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Homogeneous CR-hypersurface-structures
on Spheres

R. LEHMANN - D. FELDMUELLER

Introduction

Let M be a compact CR-hypersurface which is homogeneous under the
action of a real Lie group G of CR-transformations (see §1 for basic definitions).
If sotne additional condition is imposed, a detailed classification is possible.
For example in [3] a fine classification is given for the case when the Levi-
form is non-degenerate. Instead of the non-degeneracy of the Levi-form a

Kähler-condition is imposed in [17].
In this note the additional condition is topological: M is assumed to

be a homogeneous CR-hypersurface which is homeomorphic to the (2n + 1)-
dimensional sphere. There is a standard (homogeneous) CR-structure on M
coming from the embedding of M as the boundary of the ball in

We want to answer the following question: Are there homogeneous
CR-structures on M which are different from the standard CR-structure? This
is a natural question because in [6] E. Cartan showed that there are non-

standard CR-structures on S3 . These structures are homogeneous and appear
as follows: The generic 5’C/2-orbits on the affine quadric 5’L2(C)/C* (where
tC * = { (~ x 0 ti) A E C * ) are hypersurfaces which are diffeomorphic to P 2 (R).It is known that different orbits have different CR-structures (see e.g. [17]).
The CR-structures on the orbits induce CR-structures on the universal covering
S3 which is also an . SU2-orbit. It can be shown that 53 with one of these
structures is never the boundary of a Stein manifold (see e.g. [3]). The situation
for 83 is different from the general situation. On one hand, the affine quadric
is an affine C-bundle over Pi (C ) which is not equivalent to a holomorphic line
bundle. In higher dimensions every affine C-bundle over Pn (C ) is equivalent to
a line bundle (see §2.4) and therefore examples don’t appear in this way. On the
other hand, these non-standard structures come from unit sphere bundles over
the symmetric spaces S2 or lP2 (1l~ ), while in higher dimensions the universal
covering of a unit sphere bundle is never a sphere.

Pervenuto alla Redazione il 17 Febbraio 1986.
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In fact we have:

Main Theorem: The only CR-hypersurface-structure on 2)
which admits a transitive action of q Lie group of CR-transformations is the
standard CR-structure.

Our main tool, is the so-called y-anticanonical fibration of a homogeneous
CR-hypersurface (cf. [3] or [17]). We use the. topological properties of the
sphere to show that the g-anticanonical fibration is principal and the fiber is
either finite or the identity component of the fiber is a compact abelian group. In
the latter case, using a result of Eckmann, Samuelson and Whitehead ([7]), we
show that this group is one-dimensional, and that M is an Sl-principal bundle
over a projective rational manifold. In the case of a finite y-anticanonical
fibration we consider the so-called Stein-rational fibration. Applying results of
Nagano ([16]) we show that the base of this fibration is not trivial. Again we
obtain an Sl-principal fibration of M over a projective rational manifold.

From the classification of Nagano we also know that in each case the
base X of the Sl-principal fibration is diffeomorphic to Using results
of Kodaira and Hirzebruch ([10]) we know then that X is biholomorphic to
Pn(C ).

The next step is to show that M is an Sl-subbundle of a holomorphic
C*-principal bundle over lPn (C ) . The principal bundle is shown to be 
and therefore M = s2n+l with the standard structure.

We think that some of the methods should work for the study of simply-
connected homogeneous CR-hypersurfaces.

The organization of the article is as follows:
As the result might be interesting for someone not familiar with the

methods applied, we have explained them in the beginning. Therefore § 1
consists of the basic definitions and main theorems about homogeneous CR-
structures, the g-anticanonical and the Stein-rational fibration.

In §2 it is shown that there is a CR-fibration of M with fiber S’ and
base Pn(C ). This lies in a holomorphic line bundle or a C*-principal bundle
over Pn(C). Finally we prove the uniqueness of the CR-structure.

We want to thank Prof. Alan Huckleberry for proposing us the problem
and for his help in numerous discussions.

1.1 Basic Definitions and Facts about CR-manifolds

We begin by giving some basic definitions and facts about CR-manifolds.
For details we refer to [ 1 ] or [2].

Let M be a real C°°-manifold of dimension m. By a Cauchy-Riemann-
(CR-)-structure of type (m, e) on M we understand a subbundle HM of rank
e of the complexified tangent bundle yM0C which satisfies the following two
conditions:
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(a) HM f1 H M/= (0) (zero section)
(b) HM is involutive, i.e. the Lie product [e, 17] of two sections C, t7 in HM

is again a section in HM.

A CR-manifold of type (m, e) is a pair (M, HM) consisting of a C°°-
manifold M of dimension m and a CR-structure HM of type (m, t) on M. If
2~+ 1 = m, we will call (M, HM) a CR-hypersurface. An analytic CR-manifold
M is defined to be a real analytic manifold M with HM locally generated
by analytic local sections in TM o C. Let f be a smooth map between two
CR-manifolds (M,HM) and (M’, HM’). We call f a CR-map, if for every
p E M the complexified differential If carries HMp into HMj(p).

If M’ = C and HM is the usual holomorphic tangent bundle, then f is
called a 

An embedding r of a CR-manifold M into a complex manifold M is
defined to be a smooth embedding r : M -~ M, where r is a CR-map 
carries the induced CR-structure, i.e. one has H r(M) = (T 
An embedding is called generic, if dime M = m-f (the smallest possible value),
M being of type (m, e). In this case (M, r) is called a complexification of M.

We recall two basic facts (see e.g. [1], [2]):

THEOREM 1: Every analytic CR-manifold M has a complexification
(M,r). The germ of the complexification is unique.

THEOREM 2: Let M C M and M’ C M’ be two analytic CR-manifolds
with their complexifications and f : M --~ M’ be an analytic CR-map. Then
there exist open neighbourhoods U c M of M (resp. U’ C M’ I of M’) and a
holomorphic mapping f : U --+ U’ with = f . The germ of the extension f
of f is .unique. 

Defining a CR-vector field X to be a vector field on M inducing local
one-parameter groups of CR-transformations, one can also show that, for every
analytic CR-vector field X, there exists a neighbourhood U c M of the analytic
CR-manifold M and a holomorphic vector field Z on U so that Re Z = X on
M (see e.g. [3]). Again the germ of Z on M is unique.

1.2 Homogeneous CR-manifolds and the g-anticanonical Fibration

The details of what will follow can be found in [3] or [17].
We call a CR-manifold M homogeneous if there exists a real Lie group G

acting transitively on M as a group of CR-transformations. We always assume
M to be connected. Thus we may also assume that G is connected. Furthermore
we assume that G is simply-connected. This can be arranged by going over to
the universal covering.

Since G as a Lie group possesses an analytic structure, we can also give M
the structure of an analytic manifold so that G acts by analytic transformations.
One can show that HM is locally generated by analytic local sections in
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TM (9 C ([17]). Thus a homogeneous CR-manifold M has the structure of an
analytic CR-manifold. From 1.1.1 we know that M possesses a complexification
(M,r)..

We regard the Lie algebra y of G as an algebra of CR-vector fields
on M. Since it is finite-dimensional and since individual vector fields can be

extended, there is a neighbourhood U c M and for every analytic CR-vector
field X a unique holomorphic vector field Z on U such that Re Z = X on M.
We de6ne g- to be the complex subalgebra of the holomorphic vector fields on
U which is generated by g and the map X - Z. So we have a Lie algebra
homomorphism y - #. We call (U, r) a #-complexification. After shrinking M,
we may assume that it is a t-complexification.

If there exists a complex Lie group 6 with Lie algebra g which acts

holomorphically and transitively on M so that this action induces the G-action
on M, then M is called a 6-complexification of M.

Now let M be a g-complexification of M, dimeM = : n and V- := ~n~
with dime V# = : N + 1. One can take a base  &#x3E; of Vy ~nd define

. a map A A _

where [yo: ... : yN] denote the homogeneous coordinates on 1PN(C).
Taking M small enough, one may assume ~ to be holomorphic. The map

~ defined by 0 :_ ~~M is called g-anticanonical.,map of the homogeneous
manifold M. This map is G-equivariant. However 0 may not be.

PROPOSITION 1: A vector field Z in ~ vanishing at p E M vanishes
identically on the fiber ~-1(~(p)).

PROPOSITION 2: Let GIN be the !J-anticanonical map of M.
Then N normalizes HO.

So if H is connected, the g-anticanonical fibration is a N/H-principal
bundle. Moreover, the right principal action A : M x N/H --+ M is a CR-action.

From Proposition 1 one can deduce the following property of the
CR-structure HL of the fiber L = N/H ([3]) : r(L, HL + HL) is a

complex subalgebra of and therefore generates complex integral
submanifolds of L.

From now on we assume that M is a CR-hypersurface.
Since 0 is a CR-map, HM is mapped surjectively onto H§(M) (for

the general case see [17]). In this case one deduces that the base G/N of the
!Y-anticanonical fibration is either a CR-hypersurface in $(3i’) or is equal to
the complex manifold ~(M).

As the g-anticanonical fibration is G-equivariant, there is a homomorphism
-~ Let G be the smallest complex Lie group (not

necessarily closed) in containing 0.(G). Let p E o(M) and
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G(p) =: G/N, containing ~(M). The restriction to o(M) of a vector field in
the Lie algebra $ of G is the projection of a vector field on M in ~-, so $(3i’)
is open in G/N.

If G/N = ~(M) then G/N = G/N. By a theorem of Goto ([8]) we know
then that G/N is a projective rational manifold, and it is simply connected. For
the special case where the fiber N/H is one-dimensional, it is shown in [3]
that 0 realizes M as a principal ,Sl-bundle over the compact rational manifold
Q = G/N. The natural embedding of M in the associated principal-C *-bundle
M gives a 6-complexification of M.

I1I I1I N N

- 

In the other case, G/N c G/N is a compact hypersurface, 6IR being
a G-complexification of the base G/N of the g-anticanonical fibration. The
fiber N/H is a compact complex manifold. In [3] it is shown, that either

G/N = Sl x Q with Q projective rational or we are in the situation that

7r, (GIN) is finite and the semi-simple part K of the maximal compact subgroup
of G acts transitively on G/N = K/L. In the next section we will consider
this situation.

We note that the y-anticanonical depends both on the manifold
M and on the Lie group G acting on M. For example we consider S2n+1 with
the standard CR-structure.

Let be G1 := S’Un+1 and G2 := SU(n + 2,1) with associated g -
anticanonical maps 01 and 02- Then ol is an Sl-principal-fibration and 02
is an injection.

1.3 The Stein-rational Fibration

In this section we consider the situation where a CR-hypersurface M lies
in (not necessarily as a real hypersurface) as an orbit of a compact
semi-simple real subgroup K of PSLN+1 (C ). Let .K be the complexification
of K and f2 = be the K-orbit of a point in M = K/L. By definition M
is a real hypersurface in O. Note that f2 is not projective rational, because then
it would be simply-connected and a maximal compact subgroup of K would
act transitively ([14]).

We will see that 0 fibers over a projective rational manifold. Let X be
the algebraic closure of n. Applying the Chevalley Constructability theorem
([4]), we see that 12 is Zariski-open in X. Furthermore, X can be realized as a
compact almost-homogeneous projective algebraic manifold where the generic
K-orbit is a real hypersurface. Each of the (at most two) connected compo-
nents of the exceptional set E = is a K-orbit and one can assume that E

consists of complex hypersurface orbits of K.
Then there exists a (minimal) parabolic subgroup P ~ L of k

(possibly P - K) so that either f2 can be realized as a principal-C*-
bundle over a compact homogeneous rational manifold Q = K/P (if E
has two components) or otherwise there is a K-equivariant fibration of

o = kl i - Q = IK/P over a projective rational manifold. This fiber P/L is
either C n or the tangent bundle TN of a compact symmetric space of rank one
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(see [3]). In the first case the fiber of the induced fibration of M = K/L c H
is s2n-l with the standard structure. In the second case it is the unit sphere
bundle in TN. The compact symmetric spaces of rank one are known, they are
S"B P n (C ), (quaternionic projective space) and P2(0) (Cayley
projective plane). All cases lead to the following situation

with P/L a Stein manifold and Q a projective rational manifold. The fibration
of fl is therefore called the Stein-rational-fibration (,SR-fibration). The fiber
and the base are uniquely determined, because P is chosen minimal. Only if
the fiber is C n, there might be different ways to obtain the fibration ([3]).

2.1 The Fiber of the g-anticanonical Map of the Sphere

Now we consider = M (n &#x3E; 2) as a homogeneous CR-manifold
G/H. As mentioned above, we can assume G to be connected and simply-
connected. Since M is connected and simply-connected, the homotopy sequence
of the fibration H --~ G - G/H = M shows that H is connected. Thus N
normalizes H (by prop. 1.2.2) and the fiber N/H of the y-anticanonical map
is a compact Lie group. Furthermore we can prove 

.

PROPOSITION 1: The fiber L = NIH of the !f-anticanonical fibration is
either a finite group or LO is a positive-dimensional abelian Lie group.

PROOF: The fiber L is a compact Lie group. If it is not discrete, two
cases can occur (cf. 1.2).

Case 1.

The fiber is a. compact complex manifold and the base is a CR-

hypersurface in complex-projective space. The only connected compact
manifolds which are complex Lie groups are tori. So the identity-component
LO of the fiber is a torus and therefore abelian.

Case 2.

The fiber is a CR-hypersurface and the base is a simply-connected
homogeneous projective rational manifold Q (cf. 1.2).

A look at the homotopy sequence of the fibration L then
shows that L is connected. There exists a complexification (L, T) of L such that
L is a complex Lie group (cf. [17]). We denote the Lie algebra of L by e (resp.
of L by Q. Since is a complex subalgebra of 
we know that there exists a (maximal) complex subalgebra s of t. Then exp(s)
generates a (not necessarily closed) connected complex subgroup S of L of
codimension 1.
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If S is not closed, then S = L. Let f be a CR-function on L. Since L
is compact, f has a maximum at a point z E L. If we look at the S-orbit
S(z) through x, then is a holomorphic function which is constant by
the maximum principle. Since ,S is dense, f is constant on L. Thus every
CR-function on L is constant. We consider the adjoint representation of L in
GL(l). Its restriction to L yields the adjoint representation of L. It is given by
CR-functions and is therefore trivial. Hence L is abelian.

If S is closed, then S is a connected compact complex torus. Thus every
CR-function on L is constant on the S-orbits. Considering again the adjoint
representation we conclude that ,S lies in the center of L. The factor group
L/S’ is a compact connected 1-dimensional group, i.e. L/S = ,51. Looking at
the Lie algebra one can easily check that a central extension L of S 1 by a
connected complex torus is abelian. 0

If the B-anticanonical fibration is not finite, we always have a fibration

where N°/H is a connected real torus, i.e. N°/H is diffeomorphic to (Sl) Ie
for some k.

The following theorem due to Eckmann, Samuelson and Whitehead shows
that such a fibration is only possible for k = 1:

THEOREM 2 ([7, p. 437]): A fiber decomposition of the n-sphere sn with
fiber (Sl)k exists only if n is odd and k = 1.

This theorem has nothing to do with the fact that M is a homogeneous
CR-hypersurface. It still remains valid if the base is only assumed to be a
separable metric space..

COROLLARY 3: If the g-anticanonical fibration of M ^-_’ is not

finite, the fiber is a connected, one-dimensional torus over a projective rational
manifold Q.

2.2 Homogeneous Fibrations of Spheres by Spheres

In this section we consider the possible homogeneous fibrations of spheres
by spheres. The classification of these fibrations has been carried out by Nagano
([16]).

. We use his results to determine the base space of the above Sl-principal
fibration of M as well as to handle the case of a finite gr-anticanonical fibration.

Let E = be a homogeneous sphere bundle with fiber sk and E be
homeomorphic to a sphere of dimension 2n + 1.

If B = S/I is the base of this fibration, then we have the following (see
[ 16, p. 45])
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THEOREM 1 :(1) Under the above assumptions there are only the following
cases:

(a) If k = 0, then E is a double covering space of B and B is diffeomorphic
to 1P2n+1 (R).

(b) If k = 1, then B is diffeomorphic to Pn(C).
(c) If k = 3, then B is diffeomorphic to (ff3f) and n is odd.

(d) If k = 7 ~ 2n -t- 1, then B is diffeomorphic to S8.

(e) If k = 2n -I- 1, then B is a point.

If B is the base of an Sl-principal fibration of a sphere, then B is

diffeomorphic to Pn(C). Suppose we know (as in 2.1) that B is also a projective
algebraic manifold.

Then we can apply a result of Hirzebruch and Kodaira ([10]):
If g is the generator of H2 (B, Z) = Z, chosen such that g corresponds to

the fundamental class of a Kdhler metric on B, then there is the following

THEOREM 2: Let B be an n-dimensional compact Kdhler manifold which
is diffeomorphic to Pn(C). If n is odd, then B is biholomorphic to Pn(C). If
n is even, then B is biholomorphic to 1P"(C) if the first Chern class cl of B
is not equal to - (n + 1)g.

It was shown by Yau that the additional assumption on c1(B) is not

necessary (because the case c1(B) = -(n + 1)g does not occur) (cf. [20]). In
the homogeneous case, Lie group methods yield a direct proof of the fact that
cl (B) is not a negative multiple of g.

COROLLARY 3: If the g-anticanonical fibration of M is not finite, then
M fibers over Pn (C) with fiver 

2.3 The SR-fibration in the Case of a Finite Fiber

We now handle the case where the,g-anticanonical fibration is finite. We
know from 1.3 that either M = KIL = 81 x Q or there exists a SR-fibration
of S2 D M.

The first case can be excluded because 1r1(M) is finite. So we always
have a diagram

where C~ is a simply-connected homogeneous projective rational manifold.

(1) Indeed it is shown that such a fibration can only exist if dimr E and k are odd.
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PROPOSITION 1: If the !f-anticanonical fibration of M -is finite, then there
are only two possibilities for the Stein-rational. fibration:

PROOF: At first we show that the fibration is not trivial, i.e. ~,3 is not a

point. In this case, {1 = is the tangent bundle TN of a symmetric
space N of rank 1 with dimR N = n + 1.

But {1 = means that a semi-simple group K acts transitively 
Then L is reductive (see [13, p. 206]). Now has the same homotopy type
as the quotient of the maximal compact subgroups of k (resp. L) (see [15, p.
260]). This quotient is compact and all homology groups vanish. Therefore it
is a point. Then the quotient KIL is also a point, i.e. we have a contradiction.

If f2 = TN, then M is the bundle of unit tangent vectors over N.
For simply-connected N, the g-anticanonical fibration is injective, and

one can apply 2.2.1 to see that n = 3 or n = 7. In both cases the base B
is diffeomorphic to a sphere Now the bundle of unit tangent
vectors of a sphere sn+1 is the Stiefel manifold Vn+2,2. It is known that

= Z2 (cf. [18, p. 132]). So S 7 (resp. S15) is not the tangent sphere
bundle of N = S4 (resp. N = S’$).

If N is not simply-connected, then N = Pn+1(R) and M = 
is the unit sphere bundle in TN = where Qn - { ~zo : ~ ~ ~ :

n+1

zn+1J : E zi2 = 0) (cf. [5]). Qn is a complex K-orbit in P n+1 (C). By
, ,,the "differentiable slice theorem" there is a K-equivariant diffeomorphism

of a neighbourhood of the zero section in the normal bundle of Qn onto
a neighbourhood of Qn in (see e.g. [12]). In our situation K acts
transitively on the unit sphere bundle in the normal bundle (see e.g. [5]). So
the K-orbit M is diffeomorphic to the unit sphere bundle and we obtain a
homogeneous fibration 5~ --~ M 2013~ Qn. This yields a fibration M --~ Qn.
The fiber is connected, so it is again From 2.2.1 and 2.2.2 we conclude
then that Qn is biholomorphic to Pn(C). It can be shown e.g. by looking
at the dimension of the automorphism groups that Qn and are not

biholomorphic except for n = 1.
So Q is a positive-dimensional projective rational mafold. Note that

7r,(Q) = 0 and therefore P/L is connected.
Furthermore 7r2(Q) = H2(Q,Z) by the Hurewicz-Isomorphism ([18]), and
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H2(Q,Z) contains an infinite group.
Assume now that P/L = S is the unit sphere bundle in the tangent

bundle JP/L = TN of a symmetric space N of. rank 1 with dim R N = k. For
k &#x3E; 2, one obtains that is finite by considering the homotopy sequence
of Sk-1 --~ S -~ N. But then the homotopy sequence of the fibration
S -· M --~ Q sh6ws that 7r2 (Q) is finite and we have a contradiction. If
k = 1 then N = S’ or N = Pi(R). Since S’ and 1P1(IEt) are Lie groups, their
tangent bundle is (topologically) trivial and hence S = 2 ~ S1 (resp. 2 ~ P1 (R)
(two disjoint copies of S1 (resp. P, (R))). Therefore the fiber S is not connected,
i.e. a contradiction.

If P/L = Ck, then P/L = ,S2k-1, Assume k &#x3E; 1. Then 7r2 (Q) = 0 as
above. So the only possibility is k = 1 and P/L = S1.

In the case P/L = C* we also have P/L = S 1. 0

The following is an immediate consequence. of the above proposition
together with 2.2.1 and 2.2.2.

COROLLARY 2: If the g-anticanonical fibration of M is finite, then M
fibers over Pn(C) with fiber Sl. 0

The next point in the proof of the main theorem is to show that the
situation where the non-standard structures on S3 appear is impossible for
higher dimensions. These appear as S1-bundles over Pi(C) lying in a C-
bundle over P 1 (C) which is not holomorphically equivalent to a line bundle.
For higher dimensions this situation is not possible.

LEMMA 3: For n &#x3E; 2, every affine C-bundle on IP"(C) is holomorphically
equivalent to a line bundle.

PROOF: A locally trivial affine C-bundle over a complex manifold X is
given by transition matrices

Thus it defines a holomorphic line bundle L on X with transition functions
Aii and a rank-two vector bundle E on X which contains a trivial subbundle
of rank 1, i.e. we have a sequence 0 2013~ 0 --~ E --~ L --~ 0. This is a

holomorphically trivial extension if and only if the affine bundle is equivalent
to a line bundle. It is well known that for vector bundles E’, E"

It follows that the affine bundle is holomorphically equivalent to the line
bundle L, if Exto (L, 0) = fll (X, L* ) = 0. ,

Now every line bundle on is of the form L = HI (t E Z),
where H is the hyperplane bundle, and the canonical bundle K on is
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H-(-+’). 1), we have by the Kodaira-Vanishing-Theorem ([19,
p. 219]) Hq (X, L) - 0 for every q &#x3E; 0. If L is a negative bundle, we apply
again the Kodaira-Vanishing-Theorem and make use of Serre-Duality to obtain

K) = H1 (X, L) = 0. This completes the proof. 0

3. Uniqueness of the C.R-structure of M

For the proof of the main theorem we introduce the following notation: As
usual we denote the hyperplane bundle on JPn(C) by H and the associated C*-
principal bundle to H’n (m by p(m). p(m) and P(-Tn) are biholomorphic.
Of course

is Pt-li and one has an associated Sl-principal bundle by the inclusion

(the first fibration simply being the Hopf-fibration). This Sl-bundle is denoted
by A(-’). There exists a (m : l)-covering map

where := 4&#x3E;m(.A(+l)) is the 81-principal bundle associated to P(m). In
particular (.A(m)) = Z m .

Now we can prove the

Main Theorem: Let M = G/H be a homogeneous CR-hypersurface,
which is homeomorphic to S2n+l(n &#x3E; 1). Then M carries the standard CR-
structure (which comes from the embedding S2n+l __+ cn+1).

PROOF: By considering the g-anticanonical and ,SR-fibration of M, we
have shown that only the two following cases can occur.
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In the first case we know that M = A(m) (m E Z ). But 7r, (M) = 0 and
som=land .

Therefore the statement is proved in this case.
In the other case is either a C *-principal bundle or the fiber is C.

Since we assumed n &#x3E; 1, we know by lemma 2.3.3 that the C-bundle J~/L
must be holomorphically equivalent to a holomorphic line bundle over P n. The
,Sl-bundle K/L is then CR-diffeomorphic to an S1-bundle in H’~ for some m
and thus CR-diffeomorphic to A(m). This situation is the same as in the case
when jP/L = C*. By the above remarks we may assume m &#x3E; 0 and m = t

(since (M) = Z t = 7r, (A(t)).
We know then that there is a holomorphic t : l)-covering of by

cn+1B{O}, which induces a (t : l)-covering of .4 t --=-M- by the sphere S2n+ll
equipped with the standard structure.

Now we have two universal CR-coverings M and of the CR-

hypersurface M. Then M is CR-equivalent to S2n+l with the standard CR-
structure. 0

FINAL REMARK: For S3 all possible homogeneous CR-hypersurface-
structures are classified (e.g. [ 11 ]). Together with our main theorem one obtains
a complete classification of all homogeneous CR-hypersurface-structures on
spheres.
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