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On Wave Propagation and Uniqueness
in Nonviscous Fluid Dynamics

BRUNO CARBONARO - REMIGIO RUSSO

1. - Introduction and statement of the problem

This paper aims at studying wave propagation and uniqueness of regular
solutions for the system governing the motion of a nonviscous fluid filling
an unbounded region n C ll~ ~, whose complement 1l~ ~ - ft is thought
to be occupied by a rigid body. Because of the deep difference between
the compressible and incompressible cases, we have deemed it suitable to

distinguish them and, accordingly, to divide the paper in two separate parts.
First, we consider a barotropic nonviscous fluid, whose motions, as is

well known, obey the system [1](1)

where p = p(x, t), I v = v (x, t), p are respectively the (unknown) mass density,
velocity and (thermodynamical) pressure fields and b = b(p ; x, t) is the body
force (per unit volume) field.

We assume that 12 is so regular as required for the validity of the

divergence theorem, that the function p: R+ --* R+ is twice continuously
differentiable and that b is a continuously differentiable function of all its

arguments.
We shall merely consider classical solutions to System ( 1.1 ), i.e. couples,

{ 1 ) Light-face letters denote scalars, bold-face letters different from x, y and o denote vectors (on
R. 3), while (x,y) and o stand respectively for generic points of R 3 and the origin of an assigned reference
frame R={o,e~} in which no is at rest. The symbol at means partial differentiation with respect-to
time t, vp is the vector with components Vu is the second-order tensor (linear transformation
from R 3 to R 3) with components and div u is the scalar Here all

the indexes run from 1 to 3.

Pervenuto alla Redazione i1 24 febbraio 1986 e in forma definitiva il 9 ottobre 1986.
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( p, v) such that p and the components of v are continuously differentiable on
fi x [0, +oo), where f2 = 0 U 9H with 0Q boundary of n.

We are mainly interested in comparing the behaviour at each instant of
two solutions (p,v), ( p, v) to System (1.1), corresponding to the body force
fields b and b respectively. To this aim, we write the system which is to be
satisfied by the perturbation (o- = p - p, u = ~, - v) :

where 7r,, ~= P’(p) - p’(p), f = + fp, with f~ = 6 (p; x, t) and

fp= 
The most interesting property we shall point out for a quite general class

of solutions to System (1.1) is that any perturbation (u, u) which is confined
in a bounded region at instant t = 0, identically vanishes outside a suitable
bounded region at each instant t &#x3E; 0. This result will be a consequence of a

general domain of influence theorem we shall prove for System (1.2), under
the following assumption:

A smooth, positive, increasing and convex function q on [0, +00) exists
such that = +00 and

where c is a reference velocity and,

REMARK 1. It should be mentioned that, in a celebrated paper of 1959

[2], as a consequence of a general uniqueness theorem for regular solutions
to System (1.1) in bounded domains, J. Serrin proved ([2], p.280, Corollary)
a result which may be viewed as concerning the propagation of perturbations.
The statement of Serrin’s result and the discussion of its link with our domain
of influence theorem will be carried out at the end of Section 3 (Remark 5).

REMARK 2. It is worth noting that condition (1.3) involves v and 
because we chose (p, v) as the basic flow: of course, it may be replaced by
the symmetric assumption

which turns out to be completely equivalent to (1.3). This equivalence expresses
the obvious fact that (p, v) may be taken as the unperturbed motion in place
of (p, v). The physical situation expressed by this mathematical symmetry may
be described as follows: since §(x, t) [respectively v(x,t)] represents the local
velocity(2) of the fluid in R, and vrp7M [respectively is the local sound

(2) By this phrase we mean the velocity of the particle which occupies the position x at instant t.
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velocity(3) in a reference frame "passing through" the point x at instant t with
velocity [respectively v(x, t)], then (1.3) [respectively (1.4)] gives an
upper bound on the sound velocity in R. This bound, as will be clear in the
sequel, seems to be the most natural one.

For incompressibile (homogeneous) fluids, System (1.1 ) takes the form

where p is now a constant and p is the (unknown) dynamical pressure. Of
course, from (1.5) it follows that p is defined up to an arbitrary function of
time.

A classical solution to System (1.5) is a couple (v, p) satisfying (1.5) and
such that p and the components of v are continuously differentiable on Q. If
(v + u, p + qr) is another solution to (1.5) corresponding to the body force field
b + f, then the perturbation (u,7r) satisfies the system

For System (1.6), under mild restrictions upon the behaviour of solutions
at infinity, we shall prove the work and energy theorem and obtain some

uniqueness results.
It should be noted that our choice of the reference frame R implies that

the normal component at the points of 0Q of the kinetic field of the fluid
must be zero. In other words, Systems (1.1), (1.5) and (1.2), (1.6) must be
considered as implicitly completed by the conditions

respectively, where N is the outward unit normal to an.
The plan of the work is as follows: Section 2 is devoted to the statement

and proof of our main result for the compressible case, i.e. the domain of
dependence inequality, while in Section 3 its consequences are derived and
discussed. Finally, Section 4 deals with the results for the incompressible case.

~3~ This is the sound velocity at the place x and at time t.
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2. - The domain of dependence inequality for compressible fluids

It is the purpose of this section to obtain the most expressive result of
this paper on compressible nonviscous fluids, namely the so-called domain of
dependence inequality for System ( 1.1 ). Inequalities of this type have already
proved to be useful in several problems related to linear hyperbolic systems.
Indeed, as we $hall subsequently show, such a relation gives, among other
things, the domain of influence theorem, whence it follows that, ,if the data
have a compact support, then so does the solution at each instant t &#x3E; 0.

For the sake of formal simplicity, we set

THEOREM 2.1 (Domain of dependence inequality). Let ( p, v), ( p, v) be
two solutions to System ( 1.1 ) corresponding to the body force and b

respectively, and assume that (1.3) holds. Then, V(xo , t) E Q, VR &#x3E; 0,

where ~d = q-1 [q(R + ro) + c(t - s)] - ro, ro = lxo - o ~ and hR (t) is a positive
increasing function of R.

PROOF. Consider the piecewise smooth function on R 3 X [0, t] [2]

where w is a smooth and increasing function on R, identically vanishing on
(-oo,0] and equal to 1 on [ 1 + cx&#x3E;). It should be observed that the support of
g is the set

and that g is everywhere smooth even if Vg is not defined along the axis x = xo.
Indeed, if 6 is chosen sufficiently small, then 9 == 1 in the set Ra+ ~ ) .
’Moreover, as b -~ 0, g tends boundedly to the characteristic function of f.
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Multiply both sides of (1.2) 1 by gu and integrate over n x (0, t). Since,
by virtue of (1.2) 2

by making use of the divergence theorem, we have

By virtue of the inequality(4)

as well as of hypothesis (1.3), we see that the quantity

~ From now on we shall repeatedly use the arithmetic-geometric mean inequality: 2 ab

~-1a~-~~b~, 
ts~ Of course, by symbol ~ ~ ( ~ &#x3E; o ) we denote the positive square root of e.
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is certainly not positive. Indeed, setting, Vex 0 xo, e° = Ix - xo 1-1 (x - xo) and
noting that

J = -S-1w’ 

+ P, (P) o-u +2 p P, (P) o, 9 er
’ 

 -6-1 W’ In + + 0

where we have used the convexity of q.
Take now into account the inequalities

&#x3E;

[(Vv)vl !5 iP’ (fi)] ’ 17,
u + p. U - 2 oP P 2 0 - oP p 0 r,

N yy

fo · u (p + 6iu; X, t) u;

 ~P’ (P~~ ~ + ~1~’ (P)~ ~ ’7,

lpu2

lp,, (p+ Vpl ~P’(P)~ ’ Q&#x3E;

UU f !p"(p)Vp - p-W)Vp) ( p)- a ’?,
where

m (X, t) = max ( I (p + Oj u ; X, t)w(x,t) 
and 0, 8 E (0, 1). Furthermore, set

= -" 1 -I- su 2 + + I(Vv)vl= T.-’ s (.U, .) ( [P’(I)] ’ + m(x,t) + I(Vv)vl

+ lp"(p + 6u)V pi + p-’p’(p)vp!)
+ 

+ I div il + I div 
Then (2.3) yields

where we have used the convexity of q.
Take now into account the inequalities

where

and 0, E (0, 1). Furthermore, set

Then (2.3) yields
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So, putting

and using Gr6nwall’s lemma, it follows that

Thanks to the properties of the function g, (2.4) may be rewritten as

so that, since for any 6 &#x3E; 0, letting 6 --+ 0 and making use of Lebesgue’s
dominated convergence theorem lead to the desired result.

3. - Some results in the compressible case

Let (p, v), (p, v) be two solutions to System (1.1) corresponding to the
body force fields b and b respectively, and be the set of the points
x E f2 such that

We define the domain of influence oaf the initial perturbation (u(x, 0), u(x, 0))
and the difference body force field b (p; x, t) - b ( p; x, t) at instant t, as the set

The domain of dependence inequality enables us to prove the following

THEOREM 3.1 (Domain of influence theorem). Let the assumptions of
Theorem 2.1 be met. Then
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PROOF. Let Apply (2.1 ) with and
Then

Since the integrals at RHS of (3.2) vanish and is continuous and

nonnegative, we have that = 0 on O(xo,R). On the other hand, since
xo and r are arbitrarily chosen in {fl - and in (O,t) respectively, (3.1)
immediately follows.

REMARK 3. It is worth noting explicitly that theorem 3.1 becomes

particularly meaningful when u(x, 0), u(x, 0) and fp(x, t) have compact supports.
Indeed, in this case it assures that and u(x,t) have compact supports at
each instant t &#x3E; 0.

Of course, Theorem 3.1 implies the following.

THEOREM 3.2 (Uniqueness theorem). Let (p, v) be two solutions
to system (1.1) corresponding to the same body force field. If

then

REMARK 4. The domain of influence theorem (Theorem 3.1 ) suggests to
us that hypothesis (1.3) may be considered as the best possible. Indeed the
requirement that q(r) diverges at infinity is the sole condition which really
bounds the choice of the function q(r). Dropping this assumption would allow
the domain of influence of data to invade the whole space in a finite time, since
a finite instant T would certainly exist such that lim t-r = +00. On
the other hand, if this assumption were not satisfied, then a signal propagating
with speed would reach any point of the space at a time t which
may be at most equal to r = q(ro)}  +oo. This would exclude
the possibility of wave propagation in the whole interval [0, +00), and it is a

matter of doubt whether the mathematical model of compressible nonviscous
fluids could be applied to physical problems related to this phenomenon.

Finally, in order to confirm our conjecture, we may recall an analogous
feature of the evolution of an unbounded elastic continuum: denoting by A
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the acoustic tensor [4], if ( [A[)§ , which for solids has the same meaning that
has for fluids, grows at infinity more rapidly than does (with

q(r) as in (1.3)), then all the classical properties of the solutions to the system
of linear elastodynamics (e.g. uniqueness, wave propagation, etc....) are lost
[5,6]~6~ .

REMARK 5. We are now in a position to recall Serrin’s result quoted in
Remark 1, and to point out its links with ours. To this aim, let fl be bounded
and let f (x, t) be a continuously differentiable function on Q. Assume that

a) the equation

defines a closed real surface(7) Sk c Q at least for some k E R;
b) if (¡3, v) is a solution to System ( 1.1 ), with b = pf(x, t), the set

where, V(x,t) E Q, m (x, t ) and G (x, t ) = at f , is not empty.
Denote by Rk the (space-time) region bounded by Sk. The Corollary to

Theorem 2 of [2] states that, if ~Rk c 1°, and (p, v) is another solution to

System (1.1) (with b = pf) such that

then

The region R~ is called by Serrin domain of determinacy for the region
Rk n (0 x {0}). It is obvious that this result is related to the propagation of
perturbations in the fluid in that it asserts that any perturbation initially confined
in 0 - (Rk n (0 x {o})), is certainly confined in f2 - (Rk n (0 x {t})) at each
instant t.

We observe that the above result is easily obtained as a consequence of
(2.1) with g(~) == ç, by considering the region Rk as a join of cones of axes
x = xo (xo E Rk n (0 x {0})). It should be stressed that condition (1.3) assures
that, if G = -c and m = e°, then I == Q, so that we are allowed to apply (2.1 )
to the cone of axis xo, for any xo E f2.

As a further simple consequence of the domain of dependence inequality,
we have:

~6~ Nevertheless, it should be observed that all the results stated above hold unchanged in any
interval [0,TJ, with Tr. 

’

(7) The assumption that Sk is closed is made only to avoid formal complications. Indeed, in

Serrin’s paper [2] it is.sufficient that 
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THEOREM 3.3. Let the assumptions of Theorem 2.1 be satisfied and assume
that

and

then

. PROOF. (3.5) is immediately obtained by letting R -. +oo in (2.1) and
bearing in mind (3.4).

We conclude this section by pointing out that relation (3.5) may be
usefully applied to obtain continuous data dependence results for solutions to
System (1.1) satisfying (3.3).

4. - Theorems concerning the incompressible case

This last section is devoted to a discussion about some classical theorems

concerning regular solutions to System (1.5). We start with establishing a basic
a priori estimate for solutions to System (1.6).. 

’

THEOREM 4.1. Let (v, p) and (v + u, p ~- ~c) be two solutions to System
(1.5) corresponding to the body force fields b and b -~- f respectively, and
assume that a smooth, positive and increasing function q(r) exists such that

q(r) = +oo and
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Then 3k(t) &#x3E; 0 such that, Vt ~ 0,

PROOF. Multiply both sides of (1.6)1 by gu, where g is given by (2.2) but
xo is fixed once and for all as the origin of R3, and integrate over 12 x (0, t).
Then, an integration by parts gives

By means of the inequalities:

(4.3) implies:.
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We now choose c and such that sup(o,t) + ~  c, so that

whence, using Gronwall’s lemma and setting it

follows that

Observe now that, setting

As a consequence, since g div is regular,

Thus, letting 6 --~ 0 in (4.4) yields
I
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Hence (4.2) follows by letting R - +oo and taking into account (4.1)2,3.
As an immediate consequence of Theorem 4.1, we have the following

uniqueness theorem.

THEOREM 4.2 let (v, p), (v+u,p+7r) be two solutions to System (1.5)
such that (4.1) holds. If u = 0 on a x {0}, then u = 0 on Q.

It should be pointed out that the above uniqueness theorem is proved
without growth-at-infinity assumptions on Vu and that hypotheses on u, v and
7r appear sufficiently weak. Indeed, choosing g = log(l + conditions

(4.1)1,2 read .

where £ is a reference length.
On the other hand, for homogeneous data, System (1.5) admits nontrivial

solutions when the velocity is supposed to be bounded and the pressure is
allowed to grow as the distance r does. As an example of such nontrivial
solutions on Q = R 3 corresponding to vanishing initial data and body forces,
we may exhibit the couple (v = = [7].

By starting from Theorem 4.1, one may easily obtain a result of continuous
dependence upon data. Nevertheless, we shall only prove a result concerning
the stability of the rest solution. To this aim, we recall that the null solution
(v = 0, p = p(t)) of System (1.5) is energy stable with respect to perturbations
(u,7r) belonging to a class Q(8) if

The following theorem holds.

THEOREM 4.3. The rest solution (O,,p(t)) of System (1.5) is energy stable
with respect to perturbations (u, 7r) such that (4.1) holds.

PROOF. By tracing the steps in the proof of Theorem 4.1, and bearing in
mind that now v = 0, we are led to

(g) Of course, we are referring to solutions (u,7I’) to System (1.5) corresponding to f=0.
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Letting 5 - 0 and R - +oo, the above relation yields

which proves the theorem.
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