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A Linear Radon-Nikodym Type Theorem for C*-Algebras
with Applications to Measure Theory

GEORGE MALTESE - GERD NIESTEGGE

0. - Introduction

In a previous paper [10] (see also [11]) the second author defined the
notion of absolute continuity for (non-normal) bounded linear forms on C*-
algebras and proved a non-commutative Radon-Nykodym type theorem which
generalized the quadratic version of S. Sakai [13]. Here in section 1 we give
an extension of Sakai’s linear version [13] in the context of C*-algebras. As
in [10] the normality of the functionals in question need not be assumed and
Sakai’s condition of strong domination is here replaced by absolute continuity.
In contrast to our linear version, the quadratic version of [ 10] is valid only
for positive functionals. In commutative C*-algebras both linear and quadratic
versions (essentially) coincide.

Section 2 is devoted to applications of our abstract results to measure
theory. We show that the classical Lebesgue-Radon-Nikodym theorem as well
as its generalization to finitely additive measures due to S. Bochner [1] and C.
Fefferman [7] can be obtained as direct consequences of our results applied to
a certain commutative C*-algebra B(Q,1:).

1. - The linear Radon-Nikodym type theorem for C* -algebras

Let A be a C* -algebra with positive part A+ and unit ball S. Let f be a
positive bounded linear functional and g an arbitrary bounded linear functional
on A. g is said to be absolutely continuous with respect to f, if one of the

following equivalent conditions is fulfilled (see [10]):

(i) For every c &#x3E; 0 there exits 6 &#x3E; 0 such that  6- whenever x E A+ n S
and f (x)  6.

(ii) For every sequence in A+ n S with lim = 0, it follows that
n-oo

lim = 0. 
" ~

n-·oo

Pervenuto alla Redazione il 10 Novembre 1986.
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For y E A, the linear functional x -&#x3E; f (yx + xy)/2 (x E A) is denoted

by f y . Since f is continuous, f y is continuous If y is

self-adjoint, fy is self-adjoint (i.e. fy(x*) = fy(x); x E A); but fy need not be
positive, if y is positive.

LEMMA ( 1.1 ) For y E A and x E A+ we have the following inequality:

PROOF. From the Cauchy-Schwarz inequality for positive functionals it
follows that

From Lemma ( 1.1 ) we immediately obtain the following:

LEMMA (1.2) For y E A, f y is absolutely continuous with respect to f.

Since the set of all bounded linear functionals on A which are absolutely
continuous with respect to f is a closed linear subspace of the topological dual
space A*, each element of the closure of the set Ify : y E A} is absolutely
continuous with respect to f. Now we will show that the converse is also valid.

THEOREM (1.3) Let f be a positive bounded linear functional and g an
arbitrary bounded linear functional on the C*-algebra A.

(i) g is absolutely continuous with respect to f, if and only if there exits a
sequence { yn } in A such that

(ii) If g is self-adjoint and absolutely continuous with respect to f, the yn in
(1) can be chosen self-adjoint.

(iii) If g is positive and absolutely continuous with respect to f, the yn in (1)
can be chosen positive.

(iv) If 0  g :5 f, the yn in (1) can be chosen such that yn E A+ f1,S.

Before proceeding to the proof we need to recall some pertinent facts. The
second dual A** of the C*-algebra A is an (abstract) W*-algebra in a natural
manner (with the Arens multiplication). Moreover, A is (A**, A*)-dense C*-
subalgebra of A**, when it is canonically embedded into A**, and the continuous
linear functionals (positive linear functionals) on A coincide precisely with the
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restrictions of the normal linear functionals (positive normal functionals) on A**
to A. The image of g, f E A* under the canonical embedding A* --&#x3E; A*** will

again be denoted by g resp. f. (See [5], [8] and in particular [13]).
In [10], (Lemma (2.2)) it is shown that g is absolutely continuous with

respect to f if and only if the image of g under the canonical embedding
A* --* A*** is absolutely continuous with respect to the canonical image of f.
For this reason we need not distinguish between g, f E A* and their canonical
images in A***. These facts are very important for the following proof of the
theorem.

PROOF of (iv). Let 0  g  f. We consider the set

K is a non-empty convex subset of the dual space A*. Let K be its closure in
the norm topology on A*, and suppose that g V K.

From the Hahn-Banach theorem it follows that there exist a E A** and

i  1, such that

Choose Then, since g and fy(y E A+) are self-adjoint:

Since f and the mappings x -~ bx, and x --&#x3E; xb are a (A**, A*)-continuous on
A** (see [13]), fb is u(A**, A*)-continuous on A**. From Kaplansky’s density
theorem it follows that A+ n S’ is Q (A**, A*)-dense in the positive part of the
unit ball of A** (see [10] Lemma (2.1 )). Therefore

The self-adjoint element b has an orthogonal decomposition b = b+ - b-, where
b+, b- E A**; b+, b- &#x3E; 0 and b+b- = 0 = b-b+.

Let q E A * * be the support of b+. Then

This is the desired contradiction.

PROOF of (iii). Let g &#x3E; 0 be absolutely continuous with respect to f and
consider the set

M is a non-empty convex cone in the dual space A*. Let M be its closure in
the norm topology and suppose that g V M.
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As in the above proof of (iv) there exists a self-adjoint element b E A**
such that

Since A+ in the positive part of the W*-algebra A** and
since fb we obtain -

Let b+, -b- E A** be the positive and the negative part of b and let q E A** be
the support of b+. Then

From the absolute continuity we conclude that g(b+) = 0.
Finally we obtain the following contradiction:

PROOF of (ii). Let g be self-adjoint and absolutely continuous with respect
to f and consider the set

where Ah denotes the self-adjoint (= hermitian) part of A.
L is a real-linear subspace of A*. Let L be its norm closure and suppose

that g fj L. Again, as above, there exits a self-adjoint element b E A** such that

Since Ah is Q (A**, A* )-dense in the self adjoint part of A** and since fb is

~ (A**, A*)- continuous, we have

for all self-adjoint y c= A**.

Let b = b+ - b- be the orthogonal decomposition of b in A**, and let q, p be the
supports of b+, b- in A**. Then

From the absolute continuity it follows that
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Thus g(b) = g(b+) - g(b-) = 0. This contradicts the fact that g(b) = 1.

PROOF of (i). The fact that condition (1) implies the absolute continuity
of g with respect to f follows from Lemma (1.2). The converse is obtained by
applying part (ii) to the real and imaginary parts of g.

In the sequel let A be a W*-algebra with predual A*. The linear version
of S. Sakai’s Radon-Nikodym theorem is an immediate consequence of our
Theorem (1.3).

COROLLARY (1.4) (S. Sakai) Let g, f be positive linear functionals
on the W*-algebra A, where f is normal and g  f. Then there exists

yo c A, 0  yo  1, such that

PROOF. From Theorem (1.3) (iv) it follows that there is a sequence (yn)
in A+ n S, such that

1

n--~oo

Since A, n s is Q (A, A* ) - compact and since the mapping y - f y from A with
to A* with the (J(A*, A)-topology is continuous, the set

is subset of A*. Therefore K is closed in the
u (A*, A) - topology and hence in the norm topology on A*.

From formula (1) of Theorem (1.3) we conclude that g E K; i.e., there is
yo E A+ n ,S such that

REMARK. In Corollary (1.4) the element yo can be chosen such that

0  yo  s( f ), where s(f) is the support of the positive normal functional
f. (If need be one can replace the yo of Corollary (1.4) by s( f )yos( f ).) With
this additional restraint yo is uniquely determined as we shall prove below.
In particular if f is faithful (i.e., s( f ) = 1), then the yo of Corollary (1.4) is

uniquely determined.
To show the uniqueness of yo, let yo, 2/1 1 E A be such that fyo = fy, = g

and 0  2/0   s( f ). Then

Let q be the support of (yo - Yl)2; then f (q) = 0 (see [14] 5.15), and therefore
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On the other hand, since 0  yo, s(, f ), it follows for i = 0, 1 that:

Then

Thus
and hence

In Corollary (1.4) we have not required that g be normal. This follows

automatically from 0  g  f, when f is normal. It is, in fact, the case
that a positive linear functional g is normal if it is absolutely continuous with
respect to a positive normal functional f.

The above Theorem (1.3) should be compared with Theorem (2.6) from
[10]; in the commutative case they coincide for the most part. But the linear
version (1.3) has two advantages: it provides an equivalent characterization of
absolute continuity, and the "smaller" functional g need not be positive. It is
for this reason that we prefer the linear version for the measure theoretical
applications in the next section. However, the quadratic version (2.6) from [10]
seems to be more suitable for applications to operator algebras (see section 3
of [10] for a variety of such applications including new proofs of two classical
results in the theory of von Neumann algebras due to J. von Neumann and R.
Pallu de la Barriere).

2. - Applications to addittive set fuctions

Let Q be an arbitrary set and let be the algebra (pointwise operations)
of all bounded complex-valued functions on S2. B(SZ) is a commutative

C*-algebra for the sup norm 11
Now let M be a field of subsets of S2. The linear combinations of

characteristic functions of sets in L2 are called primitive functions. The set

of all primitive functions is a subalgebra of B(Q) ; it is denoted by ~). The
closure of P(i2, 1) in B(SZ) is a C* - subalgebra of and will be denoted

by B(92, 1). If E is a u -field, B(i2, 1) consists of all bounded measurable

complex-valued functions on (Q,1:). = B(n, 4), where is the family
of all subsets of SZ.



351

The dual space of 1:) is isometrically isomorphic to the Banach space
ba(Q,1:) which consists of all bounded (finitely) additive complex set functiohs
on E; thenorm 11 ] on ba(Q, 1:) is given by the total variation. The isomorphism
is defined as follows: every f E B(SZ, ~)* is mapped onto of E ba(Q,1:) such
that the following equation is fulfilled:

This isomorphism preserves order; and f is self-adjoint if and only if is
real-valued.

On the linear space a second norm 11 can be introduced:

These norms are equivalent:

The notion of absolute continuity for measures (= countably additive set
functions) is extended to (finitely) additive set functions in the following way
(see [ 1 ], [2], [6], [7]):

DEFINITION (2.1 ) Let v, p E ba(Q, 1), it &#x3E; 0. Then v is said to be absolutely
continuous with respect to u, if for every c &#x3E; 0 there is 6 &#x3E; 0 such that  6
for E E 1: implies that  c.

REMARKS 2.2 Let v, tt E ba(fl, 1), 0.

(i) v is absolutely continuous with respect to v, iff for every sequence {En}
in ~, lim = 0 implies lim v(En) = 0.

(ii) v is absolutely continuous with respect to iff the variation, lvi, is

absolutely continuous with respect to ti.

(iii) Let 1: be a u -field and let v,,u be countably addittive; then v is absolutely
continuous with respect to tt, iff = 0 forE E 1: implies that v(E) = 0.
(For the proofs see [6] chap.III.)
The following proposition illustrates the relationship between absolutely

continuous functionals on a C* - algebra and absolutely continuous set functions.

PROPOSITION (2.3) Let g, f be bounded linear functionals on the

C* -algebra B(Q,1:) and suppose that f &#x3E; 0. Then g is absolutely continuous
with respect to f, iff is absolutely continuous with respect to 

PROOF. The necessity of the condition is obvious, since the characteristic
functions are positive elements of B(Q,1:) of norm 1. To prove the sufficiency
let be absolutely continuous with respect to of; then the variation is

absolutely continuous with respect to as well.
Since P(Q, 1:) is dense in B(Q, ~), it is sufficient to consider only primitive

functions. Let be a sequence in with 0  1 and
lim = 0. We will show: lim g(xn) = 0. Let E &#x3E; 0. Since xn is primitive,
the sets En :_ ft c) are elements of E. From f &#x3E; 0 it follows
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that for every n 

where XEn denotes the characteristic function of En.
Therefore

Since is absolutely continuous with respect to pf, it follows that

Thus there is an no E N such that  F for all n &#x3E; no, and since

0  ~ ~ ~ we get for all n &#x3E; no:

where En denotes the complement. Hence lim g(xn) = 0.

Next we apply our Theorem ( 1.3) to the C* -algebra B(Q, L) and obtain a
generalization of the classical Lebesgue-Radon-Nikodym theorem for (finitely)
additive set functions due to S. Bochner [ 1 ] .

THEOREM (2.4) Let Q be a set, and let I be a field of subsets of Q. Let
v, p E ba(Q, L) be such that ti is positive and v is absolutely continuous with
respect to IL.

(i) Then there is a of primitive functions on K2 such that:

(ii) If v is real-valued (positive), the yn in (i) can be chosen as real-valued
(non- negative) primitive functions.

PROOF. We consider the commutative C* - algebra B(i2,Y-) and the linear
functionals g := f dv, f := f dit. By Proposition (2.3) g is absolutely continuous
with respect to f, and we can therefore apply our Theorem (1.3). Thus there
exists a sequence in B(Q, E) such that
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Since P(Q, 1) is dense in B(s2, E), we can find yn E P(Q, 1) such that
Then

and hence we conclude that

For EEL we have

Moreover from (3) we have

(2) implies uniform convergence for EEL in (1).
(ii) follows in the same way from Theorem (1.3) parts (ii) and (iii).
Finally let E be a (J - field and let v, J.L E be countably additive,

where 1L is positive and v is absolutely continuous with respect to ~. Then the
space is complete and from (2) it follows that there is such
that: 

r

Hence v(E) = lim f yn dit = f h dJ.L for all E E E, wich is the classical
E

Lebesgue-Radon-Nikodym theorem for finite measures.

REMARKS. (a) Different proofs of Theorem (2.4) may be found in [1],
[6], or [7]. C. Fefferman generalizes this theorem in [7] for an arbitrary (not
necessarily positive) it E ba(Q, E).

(b) In this section we have applied our results to the C* -algebra B(Q, L).
Similarly we could consider the commutative C* -algebra consisting of
all continuous complex-valued functions on some locally compact Hausdorff
space T which vanish at infinity; but since the continuous functionals on

Co(T) correspond presisely to the regular complex Borel measures on T, we
would obtain the Lebesgue-Radon-Nikodym theorem only for regular measures,
whereas the example B(i2, L) leads us to much more general results.
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