Induced representations of completely solvable Lie groups
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 17 (1990) no. 1, pp. 127-164.
@article{ASNSP_1990_4_17_1_127_0,
     author = {Lipsman, Ronald L.},
     title = {Induced representations of completely solvable {Lie} groups},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {127--164},
     publisher = {Scuola normale superiore},
     volume = {Ser. 4, 17},
     number = {1},
     year = {1990},
     mrnumber = {1074629},
     zbl = {0724.22006},
     language = {en},
     url = {http://archive.numdam.org/item/ASNSP_1990_4_17_1_127_0/}
}
TY  - JOUR
AU  - Lipsman, Ronald L.
TI  - Induced representations of completely solvable Lie groups
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1990
SP  - 127
EP  - 164
VL  - 17
IS  - 1
PB  - Scuola normale superiore
UR  - http://archive.numdam.org/item/ASNSP_1990_4_17_1_127_0/
LA  - en
ID  - ASNSP_1990_4_17_1_127_0
ER  - 
%0 Journal Article
%A Lipsman, Ronald L.
%T Induced representations of completely solvable Lie groups
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 1990
%P 127-164
%V 17
%N 1
%I Scuola normale superiore
%U http://archive.numdam.org/item/ASNSP_1990_4_17_1_127_0/
%G en
%F ASNSP_1990_4_17_1_127_0
Lipsman, Ronald L. Induced representations of completely solvable Lie groups. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, Volume 17 (1990) no. 1, pp. 127-164. http://archive.numdam.org/item/ASNSP_1990_4_17_1_127_0/

[1] P. Bernat, Sur les représentations unitaires des groupes de Lie résolubles, Ann. Sci. Ecole Norm. Sup., 82 (1965), 37-99. | Numdam | MR | Zbl

[2] P. Bernat, et al., Représentations des groupes de Lie résolubles, Dunod, Paris, 1972. | MR | Zbl

[3] I. Butsyatskaya, Representations of exponential Lie groups, Functional Anal. Appl., 7 (1973), 151-152. | MR | Zbl

[4] L. Corwin - F. Greenleaf - G. Grelaud, Direct integral decompositions and multiplicities for induced representations of nilpotent Lie groups, Trans. Amer. Math. Soc., 304 (1987), 549-583. | MR | Zbl

[5] L. Corwin - F. Greenleaf, Complex algebraic geometry and calculation of multiplicities for induced representations of nilpotent Lie groups, Trans. Amer. Math. Soc., 305 (1988), 601-622. | MR | Zbl

[6] A. Kirillov, Unitary representations of nilpotent Lie groups, Russian Math. Surveys, 17 (1962), 53-104. | MR | Zbl

[7] A. Kleppner - R. Lipsman, The Plancherel formula for group extensions I, Ann. Sci. Ecole Norm. Sup., 5 (1972), 459-516. | Numdam | MR | Zbl

[8] R. Lipsman, Characters of Lie groups II, J. Analyse Math., 31 (1977), 257-286. | MR | Zbl

[9] R. Lipsman, Orbital parameters for induced and restricted representations, Trans. Amer. Math. Soc., 313 (1989), 433-473. | MR | Zbl

[10] R. Lipsman, Harmonic analysis on exponential solvable homogeneous spaces: The algebraic or symmetric cases, Pacific J. Math., 140 (1989), 117-147. | MR | Zbl

[11] G. Mackey, Unitary representations of group extensions, Acta Math., 99 (1958), 265-311. | MR | Zbl

[12] L. Pukanszky, Unitary representations of Lie groups with co-compact radical and applications, Trans Amer. Math. Soc., 236 (1978), 1-49. | MR | Zbl

[13] O. Takenouchi, Sur la facteur représentation d'une groupe de Lie résoluble de type (E), Math. J. Okayama Univ., 7 (1957), 151-161. | MR | Zbl