proven by the author
for the isotropic divergence structure equation

and were applied to an inverse problem of identifcation,§tem [2].

Basic assumptions and definitions

We assume that the coefficients aij satisfy: aij = and a uniform

ellipticity condition:

furthemore it is convenient to impose the following normalization condition:

For the sake of brevity we will use the following convention. Given a
continuous function f on a set ,~ c l1~ 2, we will refer to the number of maxima
(minima) of f as the number of connected components of the set of points
of relative maximum (minimum) of f in S. Note that if S’ is a simple closed
curve, then f has the same number of maxima and minima.
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We assume that Q c 1I82 is the interior of a simple closed curve. We will
denote:

diam S2 = diameter of 52,; IL21 = measure of Q;

We will denote by: Br (x), the disk of radius r centered at x.

1. - Estimate on the multiplicities of interior critical points.

We start stating a theorem which can be found in Hartman and Wintner
[7].

THEOREM (H. - W.) Let u E W o’~ (S2) be a non constant solution of (1),
where aij E 01 (Q), bi = 1, 2.

For every xO E K2 there exist an integer n &#x3E; 1 and a homogeneous
harmonic polynomial Hn, of degree n, such that u satisfies, as x --+ xO,

Here J is the 2 x 2 matrix defined as follows:

REMARK 1.1. The smoothness assumptions on the coefficients could
be slightly weakened. For instance the above Theorem and, consequently, all the
results of Sections 1 to 3, are valid provided the aij ’s are Lipschitz continuous
and the bi ’s are L°°. In such a case, a proof of Theorem (H. - W.) still can
be obtained adapting the method developed in [9]. 

’

See Section 4 for counter-examples in the case aij E L’(i2) or aij E C(Q).

REMARK 1.2. Let us stress some useful consequences of the above
Theorem.

(I) The interior critical points of u are isolated.
(II) Every interior critical point xo of u has a finite multiplicity, that is,

for every x in a neighbourhood of x°,

where Cl, C2 are positive constants, m = n - 1 and n is the integer appearing in
Theorem (H. - W.).

(III) If x° is an interior critical point of multiplicity m, then, in a 
*

neighbourhood of x°, the level line { x E Qlu(x) = is made of m + 1

simple arcs interecting at x .
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THEOREM 1_.1 Let aij E 01(Q), bi E C(~2), i, j = 1, 2 and let g E C(Q). Let
u E n satisfy (1), (2).

If gl8Q has N maxima (and N minima), then the interior critical points
of u are finite in number and, denoting by m l , ... , mK their multiplicities, the
following estimate holds

REMARK 1.3 In the above Theorem, the existence of the solution u of (1),
(2) in the function space n C(S2), plays the role of an hypothesis,. As
is well known, a sufficient condition for such a u to exist, is that 8Q satisfies
some smoothness assumption, for instance: Lipschitz smoothness suffices.

REMARK 1.4 It is worthwile to stress the analogy between the above
Theorem and a result due to Rado [12] with states that if u is a non-constant

harmonic function in a disk such that Du(x°) = 0 for some xO in the interior,
then u = u(x°) on at least four distinct points of the boundary.

We premise the proof with three lemmas.

LEMMA 1.1 Let the hypotheses of Theorem 1.2 be satisfied. The set of
interior critical points of u is finite.

PROOF. By contradiction, let us assume that u has an infinite number of
interior critical points. We may distinguish two cases.

(i) There exists a critical point x° E Q such that an infinite number of
critical points of u is contained in the level line Ixc K21u(x) = 

(ii) There exist a sequence of critical points in Q, in such that for
every n, m, u(xn) :j U(Xm)-

Case (i). Note that K2B { x E = u(z°)) is made of an infinite number
of connected components A2,..., An, ... such that, for every i, on aAi n Q,
u = u(x°) and, on Ai, either u &#x3E; u(xo) or u  u(x°).

Case (ii). By induction we may find a subsequence of and two

sequences of non-empty open subsets of S2, having the following
properties
(a) Ck D for every 1~ = 1, 2, ... ,
(b) u|aCknQ = u(xnk), for every k = l, 2, ..., and: Xn, E Ck, for every j &#x3E; k + 1.
(c) Bk C UlaBknu = u(xnk+B); and: UlBk &#x3E; u(xnk+I)’ or: UlBk  u(xnk+I);
for every 1~ = 1, 2, ....

Therefore, in both cases there exists an infinite sequence, {An } or 
of disjoint open subsets of Q each containing a point of relative maximum
or minimum for u. Thus, by the maximum principle, ulan = g has an infinite
number of maxima and minima.

LEMMA 1.2 Let the hypotheses of Theorem 1.2 be satisfied. Let us assume
that u has a unique interior critical point xO, and let its multiplicity be m.
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The number of connected components of the level set ~x E &#x3E; u(xo)l
is at least m + 1.

PROOF. Straightforward. it suffices to recall (III) and to note that, by the
maximum principle, the level lines of u cannot contain closed curves.

LEMMA 1.3 Let the hypotheses of Theorem 1.2 be satisfied. Let x 1, ... , xx
and M 1, - - - , mK, be the interior critical points of u and their respective
multiplicities. Let us assume that all the points x 1, ..., xK belong to the same
connected component of the level line ~x E K21u(x) = t} for some t E R.

K

The level set {x E &#x3E; t} has at least connected components.
i=l

Fig. 7 (k = 2)

PROOF. (See: Fig.1 ). By the induction on the number K of critical points.
If I~ = 1 then the result holds by Lemma 1.2. 

_

Let us assume, as induction hypothesis, that if K  K, then we have
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where L is the number of connected components of the set { x E u I u(x) &#x3E; t } .
Let K = K+ 1. Let 1 be the connected component of { x E = t } containing
x 1, ~ ~ ~ , By the maximum principle, no closed curve is contained in 1, thus
we can always find a critical point such that there exists only one arc in 7,
connecting it to another critical point. Up to a renumbering, we may denote
these two critical points xl(+I’ x"K. Let a be the arc in 1 which connects them.

Now we see that there exist exactly two regions A+, A- in Q, which are
connected components of the level sets { x E &#x3E; t }, { x E  t }
respectively and which satisfy the condition

Let us pick a simple arc Q in A+ U A- U a, having endpoints on OAI n aQ and
on aA- ngn.

Note that ~3 splits S2 into two simply connected domains Q’ , Q2 such that
XII...l X7~ E I E Q2.

Let Li be the number of connected components of the level set { x E
&#x3E; t}, i = 1, 2. Clearly

in fact Q splits A+ into two connected parts one contained in S21 and the other
in 522. Now by the induction hypothesis

and (1.4) follows.

PROOF of THEOREM 1.1 (See Fig. 2). Let X 1, - - - , XK be the critical points,
let us denote:

Let 11,..., If be the connected components of S’ which contain at least
one of the critical points. Clearly .~  K. We proceed by induction on .~. If
t = 1 then Lemma 1.3 and the maximum principle yields (1.2).

Assume that (1.2) holds when t  ~. Let = f + 1. Up to a renumbering,
we choose 1 

in such a way that 11,..., If all lie in the same connected

component of SZ B 1/’+1° Let A be such component. Up to a change of sign,
setting t = UI,- , we assume u &#x3E; t ona neighbourhood of rÕ+I n aA in A.
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Fig. 2 (t = 2)

Now it is immediately seen that there exist e &#x3E; 0 and a simple arc Q in A,
with endponts on aS2, which is contained in the level line ~~ E K21u(x) = t + 61
and which separates 1£+1 1 Ii. Let be the components of 
let 11,...,lic and 1£+1 1 C 112. Now, if Nl , N2 are the numbers of maxima
of respectively, then we find that

in fact 3 is a connected set of points of relative maximum for 02and of relative
minimum for 521.

Therefore, by the induction hypothesis,

2. - The interior lower bound on -

In this section we will assume that aS2 is C2. In such a case Q satis-
fies an interior and exterior sphere condition. We define do as the largest positive
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number such that, for every x E there exists a disk of radius do, which
contains x and does not intersect aS2.

We will also assume the following bound on the coefficients in (1):

THEOREM 2.1 Let 80. be C_2, let aij E C’(i2), bi E C(92), i, j = 1, ~ and
let (2.1) be satisfied. Let g E C2(i2) be such that glao has N maxima. Let u be
the solution of the Dirichlet problem (1), (2) belonging to the function space
W2,2(Q).

Let X 1, - - - , xK and m 1, ... , mK be the interior critical points of u and the
respective multiplicities.

The following estimate holds for every x E Qd, d &#x3E; 0

here Cl, C2 are positive constants: 01 depends only on d, IL21, do, A, E osc aug,
and IIgllc2(Q)’ and C2 depends only on diam Q, A and E.

We premise the proof of Theorem 2.1 with some notation, definitions and
with three lemmas. First let us denote:

We define functions v, 0, h vector fields X, F, and the divergence structure
elliptic operator L as follows:

LEMMA 2.1 Let the hypotheses of Theorem 2.1 be satisfied. The function
~ defined by (2.4) is a W~o’~ (SZ B ~ x ~ , ... , XK 1) solution of
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. REMARK 2.1 The idea of deriving an equation for the modulus of the
gradient of solutions of elliptic equations can be traced back to Bernstein [3],
and it has shown to be useful in proving upper bounds on the gradient (see
for instance Peletier-Serrin [11], Sperb [14]). Here equation (2.9) is used to

get a lower bound, this possibility seems however to be confined to the two-
dimensional case.

PROOF. Let us denote Q’ = Q ) ~x ~ , ... , and let us temporarily assume
bi E Cw(K2).
The following identity holds in SZ’

where

Note that, on the right hand side of (2.10), only the first summand contains

third order derivates of u. In fact they can be eliminated. We may use equation
(1), or, as is the same,

where

Thus, with the aid of (2.12), (6b), we are led, by lenghty but not difficult
calculations, to the following formula:

We may consider (2.11) (2.12) as a linear system of 3 equations in the 3
unknowns: The determinant of this system is 4v, that is, it is

non-singular on Solving this system we eventually obtain

hence, combining (2.10), (2.14), (2.15) and making use of the identity
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we obtain (2.9). If the coefficients are not COO such equation has to be meant
in the weak sense, that is

This result may be achieved as follows.
Let us fix ~ E and let Q" be such that: supp ~ C Q" cc Q’. Let

(An), {Bn } be sequences of matrices, respectively vectors, such that
An satisfies (6) for every n, and also

as n - +oo for every p  oo.

Let un E W’,’(Q) be the solution of

By well-known regularity theorems, see for instance Agmon-Douglis-Nirenberg
[ 1 ], we get that

Consequently, since const.’ &#x3E; 0 in S-2", there exists n &#x3E; 0 such that for

every n &#x3E; n-

Therefore (2.16) holds if we replace A, B, u respectively with An, Bn, un
in (2.3) - (2.8), (2.16). The convergence properties (i), (ii), (iv) enable us to
pass to the limit and obtain that Q e W 1,p(Q") for every p  00 and it satisfies

(2.16).
Since the choice of ç e was arbitrary, the proof is complete.

LEMMA 2.2 Let the hypotheses of Theorem 2.7 be satisfied. Let

1/J E {x 1, ... , weak solution of

If 0 E then: 0 E for every p  oo and the above equation
holds in all of Q.
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The above Lemma is a rather standard result on removable singularities.
A proof is given, for the sake of completeness, at the end of this Section.

In the sequel we will make use of Green’s function for the elliptic operator
L in Q, namely the function G = G(x, y) which solves the Dirichlet problem

I

The following well-known properties of G will be used. See for instance:
Hartman and Wintner [8], Agmon, Douglis and Nirenberg [1].

LEMMA 2.3 Let the hypotheses of Theorem 2.1 be satisfied. The following
representation holds in Q

where V) is the solution of the Dirichlet problem

PROOF. Let 1/J be defined by (2.21). By (2.20) and since u e for every
P  °° (see [ 1 ] ) we get ~ E Wloc (S~ B ~ x 1, ... , ~x } ).

By Lemma 2.1 and by (2.17) we get, on SZ B ~x 1, ... , xx },

Recall ( 1.1 ) and note that, as we have

for some positive constant cj. Thus combining (2.19), (2.21), (2.23) we obtain

that is y E Hence we may apply Lemma 2.2 to 0 and (2.22) follows.
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PROOF of THEOREM 2.1.

Thus we need to find an interior lower bound on 0. We will make use
of L°°-estimates and of Hamack’s inequality for the linear divergence structure
elliptic equation (2.22), see Gilbarg-Trudinger [6].

Let us denote

The following bounds on the coefficients and on the inhomogeneous terms
in equation (2.22), are straightforward consequences of (6), (2.1) and (2.5)-(2.7):

thus by the use of maximum principle in (2.22) we get:

Now note that is a non-negative solution of

Therefore, by (2.26), Hamack’s inequality is applicable to w, and we

obtain, for every d  do/2,

or, as is the sarpe,

Let us evaluate M from below. By (2.21) and (2.18) we have:



241

On the other hand, note that

where t denotes the tangent vector to aS2 and thus, since 

and hence:

Now, by

Let Y E 8Q be such that:

let z C be such that: hence we get, for every

here use has been made of Morrey’s inequality (see e.g.: Gilbarg-Trudinger [6]).
Again by Morrey’s inequality

Now recall (2.29), and the following regularity estimate (see Agmon-
Douglis-Nirenberg [1])

consequently there exists d, &#x3E; 0 depending only on À, E, IQI, do and on the ratio
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such that, for every d  di,

Therefore, if d  then we get

and combining (2.31), (2.33) we obtain

now, collecting (2.28), (2.30), (2.34), we get

for every d  di , and clearly, if d &#x3E; di :

and finally, by (2.24), (2.2) is proven.

PROOF of LEMMA 2.2. This proof is inspired to arguments in Serrin [13].
Without loss of generality we may assume: Q = BR, the disk of radius R
centered at the origin, K = 1, x I = 0.

Let 1/;1 E W’ ~2 (BR ) be such that:

Note that, by (2.26), the maximum principle yields

thus, denoting we get
in BR B BR~2, and, moreover,

Let h E (0, R/2) and r = lxl, let us define
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Note that: i, . Thus we have

We readily infer

Thus, fixing ro, h  ro  R/2, we have, as h - 0+:

that is: now for every ~ E we have

which readily yields

Now a direct computation shows

and therefore: L1/;o = 0 in BR12. Hence 0 -,0 1 = 1/;0 == 0 in BR and 0 E 
for every p  oo, since F, h and the coefficients of L are bounded.

3. - The case of maxima and minima at two levels only.

THEOREM 3.1 Let aSZ be C2-smooth. Let aij E C~ (0), bi E C(Q), i. j = l, 2
and let g E C 1 (SZ) be such that glao has N maxima.

Let us assume that, on the points of relative minimum and maximum, g
takes two values only: gmin and gmax, and let the tangential derivative of g on
aSZ be non-zero out of such extremal points.
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Let u E W o’~ (S2) f1 C1 (SZ) be the solution of (1), (2). If N &#x3E; 1 then interior
critical points of u exist and the respective multiplicities m1,..., mK satisfy

REMARK 3.1 We wish to mention a certain analogy between the above
Theorem and results in Walsh [16], concerning harmonic functions with

boundary values at two levels only.
We start stating the following Rolle-type result. A sketch of a proof is

given at the end of this section.

LEMMA 3.1 Let f E 01(Q). If flan has relative maxima and minima at two
levels only and if the connected components of the set of points of maximum
on an are at least two, then f has at least one critical point in Q.

PROOF of THEOREM 3.1. We will proceed by induction on N. As we
already did is Section 1, we will make use of cuts on Q. It is convenient, to
this purpose, to drop the C2_ smoothness assumption on aS2. We will prove the
following intermediate result:

PROPOSITION Let all the hypotheses of Theorem 3.1, except an E C2, be
satisfied. If, in addition, we assume that IDul &#x3E; 0 on as2, then (3.1 ) holds.

It is readily seen that Theorem 3.1 follows from the above Proposition. In
fact, if an is C2 than the Hopf lemma is applicable, and thus the hypotheses
on g imply: &#x3E; 0 on 9~.

Now we prove the Proposition inductively.
If N = 2, then, by Lemma 3.1 and since &#x3E; 0 on one interior

critical point exists. By Theorem 1.1, (3.1) follows.
Let N &#x3E; 2 and assume, as induction hypothesis, that the above Proposition

holds whenever N  N.
Let N = N. By Lemma 3.1, at least one interior critical point, yi, exists.
Let us denote by: y 1, ... , yK all the other critical points of u belonging

to the level line y = {x E niu(x) = u(yl)l, let ni, n2, ... , nL be the respective
multiplicities. Let us assume

otherwise the proof is completed. let t E (gmin, gmax) be the critical value:
t = U(Y1).

Let M be the number of connected components of the set S2 B 1.
By Theorem (H.-W.) we know that 1 is the union of a finite number

of simple C 1 arcs having endpoints on let 1 be the number of those of
such arcs which do not contain critical points and let v be the number of the
remaining arcs.
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Recall that any such arc in q has distinct endpoints on an, and every
endpoint on 8Q belongs to only one arc. It follows

Moreover the following equality could be proven just rephrasing the

arguments of Lemma 1.3

where it is the number of connected components of ~ which contain at least
one critical point. Similarly we obtain

Combining (3.3)-(3.5), we obtain

and thus, by (3.2),

Let e &#x3E; 0 be sufficiently small in such a way that the set 01 = {x E SZ;
&#x3E; 61 has as many connected components as SZ B 7, that is: M, and it

contains all the critical points of u belonging to E2 Let be the
connected components of Ul.

Note that, for every j, has relative maxima and minima at two levels

only: gmax or t - e as maxima, and t + 6 or gmin as minima.
Moreover u has no critical points on and 8Qj is piecewise C 1 for

every j.
Let Nj be the number of connected components of 8Qj on which u takes

its relative maximum value (gmax or t - ~).
It is readily seen that, since the set { x E 9Q; &#x3E; 6:} has 2N

connected components, then

j-.

Hence by (3.7), Nj &#x3E; 1 for at least one j = 1, 2.... , M, and also: Nj  N
for every j. ,

We may apply the induction hypothesis on those Qj ’s for which Nj &#x3E; 1.
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Let m ji, i = 1, ... K~ be the multiplicities of the critical points in Qj. We
get

Finally, by (3.6), we get

which, by Theorem 1.1, yields (3.1 ).
It is worthwile to stress that the hypotheses of Theorem 3.1 on g imply

also that the lower bound on the gradient of u holds up to the boundary of Q.

THEOREM 3.2 Let the hypotheses of Theorem 3.1 be satisfied. Let (2.1)
hold. The following estimate holds for every x E S2

Here X 1, - - - , XK E Q, are the critical points of u, M 1, - - - , mK aj-e the

respective multiplicities and C2, C3 are positive constants: C2 depends only on
diam K2, A and E, C3 depends only on IQ 1, do, A, E and g.

PROOF. Let z E aQ be an extremal point of g, and thus of u. For instance,
let us assume that it is a point of minimum, by the Harnack inequality (see
[6]) we have:

By continuity we get

and thus, : , then we obtain

Now by the Hopf .lemma (see [6])
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and thus, on every extremal point z e 8Q,

Since the tangential derivative of g is nonzero outside of the set E of
extremal points on an, if z e 8Q and its distance from E is 6 &#x3E; 0, then

here t is the tangent vector to 9Q at z.

Now if we combine (3.10), (3.11) and the estimate (2.2) with the aid of
the Holder continuity of Du in Q, we obtain the result.

In Theorem 3.1 we have seen that, under certain hypotheses on g, the
sum of the multiplicities is independent of the coefficients in equation (1).

The following example shows that this is not necessarily the case when
the maxima and minima at the boundary are not at two levels only.

EXAMPLE 3.1 Consider B = and let U E be the solution
of the Dirichlet problem

where the coefficient a is defined as follows

/~ being any number larger than -1.
It is readily checked that u is given by
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here 0 is the W 1,2 solution of the mixed problem

The maximum principle yields:

and also:

Consequently we may find c &#x3E; 0 such that if ti E (0, c) then I Du is always
nonzero in B, and, if. ti C (-c, 0) then there exists zll- E (0, 1) such that zll- --~ 0

as &#x3E; - 0- and 
’

The above example might seem unsatisfactory since the coefficient a is
discontinuous. However the reader can convince himself that a similar behaviour
can be obtained if a is replaced by a smooth approximation.

PROOF of LEMMA 3.1. Let us denote a = minau f, b = maxan f. 
_

We argue by contradiction, that’ is we assume: I &#x3E; C &#x3E; 0 in S2. As
a first consequence we get that f has no interior maxima and minima, and
hence: a   b, for every x E SZ. Note also that, by the continuity of f,
the number of connected sets of points of maximum on aS2 is finite, let it be:
N &#x3E; 2. Let ~4i,..., AN be such connected sets of points of maximum on a S2.

Let to E (a, b) and consider the level line {x E = to}, this is made
of a finite number of non-intersecting simple arcs.

Let 10 be any one of such arcs. Let Pi , P2 be the endpoints of 10 on aS2.
up to a change of sign on f, and up to a renumbering, we may assume that
AI, A2 lie on the same side of 10 and that they can be reached, starting from P,
resp. P2, moving along arcs resp. ~32, in aS2 on which f is non-decreasing
(see Fig. 3). Now let T be the set of those t E [to, b] such that the level line
{x E = t} contains one arc l(t) having endpoints resp. P2(t), on
(31, resp. ~2 . 

_

Note that: (a)to E T; (b)T is closed, by the compactness of SZ; (c)T is

open, because, by the hypothesis C &#x3E; 0, the level lines of f depend
continuosly on the level parameter.

Thus: T = [to, b], which is impossible, because this would imply that either:
f = b on interior points, or: A I and A2 are not disjoint.
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Fig. 3 

4. - Equations with non-smooth coefficients.

Here we will show by means of some examples how Theorems

(H.-W.) and 1.1 may fail when the regularity assumptions on the coefficients
are dropped.

Let Q = for some R &#x3E; 0. We will consider equation (1) with
coefficients b 1 = b2 = 0 and

Here is Kronecker’s symbol, r2 = x 1 + x2 and y is a function which
will be specified later.

Equations having this fonn have been used for various purposes by several
authors, see, for instance, Gilbarg-Serrin [5].

Note that the matrix has eigenvalues ( 1 +1(r»1/2, , (1 +1(r»-1/2. .
Thus condition (6) is satisfied provided
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We will consider solutions of equation (1) of the form

0 being the angle in polar coordinates: x = r cos 0, X2 = r sin 0., and N being a
positive integer.

Note that the boundary value of u is smooth and has N maxima. Note
also that if u in (4.3) satisfies (1) then, separating the variables, we are led to

EXAMPLE 4.1. Pick: R = 1, N &#x3E; 1, a E (N, N2 ) and

Equation (4.4) yields

Note that the ellipticity condition (4.2) is satisfied.
It turns out that the coefficients aij are discontinuous at the origin and

does not satisfy ( 1.1 ) at x° = 0 for any homogeneous harmonic polynominal
Hn. Moreover as z - 0

which means that (1.2) is not true.

EXAMPLE 4.2 Pick: N &#x3E; 1 and

for some 0. from (4.4) we get that

Note that

and thus (4.2) is satisfied provided R is sufficiently small. note also that the
are continuous in BR. Now observe that IDu(x)1 is of the same order of

rN-1 (log r)a as x --; 0. Hence Theorem (H.-W.) cannot hold.
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Moreover the rate of decay of IDul f as z - 0 is not a power, thus a

multiplicity is not defined.
However we may note that, if a  0, then such a rate is faster than the

maximal power rate allowed by Theorem 1.2.
The following Theorem gives a result which is weaker than those of

Theorems 1.1 and 1.2, but holds also for discontinuous coefficients.

THEOREM 4.1 Let bi E i j = 1, 2. Let g E C(92) have N maxima
on aS2.’ Let u E n C(SZ) satisfy (1), (2).

The interior critical points of u are finite in number: x 1, ... , xK .
Furthermore there exists 6 E (0, 1) depending only on the ellipticity constant A
and on + such that, for every compact subset Q of Q, we
have

where C is a positive constant, and M 1, - - - , mK are positive integers satisfying

REMARK 4.1 Note that (4.6) obviously implies

REMARK 4.2 A sufficient condition for the existence of the solution u to
(1), (2) in the function space n c(n) is that 8Q is Lipschitz. See for
instance, Talenti [15], Miller [10].

The proof of Theorem 4.1 will be based on the following result due to
Bers and Nirenberg [4]. We state it in a form which suits our purposes. The
usual identification of the complex plane with 11~ 2 is understood.

THEOREM (B.-N.) Let the hypotheses of Theorem 4.1 be satisfied. There
exist:

(a) 6 E (0,1 ], depending only on À,IIBI/oo,
(b) a complex valued function s E C6(i2),
(c) a homeomorphism X : K2 , Q’ C Il~ 2, X E X-1 E 
(d) a harmonic function h = h(~) on L2’,
such that the following representation holds for every x E L2,

REMARK 4.3 Let us stress some consequences of Theorem (B.-N.)
(see [4]).
(I) The interior critical points of u are isolated.
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(II) Let xo E S2, and let us denote by m the non-negative integer such that

as ~ -~ X(xo) where is a homogeneous harmonic polynomial of
degree m + 1. We see that there exist positive constants c 1, C2 such that,
in a neighbourhood of x°,

(III) Using the above notation, the complex valued function

has index m at xO, that is

LEMMA 4.1 Let the hypotheses of Theorem 4.1 be satisfied. Let xO c 0 be
a critical point, let .~ be the number of arcs of the level line {x E L21u(x) = U(xo)l
intersecting at x 0

There exists a simply connected open set G c Q such that: xO E G, 8G
is Lipschitz, and ulaG has .~ maxima.

PROOF. (See Fig. 4). Let us first note that .~ is finite, in fact, arguing as
in Lemma 1.1, we get that if .~ were infinite then ulao would have an infinite
number of maxima.

Whithout loss of generality we may set xO = 0, u(O) = 0. Let R &#x3E; 0 be
such that B2R(0) C 0 and IDul &#x3E; 0 in B2R(0) B {O}.

Let 11,..., 7,~ be the simple arcs such that is the connected

component of the level line { x E B2R(0)lu(x) = 01 which contains the origin.
Let Pi, ..., P2, be ordered points on BBR(0) such that, for every i = 1,..., f,

Pi and are the first two points which, starting from the origin and moving
on opposite directions on meet BBR(O).
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Fig. 4 (£=2)

Let ai, ot+i, i = 1, ... , £ be the straight lines normal to Ii passing through
Pi, Pf+i respectively. Such lines exist and are uniquely determined since, on
8BR(0), const. &#x3E; 0.

We may find to &#x3E; 0 and segments a i C ai , i = 1,..., 2.~, such that: Pi 
takes all the values between -to and to and has non-zero directional

derivative, u, i C B3RI2 for every i, ai n aj 0 for every i, j, i fl j.
We may also find t E (0,to) such that there are 2.~ simple arcs Ti,

i = l, ... , 2.~ in B3R/2(0), having end-points on a j, 1 (here we identify:
(J2f+l = ~ ~ ) on which u takes alternatively the values ~t.

Let u’ i be the portion of a. i containing Pi, on which lul  t. the arcs

rl, .., r2f and the form a simple closed curve surrounding 0.
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Let G be the open set bounded by such curve. Note that UlaG has I maxima
and .~ minima at levels t and -t respectively. Moreover 8G is Lipschitz, in fact
rl,... , T21 are C 1 ~a - smooth and at the connection points of Ti with uj(j = i, i+ 1)
the tangent line to ri is always different from aj, since, along u j C aj, u has
non-zero directional derivative.

LEMMA 4.2 Let the hypotheses of Theorem 4.1 be satisfied. Let xO E í1 be
a critical point, let .~ be the number of arcs of the level line {x E f2ju(x) = u(xo)l
intersecting at xO. let m be the index of Du at xO. The following inequality
holds

PROOF. Let G be the open set described in Lemma 4.1. Let us set once
more: x° = 0, u(O) = 0.

For every n = 1, 2, ... , and i, j - 1, 2, let aij E e be

such that aij satisfy condition (6), (bî)2 + (b2 )2  E~, and for some p &#x3E; 2,

For every be the solution of

_ 

It is a rather standard fact that such solutions un are equicontinuous on
G (see Miller [10]) and that for every Q cc G the following uniform bounds
hold (see Talenti [15])

Consequentely we may find a subsequence, which we will continue to call
such that, as n --+ oo,

and for every Q C C G:
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Let ro &#x3E; 0 be such that Bio (0) c G, let r E (0, ro), by the above convergence
properties we have

Now, since, for Ixl = r : c(r) &#x3E; 0, we may find n(r) &#x3E; 0 such

that: c(r)/2 for every n &#x3E; n(r), Ixl = r.
Hence we get

Therefore, for sufficiently small r and for sufficiently large n:

Thus, by Theorem (H.-W.), m coincides with the sum of the multiplicities
of the critical points of un in B,(xl). And then, finally, by Theorem 1.1, we
get (4.10).

PROOF of THEOREM 4.1. By the above Lemma we may rephrase the

arguments leading to the proof of Theorem 1.1 just replacing the term:

"multiplicity of Du" with: "index of Du".
Thus we obtain (4.6) where m 1, ... , mK are the indices of Du at the

critical respectively.
The use of the inequality on the left in (4.9) yields (4.5).
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