Classes de Gevrey non isotropes et application à l'interpolation
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 15 (1988) no. 4, pp. 615-676.
@article{ASNSP_1988_4_15_4_615_0,
     author = {Chaumat, Jacques and Chollet, Anne-Marie},
     title = {Classes de {Gevrey} non isotropes et application \`a l'interpolation},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {615--676},
     publisher = {Scuola normale superiore},
     volume = {4e s{\'e}rie, 15},
     number = {4},
     year = {1988},
     mrnumber = {1029858},
     zbl = {0689.32009},
     language = {fr},
     url = {http://archive.numdam.org/item/ASNSP_1988_4_15_4_615_0/}
}
TY  - JOUR
AU  - Chaumat, Jacques
AU  - Chollet, Anne-Marie
TI  - Classes de Gevrey non isotropes et application à l'interpolation
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1988
SP  - 615
EP  - 676
VL  - 15
IS  - 4
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_1988_4_15_4_615_0/
LA  - fr
ID  - ASNSP_1988_4_15_4_615_0
ER  - 
%0 Journal Article
%A Chaumat, Jacques
%A Chollet, Anne-Marie
%T Classes de Gevrey non isotropes et application à l'interpolation
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1988
%P 615-676
%V 15
%N 4
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_1988_4_15_4_615_0/
%G fr
%F ASNSP_1988_4_15_4_615_0
Chaumat, Jacques; Chollet, Anne-Marie. Classes de Gevrey non isotropes et application à l'interpolation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 15 (1988) no. 4, pp. 615-676. http://archive.numdam.org/item/ASNSP_1988_4_15_4_615_0/

[1] H. Alexander - B.A. Taylor - D.L. Williams, The interpolating sets for A∞, J. Math. Anal. Appl. 36 n° 1 (1971), 556-566. | Zbl

[2] J. Bruna, An extension theorem of Whitney type for non-quasianalytic classes of functions, J. London Math. Soc. (2) 22 (1980), 495-505. | MR | Zbl

[3] J. Bruna - J. Ma Ortega, Interpolation by holomorphic functions smooth to the boundary in the Unit ball of Cn, Math. Ann. 274 (1986), 527-575. | MR | Zbl

[4] H. Cartan, Calcul différentiel, Hermann-Paris (1967). | MR | Zbl

[5] J. Chaumat - A.M. Chollet, Ensembles de zéros et d'interpolation à la frontière de domaines strictement pseudoconvexes, Ark. Mat. 24 (1986), 27-57. | MR | Zbl

[6] J. Chaumat - A.M. Chollet, Propriété de divisions par des fonctions de A∞ (D), Bull. Soc. Math. France 114 (1986), 153-174. | Numdam | Zbl

[7] J. Chaumat - A.M. Chollet, Classes de Gevrey non-isotropes et application à l'interpolation, C.R. Acad. Sc. Paris 304 n° 17 (1987), 531-533. | MR | Zbl

[8] R.R. Coifman - G. Weiss, Analyse harmonique non commutative sur certains espaces homogènes, Springer-Verlag (1971).. | MR | Zbl

[9] M. Derridj - D. Tartakov, Sur la régularité locale des solutions du problème de Neumann pour ∂, Lecture Notes in Math. 578, Séminaire Pierre Lelong (1975-76), 207-216. | Zbl

[10] E.M. Dyn'Kin, Pseudoanalytic extension of smooth functions. The Uniform Scale, Amer. Math. Soc. Transl. (2) 115 (1980), 33-58. | Zbl

[11] E.M. Dyn'Kin - S.V. Hruscev, Interpolation by analytic functions smooth up to the boundary, J. Soviet. Math. 14 (1980), 1066-1077. | Zbl

[12] G.B. Folland - E.M. Stein, Hardy spaces on Homogeneous groups, Mathematical Notes Princeton University Press, (1982). | MR | Zbl

[13] G.M. Henkin - J. Leiterer, Theory of functions on complex Manifolds, Monographs in Mathematics Birkhaüser (1984). | MR | Zbl

[14] O. Liess - L. Rodino, Inhomogeneous Gevrey classes and related pseudodifferential operators, Bollettino U.M.I. Analisi Funzionale e Applicazioni Série VI vol. III (1984), 233-323. | MR | Zbl

[15] J. Michel, Communication personelle, Wuppertal, (1986).

[16] E.M. Stein, Singular integrals and estimates for the Cauchy Riemann Equations, Bull. Amer. Math. Soc. 79 (1973), 440-445. | MR | Zbl

[17] M.S. Baouendi - C. Goulaouic, Régularité analytique et itérés d'opérateurs elliptiques dégénérés, applications. J. Funct. Analysis 9 (1972), 208-248. | MR | Zbl