Annali della Scuola Normale Superiore di Pisa *Classe di Scienze*

GEORGE MALTESE

GERD NIESTEGGE

A linear Radon-Nikodym type theorem for *C**-algebras with applications to measure theory

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4^e série, tome 14, nº 2 (1987), p. 345-354

<http://www.numdam.org/item?id=ASNSP_1987_4_14_2_345_0>

© Scuola Normale Superiore, Pisa, 1987, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A Linear Radon-Nikodym Type Theorem for C*-Algebras with Applications to Measure Theory

GEORGE MALTESE – GERD NIESTEGGE

0. - Introduction

In a previous paper [10] (see also [11]) the second author defined the notion of absolute continuity for (non-normal) bounded linear forms on C^* -algebras and proved a non-commutative Radon-Nykodym type theorem which generalized the quadratic version of S. Sakai [13]. Here in section 1 we give an extension of Sakai's *linear version* [13] in the context of C^* -algebras. As in [10] the normality of the functionals in question need *not* be assumed and Sakai's condition of strong domination is here replaced by absolute continuity. In contrast to our linear version, the quadratic version of [10] is valid only for *positive* functionals. In commutative C^* -algebras both linear and quadratic versions (essentially) coincide.

Section 2 is devoted to applications of our abstract results to measure theory. We show that the classical Lebesgue-Radon-Nikodym theorem as well as its generalization to finitely additive measures due to S. Bochner [1] and C. Fefferman [7] can be obtained as direct consequences of our results applied to a certain commutative C^* -algebra $B(\Omega, \Sigma)$.

1. - The linear Radon-Nikodym type theorem for C^* -algebras

Let A be a C^* -algebra with positive part A_+ and unit ball S. Let f be a positive bounded linear functional and g an arbitrary bounded linear functional on A. g is said to be *absolutely continuous* with respect to f, if one of the following equivalent conditions is fulfilled (see [10]):

- (i) For every ε > 0 there exits δ > 0 such that |g(x)| < ε whenever x ∈ A₊ ∩S and f(x) < δ.
- (ii) For every sequence $\{x_n\}$ in $A_+ \cap S$ with $\lim_{n \to \infty} f(x_n) = 0$, it follows that $\lim_{n \to \infty} g(x_n) = 0$.

Pervenuto alla Redazione il 10 Novembre 1986.

For $y \in A$, the linear functional $x \to f(yx + xy)/2$ ($x \in A$) is denoted by f_y . Since f is continuous, f_y is continuous and $||f_y|| \le ||f|| ||y||$. If y is self-adjoint, f_y is self-adjoint (i.e. $f_y(x^*) = \overline{f_y(x)}$; $x \in A$); but f_y need not be positive, if y is positive.

LEMMA (1.1) For $y \in A$ and $x \in A_+$ we have the following inequality:

$$|f_y(x)| \le ||f||^{1/2} ||y|| ||x||^{1/2} f(x)^{1/2}.$$

PROOF. From the Cauchy-Schwarz inequality for positive functionals it follows that

$$\begin{split} |f_y(x)| &= \frac{1}{2} |f(yx + xy)| \leq \frac{1}{2} [|f(yx)| + |f(xy)|] \\ &= \frac{1}{2} [|f((yx^{1/2})x^{1/2})| + |f(x^{1/2}(x^{1/2}y))|] \\ &\leq \frac{1}{2} [f(yxy^*)^{1/2} f(x)^{1/2} + f(x)^{1/2} f(y^*xy)^{1/2}] \\ &\leq \|f\|^{1/2} \|y\| \|x\|^{1/2} f(x)^{1/2}. \end{split}$$

From Lemma (1.1) we immediately obtain the following:

LEMMA (1.2) For $y \in A$, f_y is absolutely continuous with respect to f.

Since the set of all bounded linear functionals on A which are absolutely continuous with respect to f is a closed linear subspace of the topological dual space A^* , each element of the closure of the set $\{f_y : y \in A\}$ is absolutely continuous with respect to f. Now we will show that the converse is also valid.

THEOREM (1.3) Let f be a positive bounded linear functional and g an arbitrary bounded linear functional on the C^{*}-algebra A.

(i) g is absolutely continuous with respect to f, if and only if there exits a sequence $\{y_n\}$ in A such that

(1)
$$\lim_{n\to\infty} \|g-f_{y_n}\| = 0$$

- (ii) If g is self-adjoint and absolutely continuous with respect to f, the y_n in (1) can be chosen self-adjoint.
- (iii) If g is positive and absolutely continuous with respect to f, the y_n in (1) can be chosen positive.
- (iv) If $0 \le g \le f$, the y_n in (1) can be chosen such that $y_n \in A_+ \cap S$.

Before proceeding to the proof we need to recall some pertinent facts. The second dual A^{**} of the C^* -algebra A is an (abstract) W^* -algebra in a natural manner (with the Arens multiplication). Moreover, A is a $\sigma(A^{**}, A^*)$ -dense C^* -subalgebra of A^{**} , when it is canonically embedded into A^{**} , and the continuous linear functionals (positive linear functionals) on A coincide precisely with the

restrictions of the normal linear functionals (positive normal functionals) on A^{**} to A. The image of $g, f \in A^*$ under the canonical embedding $A^* \to A^{***}$ will again be denoted by g resp. f. (See [5], [8] and in particular [13]).

In [10], (Lemma (2.2)) it is shown that g is absolutely continuous with respect to f if and only if the image of g under the canonical embedding $A^* \to A^{***}$ is absolutely continuous with respect to the canonical image of f. For this reason we need not distinguish between $g, f \in A^*$ and their canonical images in A^{***} . These facts are very important for the following proof of the theorem.

PROOF of (iv). Let $0 \le g \le f$. We consider the set

$$K \coloneqq \{f_y : y \in A_+ \cap S\}.$$

K is a non-empty convex subset of the dual space A^* . Let \overline{K} be its closure in the norm topology on A^* , and suppose that $g \notin \overline{K}$.

From the Hahn-Banach theorem it follows that there exist $a \in A^{**}$ and $\gamma \in \mathbb{R}, \gamma < 1$, such that

$$\operatorname{Re} g(a) = 1, \operatorname{Re} f_y(a) \leq \gamma \text{ for all } y \in A_+ \cap S.$$

Choose $b := (a + a^*)/2 \in A^{**}$. Then, since g and $f_y(y \in A_+)$ are self-adjoint:

$$g(b) = \operatorname{Re} g(a) = 1,$$

$$f_b(y) = f_u(b) = \operatorname{Re} f_u(a) \le \gamma \text{ for all } y \in A_+ \cap S.$$

Since f and the mappings $x \to bx$, and $x \to xb$ are $\sigma(A^{**}, A^*)$ -continuous on A^{**} (see [13]), f_b is $\sigma(A^{**}, A^*)$ -continuous on A^{**} . From Kaplansky's density theorem it follows that $A_+ \cap S$ is $\sigma(A^{**}, A^*)$ -dense in the positive part of the unit ball of A^{**} (see [10] Lemma (2.1)). Therefore

$$f_b(y) \leq \gamma$$
 for all $y \in A^{**}$ with $y \geq 0$ and $||y|| \leq 1$.

The self-adjoint element b has an orthogonal decomposition $b = b^+ - b^-$, where $b^+, b^- \in A^{**}; b^+, b^- \ge 0$ and $b^+b^- = 0 = b^-b^+$.

Let $q \in A^{**}$ be the support of b^+ . Then

$$1 > \gamma \ge f_b(q) = f(bq + qb)/2 = f(b^+) \ge g(b^+) \ge g(b) = 1.$$

This is the desired contradiction.

PROOF of (iii). Let $g \ge 0$ be absolutely continuous with respect to f and consider the set

$$M := \{f_y : y \in A_+\}.$$

M is a non-empty convex cone in the dual space A^* . Let \overline{M} be its closure in the norm topology and suppose that $g \notin \overline{M}$.

As in the above proof of (iv) there exists a self-adjoint element $b \in A^{**}$ such that a(b) = 1

$$f_b(y) = f_y(b) \le 0$$
 for all $y \in A_+$.

Since A_+ is $\sigma(A^{**}, A^*)$ -dense in the positive part of the W^* -algebra A^{**} and since f_b is $\sigma(A^{**}, A^*)$ -continuous, we obtain

$$f_b(y) \leq 0$$
 for all $y \geq 0, y \in A^{**}$.

Let $b^+, -b^- \in A^{**}$ be the positive and the negative part of b and let $q \in A^{**}$ be the support of b^+ . Then

$$0 \ge f_b(q) = f(bq + qb)/2 = f(b^+) \ge 0$$
, thus $f(b^+) = 0$.

From the absolute continuity we conclude that $g(b^+) = 0$.

Finally we obtain the following contradiction:

$$1 = g(b) = g(b^{+}) - g(b^{-}) = -g(b^{-}) \le 0.$$

PROOF of (ii). Let g be self-adjoint and absolutely continuous with respect to f and consider the set

$$L := \{f_y : y \in A_h\},\$$

where A_h denotes the self-adjoint (= hermitian) part of A.

L is a real-linear subspace of A^* . Let \overline{L} be its norm closure and suppose that $g \notin \overline{L}$. Again, as above, there exits a self-adjoint element $b \in A^{**}$ such that

$$g(b) = 1; f_b(y) = f_y(b) = 0$$
 for all $y \in A_h$.

Since A_h is $\sigma(A^{**}, A^*)$ -dense in the self adjoint part of A^{**} and since f_b is $\sigma(A^{**}, A^*)$ - continuous, we have

 $f_b(y) = 0$ for all self-adjoint $y \in A^{**}$.

Let $b = b^+ - b^-$ be the orthogonal decomposition of b in A^{**} , and let q, p be the supports of b^+, b^- in A^{**} . Then

$$0 = f_b(q) = f(bq + qb)/2 = f(b^+);$$

$$0 = f_b(p) = f(bp + pb)/2 = -f(b^-).$$

From the absolute continuity it follows that

$$g(b^+) = g(b^-) = 0.$$

348

Thus $g(b) = g(b^+) - g(b^-) = 0$. This contradicts the fact that g(b) = 1.

PROOF of (i). The fact that condition (1) implies the absolute continuity of g with respect to f follows from Lemma (1.2). The converse is obtained by applying part (ii) to the real and imaginary parts of g.

In the sequel let A be a W^* -algebra with predual A_* . The linear version of S. Sakai's Radon-Nikodym theorem is an immediate consequence of our Theorem (1.3).

COROLLARY (1.4) (S. Sakai) Let g, f be positive linear functionals on the W^* -algebra A, where f is normal and $g \leq f$. Then there exists $y_0 \in A, 0 \leq y_0 \leq 1$, such that

$$g(x) = \frac{1}{2}f(y_0x + xy_0) \qquad (x \in A).$$

PROOF. From Theorem (1.3) (iv) it follows that there is a sequence $\{y_n\}$ in $A_+ \cap S$, such that

$$\lim_{n\to\infty}\|g-f_{y_n}\|=0.$$

Since $A_+ \cap S$ is $\sigma(A, A_*)$ -compact and since the mapping $y \to f_y$ from A with the $\sigma(A, A_*)$ -topology to A^* with the $\sigma(A^*, A)$ -topology is continuous, the set

$$K := \{f_y : y \in A_+ \cap S\}$$

is a $\sigma(A^*, A)$ -compact subset of A^* . Therefore K is closed in the $\sigma(A^*, A)$ -topology and hence in the norm topology on A^* .

From formula (1) of Theorem (1.3) we conclude that $g \in K$; i.e., there is $y_0 \in A_+ \cap S$ such that

$$g(x) = f_{y_0}(x) = \frac{1}{2}f(y_0x + xy_0)$$
 $(x \in A).$

REMARK. In Corollary (1.4) the element y_0 can be chosen such that $0 \le y_0 \le s(f)$, where s(f) is the support of the positive normal functional f. (If need be one can replace the y_0 of Corollary (1.4) by $s(f)y_0s(f)$.) With this additional restraint y_0 is uniquely determined as we shall prove below. In particular if f is faithful (i.e., s(f) = 1), then the y_0 of Corollary (1.4) is uniquely determined.

To show the uniqueness of y_0 , let $y_0, y_1 \in A$ be such that $f_{y_0} = f_{y_1} = g$ and $0 \le y_0 \le s(f), 0 \le y_1 \le s(f)$. Then

$$0 = f_{y_0} - f_{y_1} = f_{y_0 - y_1};$$

$$0 = f_{y_0 - y_1}(y_0 - y_1) = f((y_0 - y_1)^2)$$

Let q be the support of $(y_0 - y_1)^2$; then f(q) = 0 (see [14] 5.15), and therefore

$$q\leq 1-s(f).$$

On the other hand, since $0 \le y_0, y_1 \le s(f)$, it follows for i = 0, 1 that:

$$0 \le (1 - s(f))y_i(1 - s(f)) \le (1 - s(f))s(f)(1 - s(f)) = 0$$

$$\Rightarrow 0 = (1 - s(f))y_i(1 - s(f))$$

$$= [y_i^{1/2}(1 - s(f))]^*[y_i^{1/2}(1 - s(f))].$$

$$\Rightarrow 0 = y_i^{1/2}(1 - s(f)).$$

$$\Rightarrow 0 = y_i(1 - s(f)).$$

Then

$$0 = (y_0 - y_1)^2 (1 - s(f))$$
$$\Rightarrow q \le s(f).$$

Thus

$$q = 0$$
, and hence $(y_0 - y_1)^2 = 0$; i.e., $y_0 = y_1$.

In Corollary (1.4) we have not required that g be normal. This follows automatically from $0 \le g \le f$, when f is normal. It is, in fact, the case that a positive linear functional g is normal if it is absolutely continuous with respect to a positive normal functional f.

The above Theorem (1.3) should be compared with Theorem (2.6) from [10]; in the commutative case they coincide for the most part. But the linear version (1.3) has two advantages: it provides an equivalent characterization of absolute continuity, and the "smaller" functional g need not be positive. It is for this reason that we prefer the linear version for the measure theoretical applications in the next section. However, the quadratic version (2.6) from [10] seems to be more suitable for applications to operator algebras (see section 3 of [10] for a variety of such applications including new proofs of two classical results in the theory of von Neumann algebras due to J. von Neumann and R. Pallu de la Barriére).

2. - Applications to addittive set fuctions

Let Ω be an arbitrary set and let $B(\Omega)$ be the algebra (pointwise operations) of all bounded complex-valued functions on Ω . $B(\Omega)$ is a commutative C^* -algebra for the sup norm $\| \|_{\infty}$.

Now let Σ be a field of subsets of Ω . The linear combinations of characteristic functions of sets in Ω are called *primitive functions*. The set of all primitive functions is a subalgebra of $B(\Omega)$; it is denoted by $P(\Omega, \Sigma)$. The closure of $P(\Omega, \Sigma)$ in $B(\Omega)$ is a C^* -subalgebra of $B(\Omega)$ and will be denoted by $B(\Omega, \Sigma)$. If Σ is a σ -field, $B(\Omega, \Sigma)$ consists of all bounded measurable complex-valued functions on (Ω, Σ) . $B(\Omega) = B(\Omega, \Sigma_0)$, where Σ_0 is the family of *all* subsets of Ω .

350

The dual space of $B(\Omega, \Sigma)$ is isometrically isomorphic to the Banach space $ba(\Omega, \Sigma)$ which consists of all bounded (finitely) additive complex set functions on Σ ; the norm $\| \|_{v}$ on $ba(\Omega, \Sigma)$ is given by the total variation. The isomorphism is defined as follows: every $f \in B(\Omega, \Sigma)^*$ is mapped onto $\mu_f \in ba(\Omega, \Sigma)$ such that the following equation is fulfilled:

$$f(x) = \int x \, \mathrm{d}\mu_f \qquad (x \in B(\Omega, \Sigma)).$$

This isomorphism preserves order; and f is self-adjoint if and only if μ_f is real-valued.

On the linear space $ba(\Omega, \Sigma)$ a second norm $\|\|_{\infty}$ can be introduced:

$$\|\mu\|_{\infty} \coloneqq \sup_{E \in \Sigma} |\mu(E)|.$$

These norms are equivalent: $\| \|_{\infty} \leq \| \|_{v} \leq 4 \| \|_{\infty}$.

The notion of absolute continuity for measures (= countably additive set functions) is extended to (finitely) additive set functions in the following way (see [1], [2], [6], [7]):

DEFINITION (2.1) Let $\nu, \mu \in ba(\Omega, \Sigma), \mu \ge 0$. Then ν is said to be absolutely continuous with respect to μ , if for every $\varepsilon > 0$ there is $\delta > 0$ such that $\mu(E) < \delta$ for $E \in \Sigma$ implies that $|\nu(E)| < \varepsilon$.

REMARKS 2.2 Let $\nu, \mu \in ba(\Omega, \Sigma)$, and $\mu \ge 0$.

- (i) ν is absolutely continuous with respect to ν , iff for every sequence $\{E_n\}$ in Σ , $\lim \mu(E_n) = 0$ implies $\lim \nu(E_n) = 0$.
- (ii) ν is absolutely continuous with respect to μ , iff the variation, $|\nu|$, is absolutely continuous with respect to μ .
- (iii) Let Σ be a σ -field and let ν, μ be countably additive; then ν is absolutely continuous with respect to μ , iff $\mu(E) = 0$ for $E \in \Sigma$ implies that $\nu(E) = 0$. (For the proofs see [6] chap.III.)

The following proposition illustrates the relationship between absolutely continuous functionals on a C^* -algebra and absolutely continuous set functions.

PROPOSITION (2.3) Let g, f be bounded linear functionals on the C^* -algebra $B(\Omega, \Sigma)$ and suppose that $f \ge 0$. Then g is absolutely continuous with respect to f, iff μ_g is absolutely continuous with respect to μ_f .

PROOF. The necessity of the condition is obvious, since the characteristic functions are positive elements of $B(\Omega, \Sigma)$ of norm 1. To prove the sufficiency let μ_g be absolutely continuous with respect to μ_f ; then the variation $|\mu_g|$ is absolutely continuous with respect to μ_f as well.

Since $P(\Omega, \Sigma)$ is dense in $B(\Omega, \Sigma)$, it is sufficient to consider only primitive functions. Let $\{x_n\}$ be a sequence in $P(\Omega, \Sigma)$ with $0 \le x_n \le 1$ and lim $f(x_n) = 0$. We will show: lim $g(x_n) = 0$. Let $\varepsilon > 0$. Since x_n is primitive, the sets $E_n := \{t \in \Omega : x_n(t) \ge \varepsilon\}$ are elements of Σ . From $f \ge 0$ it follows that for every $n \in \mathbb{N}$:

$$f(x_n) \ge f(\varepsilon \chi_{E_n}) = \varepsilon \mu_f(E_n) \ge 0,$$

where χ_{E_n} denotes the characteristic function of E_n .

Therefore

$$\lim_{n\to\infty}\mu_f(E_n)=0.$$

Since $|\mu_q|$ is absolutely continuous with respect to μ_f , it follows that

$$\lim_{n\to\infty}|\mu_g|(E_n)=0.$$

Thus there is an $n_0 \in \mathbb{N}$ such that $|\mu_g|(E_n) < \varepsilon$ for all $n \ge n_0$, and since $0 \le x_n \le 1$, we get for all $n \ge n_0$:

$$\begin{aligned} |g(x_n)| &= |\int_{\Omega} x_n \, \mathrm{d}\mu_g| \leq \int_{\Omega} x_n \, \mathrm{d}|\mu_g| = \int_{E_n} x_n \, \mathrm{d}|\mu_g| + \int_{E_n^c} x_n \, \mathrm{d}|\mu_g| \\ &\leq |\mu_g|(E_n) + \varepsilon |\mu_g|(E_n^c) < \varepsilon + \varepsilon ||\mu_g||_v = \varepsilon (1 + ||\mu_g||_v), \end{aligned}$$

where E_n^c denotes the complement. Hence $\lim g(x_n) = 0$.

Next we apply our Theorem (1.3) to the C^* -algebra $B(\Omega, \Sigma)$ and obtain a generalization of the classical Lebesgue-Radon-Nikodym theorem for (finitely) additive set functions due to S. Bochner [1].

THEOREM (2.4) Let Ω be a set, and let Σ be a field of subsets of Ω . Let $\nu, \mu \in ba(\Omega, \Sigma)$ be such that μ is positive and ν is absolutely continuous with respect to μ .

(i) Then there is a sequence $\{y_n\}$ of primitive functions on Ω such that:

(1)
$$\nu(E) = \lim_{n \to \infty} \int_{E} y_n d\mu$$
 uniformly for $E \in \Sigma$
(2) $\lim_{n,m \to \infty} \int_{\Omega} |y_n - y_m| d\mu = 0.$

(ii) If ν_i is real-valued (positive), the y_n in (i) can be chosen as real-valued (non-negative) primitive functions.

PROOF. We consider the commutative C^* -algebra $B(\Omega, \Sigma)$ and the linear functionals $g := \int d\nu$, $f := \int d\mu$. By Proposition (2.3) g is absolutely continuous with respect to f, and we can therefore apply our Theorem (1.3). Thus there exists a sequence $\{y'_n\}$ in $B(\Omega, \Sigma)$ such that

$$\lim_{n\to\infty}\|g-f_{y'_n}\|=0.$$

352

Since $P(\Omega, \Sigma)$ is dense in $B(\Omega, \Sigma)$, we can find $y_n \in P(\Omega, \Sigma)$ such that $||y_n - y'_n||_{\infty} < \frac{1}{n}$ $(n \in \mathbb{N})$. Then

$$egin{aligned} & \|g-f_{y_n}\| \leq \|g-f_{y_n'}\| + \|f_{y_n'} - f_{y_n}\| \ & \leq \|g-f_{y_n'}\| + \|f\| \cdot \|y_n' - y_n\|_\infty \ & \leq \|g-f_{y_n'}\| + rac{\|f\|}{n} \end{aligned}$$

and hence we conclude that

(3)
$$\lim_{n\to\infty} \|g-f_{y_n}\|=0.$$

For $E \in \Sigma$ we have

(1)
$$\nu(E) = g(\chi_E) = \lim_{n \to \infty} f_{y_n}(\chi_E) = \lim_{n \to \infty} \int_E y_n \, \mathrm{d}\mu$$

Moreover from (3) we have

(2)
$$0 = \lim_{n,m\to\infty} ||f_{y_n} - f_{y_m}|| = \lim_{n,m\to\infty} ||(y_n - y_m)\mu||_v$$
$$= \lim_{n,m\to\infty} \int_{\Omega} |y_n - y_m| \, \mathrm{d}\mu.$$

(2) implies uniform convergence for $E \in \Sigma$ in (1).

(ii) follows in the same way from Theorem (1.3) parts (ii) and (iii).

Finally let Σ be a σ -field and let $\nu, \mu \in ba(\Omega, \Sigma)$ be countably additive, where μ is positive and ν is absolutely continuous with respect to μ . Then the space $L^{1}(\mu)$ is complete and from (2) it follows that there is an $h \in L^{1}(\mu)$ such that:

$$0=\lim_{n\to\infty}\int_{\Omega}|h-y_n|\,\,\mathrm{d}\mu.$$

Hence $\nu(E) = \lim_{n \to \infty} \int_E y_n \, d\mu = \int_E h \, d\mu$ for all $E \in \Sigma$, which is the classical Lebesgue-Radon-Nikodym theorem for finite measures.

REMARKS. (a) Different proofs of Theorem (2.4) may be found in [1], [6], or [7]. C. Fefferman generalizes this theorem in [7] for an arbitrary (not necessarily positive) $\mu \in ba(\Omega, \Sigma)$.

(b) In this section we have applied our results to the C^* -algebra $B(\Omega, \Sigma)$. Similarly we could consider the commutative C^* -algebra $C_0(T)$ consisting of all continuous complex-valued functions on some locally compact Hausdorff space T which vanish at infinity; but since the continuous functionals on $C_0(T)$ correspond presisely to the regular complex Borel measures on T, we would obtain the Lebesgue-Radon-Nikodym theorem only for regular measures, whereas the example $B(\Omega, \Sigma)$ leads us to much more general results.

REFERENCES

- [1] S. BOCHNER. Additive set functions on groups, Ann. of Math. 40 (1939), 769-799.
- [2] S. BOCHNER, R.S. PHILLIPS. Additive set functions and vector lattices, Ann. of Math. (2) 42 (1941), 316-324.
- [3] R.S. BUCY G. MALTESE. A representation theorem for positive functionals on involution algebras, Math. Ann. 162 (1966), 364-367.
- [4] J. DIXMIER. Les algèbres d'opérateurs dans l'espace hilbertien, 2. edition. Gauthier-Villars, Paris (1969).
- [5] J. DIXMIER. Les C^* -algèbres et leurs représentations, Gauthier-Villars, Paris (1969).
- [6] N. DUNFORD J.T. SCHWARZ. *Linear operators I*, Interscience, New York (1958).
- [7] C. FEFFERMAN. A Radon-Nikodym theorem for finitely additive set functions, Pacific J. Math. 23 (1967), 35-45.
- [8] A. GROTHENDIECK. Un résultat sur le dual d'une C*-algèbre, J. Math. Pures Appl. 36 (1957), 96-108.
- [9] S.P. GUDDER. A Radon-Nikodym theorem for *-algebras, Pacific J. Math. 80 (1979), 141-149.
- [10] G. NIESTEGGE. Absolute continuity for linear forms on B*-algebras and a Radon-Nikodym type theorem (quadratic version), Rend. Circ. Mat. Palermo 32 (1983), 358-376.
- [11] G. NIESTEGGE. Sätze vom Radon-Nikodym-Typ für Funktionale auf B^* -Algebren, Schriftenreihe des Math. Instituts der Universität Münster, 2. Serie, Heft 22 (1981).
- [12] G.K. PEDERSEN. C*-algebras and their automorphism groups, Academic Press, London (1979).
- [13] S. SAKAI. C*-algebras and W*-algebras, Springer Verlag, Berlin (1971).
- [14] S. STRATILA L. ZSIDO. Lectures on von Neumann algebras, Abakus Press, Tunbridge Wells, Kent (1979).
- [15] A. VAN DAELE. A Radon-Nikodym theorem for weights on von Neumann algebras, Pacific J. Math. 61 (1975), 527-542.

Matematisches Institut der Universität Münster Einsteinstraße 62 D-4400 Münster

Siemens AG Hofmannstr. 51 D-8000 München 70