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Homogeneous Cauchy-Riemann Structures

ANDREAS KRÜGER

Introduction

Assume we are given a real Lie group G, a closed connected subgroup H
of G, their Lie algebras g and h, and the corresponding homogeneous manifold
~ : G - G/H = M. Then any G-homogeneous almost complex structure on M is
determined by the classifying vector subspace q = of gC = g @1R e,
where HM c TM @1R C is the bundle of holomorphic tangent vectors, i.e.,
the + i-eigenspace of the almost complex structure. By a theorem of Frolicher
(see [11], § 20), that structure is integrable, i.e., M is a complex manifold, iff
q is a subalgebra of gC. This theorem makes it possible to answer function
theoretic questions using algebraic methods. We generalize it to homogeneous
almost Cauchy-Riemann structures, and use this generalization to classify all
such structures on spheres.

The organization of the present paper is as follows: In Chapter 1, we give
some preliminaries. Chapter 2 then generalizes Frolicher’s result to (almost)
Cauchy-Riemann structures in the most straightforward manner: one only needs
to change complex to Cauchy-Riemann. The proof given also shows how to com-
pute the Levi form or algebra of a given G-homogeneous almost Cauchy-Rie-
mann structure in terms of the Lie algebra g of G (our Theorem 2.4), although
such calculations are not carried out in this paper.

In Chapter 3, we show that G-equivariant Cauchy-Riemann diffeomor-
phisms between G-homogeneous almost Cauchy-Riemann manifolds correspond
to automorphisms of g which map the classifying spaces onto each other. As
it turns out, the assumption that the diffeomorphisms are G-equivariant can be
relaxed slightly.

Finally, in Chapter 4, we give a classification of all homogeneous almost
CR structures on spheres, hypersurface or not. One implication of the work done
here is a new proof of a theorem by Feldmueller and Lehmann [10], namely,
that any (integrable) homogeneous CR hypersurface structure on S2k+l, k &#x3E; 2, is
CR diffeomorphic to the usual one which inherits from Besides this,
the only nontrivial CR structures on spheres are the usual complex structure

Pervenuto alla Redazione il 4 Ottobre 1989.
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of the Riemannian sphere, and an infinite family of structures on s4k+3 of type
(4k + 3,1 ), for any k &#x3E; 0. If 1~ = 0, this family has been known since the days of
Ellie Cartan. Indeed, the general case can be constructed from this special one
via the Hopf fibration S3 ~ S4k+3 We also obtain some non-integrable
almost CR structures, namely, the usual almost complex structure on S6,
a family of almost CR hypersurface structures on S5 and on &#x3E; 1, and

finally, an exceptional structure of type (4k + 3, 2k) on S4k+3 ~ ~ ~ 1.

This paper is an extended version of material contained in the author’s
Ph. D. thesis [18], written at the University of Notre Dame, IN, USA. The
author wishes to extend his gratitude to D.M. Snow, his former thesis adviser, for
initially suggesting this line of research and for the support given. Further thanks
are due to F. Campana, who found a mistake when the content of a preliminary
version of this paper was presented to him, and to A.T. Huckleberry, who made
some valueable suggestions concerning the presentation of the material.

1. - Preliminaries

In this chapter, we sum up basic definitions and results used throughout this
paper. A good introduction into this material can be found in [13]. The theorems
given here have been extracted from [1]. Corollary (1.6) is an immediate

consequence of [3], Lemma 1.1.

DEFINITION 1.1. (Almost CR manifolds and CR maps). An almost CR
structure (RM, J) of type (n, l) on a real analytic manifold M of dimension
n is a real analytic rank 2l subbundle RM of the tangent bundle TM of M,
together with a real analytic anti-involutive (i.e., j2 = -id) bundle automorphism
J : RM 2013~ RM. An almost CR manifold of type (n, 1) is a real analytic manifold
M of dimension n, endowed with an almost CR structure of type (n, L). Given
two almost CR manifolds (MI, (RMI, Jl)) and (M2, (RM2, J2)), a real analytic
map f : M2 is called a CR map iff its differential f* : TM2
restricts to a bundle morphism f * : RM2 such that f * o Ji = J2 o f * .
Furthermore, f is called a CR diffeomorphism iff it is a diffeomorphism and a
CR map and its inverse is a CR map as well. A covering map M 2013~ M, where
M and M are almost CR manifolds, is called a CR covering iff it restricts to
local CR diffeomorphisms.

The conjugate of a given CR structure (RM, J) is (RM, - J). An almost
CR manifold of type (2n, n) is commonly called an almost complex manifold.
Any complex manifold M is an example of this, J : TM - TM being identified
with multiplication with i. The other extreme is RM = {0}, i.e., an almost CR
manifold and structure of type (n,O), which are called trivial. An almost CR
structure of type (2n + 1, n) is called an almost CR hypersurface structure and
the corresponding almost CR manifold an almost CR hypersurface.
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DEFINITION 1.2. (CR vector fields, homogeneous almost CR manifolds).
A vector field X E r(M, TM) is called a CR vector field iff the local

one-parameter groups of transformations it induces consist of CR maps. The
set of all such vector fields is denotes by rcR(M, TM).

Given the real Lie group G, an almost CR manifold M and its structure
are called G-homogeneous iff G acts transitively on M from the left via CR
maps. Defining the Lie algebra g of G in terms of right-invariant vector fields
as usual, we get a natural homomorphism g - rCR(M, TM) of Lie algebras.
Finally, an almost CR manifold or structure is called homogeneous iff it is

G-homogeneous for some real Lie group G.

DEFINITION 1.3. (CR manifolds, integrability, complexification). An al-
most CR structure (RM, J) of type (n, l) on a real-analytic manifold M which is
a closed submanifold of some complex manifold X via the embedding
p : M - X is called inherited from X iff p becomes a CR map such that

An almost CR structure which is inherited from some complex manifold is
called an integrable almost CR structure, or, alternatively, a CR structure, and
the resulting almost CR manifold a CR manifold. An almost CR hypersurface
with integrable structure is called a CR hypersurface. If a CR structure is
inherited from a complex manifold X of complex dimension n - l, i.e., the
smallest complex vector subspace of containing p*(TMm) is all of

for all m E M, then X is called a complexification of M.

THEOREM 1.4. (Existence of complexifications). Any CR manifold M ad-
mits a complexification The germ of M‘c near M is unique. Moreover,
if N is another CR manifold and f : M --~ N a CR map, there exist complexi-
fications Nf and N~ of M and N and a holomorphic map fC : ~ -+ Nc
extending f. The germ of f ~ near M is unique.

REMARK 1.5. It should be noted that all manifolds and almost CR structures
considered in this paper are assumed to be real analytic. The exceptions are
vector fields, which in general are assumed to be smooth only. In particular,
for a given subbundle SM of the tangent bundle TM of a manifold M, we let
r(M, SM) denote the Lie algebra of all C°°-sections of SM.

COROLLARY 1.6. Given a CR manifold M and a finite-dimensional Lie
algebra g c FCR(M, TM), there exists a complexification ~ of M such that,
for any X E g, there is exactly one element of extending X.

THEOREM 1.7. Consider an almost CR manifold (M, (RM, J)). Let HM
denote the i-eigenspace of JC : RM OR C - RM OR C, which is a subbundle
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of TM ®~ C. Then M is integrable iff HM is involutive, i. e., iff r(M, HM) is
a Lie subalgebra of reM, TM ©R C)-

2. - The Classifying Algebra

THEOREM AND DEFINITION 2.1. (Classifying space and algebra). Consider
the homogeneous space 7r : G - G/H = M, where H is a closed subgroup of
the real Lie group G. Let g and h denote the Lie algebras of G and H, and
9c = g ®~ C and hc = h OR C their complexifications. The derivative of 7r at
e yields a map 7r* : gC -+ gc /hc = TMp ®~ C, where p = 7r(e) is the basepoint
of M.

Given a G-homogeneous almost CR structure (RM, J) on M, we consider
the subbundle

of TM OR C. Then the almost CR structure is uniquely defined by
q = 7r;I(HMp) c e, which satisfies .the conditions q n q = hc and Ad(H)(q) C q.

Conversely, any complex vector subspace q of g‘c which satisfies those
two conditions can be derived from some G-homogeneous almost CR structure
on M in this fashion. We thus say that q classifies that almost CR structure or
manifold.

If q classifies a given structure, then q classifies the conjugate struc-

ture. The type of the structure classified by a given q is (dimr g - dimR h,
dime q - dime In particular, the trivial structure is classified by q = 
whereas a structure is almost complex iff q + q = gc.

Furthermore, a given almost CR structure is integrable iff it is classified
by a subalgebra of gc, which is then called the classifying algebra of that CR
structure or manifold.

Finally, assume that M = G/H, classified by q, and N = G/L, classified
by r, are two G-homogeneous almost CR manifolds. Let h and I denote the Lie
algebras of H and L. Then a G-equivariant map f : M - N is a CR map iff

c rllc, where f* : gC gc denotes the derivative of f at the
basepoint of M.

PROOF. This theorem is a consequence of (1.7) and the theorem on the
invariant fundamental bilinear form, which is to follow.

The following two lemmas are well known (compare [13]) and given only
for reference.

LEMMA AND DEFINITION 2.2. (The fundamental bilinear form). Given two
subbundles EM and FM of the tangent bundle TM of the Coo -manifold M,
let p : TM - TM/(EM + FM) denote the projection. Then there is a natural
bilinear bundle map B : EM x FM ~ TM/(EM + FM) such that, for all
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X E r(M, EM) and Y E r(M, FM), we have

In particular, if EM = FM, then B = 0 iff EM is involutive.

PROOF. Using the above equation as a definition, we only need to show
that is does not depend on the particular choice of X and Y, given X(m) and
Y(m). This can be concluded from the following lemma:

LEMMA 2.3. Let FM be a subbundle of the tangent bundle TM of the
Coo-manifold M. If Y E reM, FM) and m E M are such that Y(m) = 0, then,
for any X E reM, TM), we have [X, Y](m) E FMm.

PROOF. Choose Yl , ... , Yr E r(M, FM) such that (YI(m),..., Yr (m)) is a
basis of FMm. Then there are Coo-functions al,..., a, on M vanishing at m

r

such that, near m, we have Y aiyi. We get
I=1

which evaluates at m to yield the desired result.

REMARK 2.4. Let H be a closed subgroup of a given real Lie group G,
h and g their Lie algebras, and r G -+ G/H = M the corresponding ho-
mogeneous space with basepoint p E M. The derivative 7r* of 7r yields
a map g -~ TMp which will be denoted by 7r * also. Then any G-invariant
subbundle VM of TM corresponds to a vector subspace v = 7r;l(VMp) of g,
satisfying h c v = Ad(H)(v), which determines VM uniquely. Conversely, any
such space can be obtained from some invariant bundle.

THEOREM 2.5. (Invariant fundamental form). Given the assumptions as
in the preceding remark, let VM and W M be two G-invariant subbundles

of T M corresponding to v, w C g, and let 1M be the G-invariant subbundle

of TM corresponding to [v, w] + v + w. Then the image of the bilinear map
B : VM x WM - TM/(VM + W M) as given in (2.2) is where

cp : TM - TM/(YM + W M) denotes the natural projection, and B satisfies the
fundamental equation

PROOF. As B and hence its image are G-invariant, we only need to prove
the fundamental equation. To do so, use the fact that Ad(H) stabilizes both v and
w, from which we conclude [h, v] c v and [h, w] c w. One consequence of this is

= for all v’, w’ E g such that 7r*(v-v’) = 7r*(w-w’) = 0.
Secondly, let VG, WG, and HG denote the left-invariant subbundles of TG
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such that VGe = v, W Ge - w, and HGe - h. Then r(G, HG) normalizes
both r(G, VG) and r(G, WG). It should be noted that HG is exactly the kernel
of z,,.

Consider left-invariant vector fields Xv, Xw on G such that Xv (e) = v,
= w. In this paper, we use the definition of the Lie algebra structure on

g = T Ge in terms of right-invariant vector fields, so 
Now choose a neighbourhood U of p in M such that there exists a C°°-map

(J : U -+ G such that a (p) = e and and consider Yv, Yw E r((J(U), TG)
given by

By making U smaller if necessary, we may assume that there exist

Yv E reG, VG), Yw E r(G, W G) extending Yv, Yw which satisfy Xv - Yv,
Xw - Yw E r(G, HG). By what has been said earlier, this implies Yw] =
= x. [X,,,, 

By construction, there exist Zv E r(M, VM), Zw E r(M, W M) which are
related to Yv, Yw via a. Clearly, ~r* (v) and ~* (w). So we get

DEFINITION 2.6. (Complexification of Lie groups). A complexification of a
given real Lie group G is a complex Lie group Gc which is a complexification
of G, viewed as a trivial CR manifold, such that the injection G ~ GC becomes
a homomorphism of (real) Lie groups. Its derivative can then be used to identify
the Lie algebra of Gc with the complexification gc of the Lie algebra g of G.

Given a G-homogeneous CR manifold M, we can ask whether there exists
a complexification M~ of M such that the G-action on M can be extended to
a Gc -action on M~ . If this is the case, we call MF a Gc -complexification of
M.

COROLLARY 2.7. (Classifying is isotropy algebra). If GC is a
complexification of the real Lie group G, and M a G-homogeneous CR manifold
classified by q which admits the GC -complexification then the Lie algebra
of the isotropy group of the basepoint p E M c in GC is q.

PROOF. By (1.5), there exists a complexification of M such that,
for any x E g, the corresponding CR vectorfield on M can be extended to a
holomorphic vector field on M . Employing our usual notation, we get the
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commutative diagram

The composite map g --~ TMp given by the first row is 7r*, its kernel h. The
kernel n of the given by the second row is clearly a Lie
algebra as well. Complexifying the first row, we get the commutative diagram

the column being exact. This shows q = n.

THEOREM 2.8. (Gc -complexifications up to CR coverings). Given a real
Lie group G with Lie algebra g, a closed and connected subgroup H of G with
Lie algebra h, a G-homogeneous CR structure on M = G/H which is classified
by q c gC, and a complexification GC of G, let Q denote the connected

subgroup of G with Lie algebra q.
There is a G-invariant CR covering M -~ M1 such that the CR manifold

MI admits a GC -complexification Mf iff Q is topologically closed in Gc. If
this is the case, H is clearly the connected component of G f1 Q at e, and we
get the commutative diagram of G-equivariant CR maps
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Here G/(G n Q) ~ G~ /Q and M~ are complexification maps, all others
CR coverings.

3. - Equivalence

Traditionally, two G-homogeneous CR manifolds have often been
considered the same iff they are CR diffeomorphic. In the chapter following
this one, we will show that no two of the CR structures on spheres, examined
there, are the same in this sense, although we cannot answer the corresponding
question for the nonintegrable almost CR structures (see (4.3)). However, it
is more consistent with the point of view of this paper also to take into
consideration the structure of M as a G-homogeneous space. In this sense, two
CR diffeomorphic G-homogeneous CR manifolds are not the same unless the CR
diffeomorphism preserves the group of CR automorphisms given by G, either
elementwise or as a whole. So we get two different notions of equivalence:
A strong equivalence is a CR diffeomorphism which is G-equivariant. If we
can make a CR diffeomorphism G-equivariant by changing the G-action on
either one of the two manifolds using an automorphism of G, we call it a weak
equivalence. This latter notion corresponds to the one used by Sasaki in his
papers [30-31]. Our classification of the nonintegrable structures will be up to
these equivalences.

DEFINITION 3.1. (Strong and weak equivalence). Given a fixed real Lie
group G and two G-homogeneous CR manifolds M and N, a pair ( f , p) is called
a weak equivalence iff f : M -+ N is a CR diffeomorphism and p : G - G an
automorphism of G such that f (gm) = p(g) f (m), for all g E G and m E M. A
map f : M -~ N is called a strong equivalence iff ( f , idG) is a weak equivalence.

We will frequently consider the special case where the underlying real-
analytic manifolds and the G-actions are identical, i.e., M and N differ by
their CR structures only. We then call these CR structures weakly (strongly)
equivalent iff a weak (strong) equivalence exists.

EXAMPLE 3.2. Given any n &#x3E; 0, the SU(n + 1 )-homogeneous CR
hypersurface structure which inherits from Cn+1 is weakly equivalent
to its conjugate, (v -~ v, A -~ A) being an equivalence. As we shall see in

(4.12), these two structures are not strongly equivalent.

REMARK 3.3. (Functorial property of weak equivalence). The map

go -~ (m - gom, g - defines a group homomorphism from G to the
group of weak equivalences of a G-homogeneous almost CR manifold M. A
straightforward computation shows that the image of this homomorphism is
normal.
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THEOREM 3.4. (Equivalence on Lie algebra level). Let G be a real
Lie group, H c G a closed subgroup, g and h their Lie algebras, and
7r : G -+ G/H = M the corresponding homogeneous space. Then two

G-homogeneous almost CR structures on M classified by ql, q2 C gC are

weakly equivalent iff there exists an automorphism Sp of G stabilizing H such
that = q2’ They are strongly equivalent iff ’P can be chosen to be inner.
In particular, if all automorphisms of G are inner, two G-homogeneous CR
structures are strongly equivalent iff they are weakly equivalent.

PROOF. Let MI (respectively M2) denote the CR manifold classified by
q, 1 (respectively q2 ). Given an equivalence ( f , p) between them, choose go E G
such that go f (p) = p, where p = 7r(e) is the basepoint. Define cp(g) = 
for all g E G. We get 7r(cp(g)) = go f (gp), from which we deduce cp(H) = H. Now
the map w : m --+ go f (m) is a CR map M2, so its derivative satisfies

= Combined with 7r o cp = w o 7r, this yields = q2’
Conversely, assume cp is given. To deal with both cases at once, let go E G

be e if cp is outer and such that gocp(g )gü 
1 
= g, for all g E G, if cp is inner.

Define an equivalence ( f , p) by

We can use Theorem 2.1 to show that f : M2 is a CR diffeomorphism by
considering the G-action * on M2 given by g*m = p(g)m, for all g E G, m E M2 .

4. - Homogeneous almost CR Structures on Spheres

We first give a summary of the results of our classification of all

homogeneous almost CR structures on spheres. At this point, no information
about the groups and actions has been included. Such information can be found
later in this chapter.

THEOREM 4.1. Given a nontrivial homogeneous almost CR manifold M
which is, as an analytic manifold, a sphere Sn’ there exists a CR diffeomorphism
between M and one of the following:

(a) The well-known "classical" almost CR spheres, namely:

(i) the Riemannian Sphere,

(ii) the usual almost complex manifold S6, and

(iii) the hypersurface S2k+l in e k+I, k &#x3E; 1.

(b) A family of almost CR hypersurface structures on S5 parametrized by the
closed interval [0, 1]. The only integrable one among these is the structure
which S5 inherits from C~ 3, which corresponds to the parameter value 1.
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(c) A family of CR hypersurface structures on S3, which can be parametrized
by (0, 1]. The parameter value 1 corresponds to the structure which
S3 inherits from C2 . All other values correspond to structures which
have been pulled up from generic SO(3)-orbits in the complex quadric
f(ZI, Z2, z3 ) E C~ 3 : Z2 + Z2 + Z2 = 11 (from whence they inherit their CR
hypersurface structures).

(d) Several families of almost CR structures on S4k+3, for k &#x3E; 1, which are
closely related to the Hopf fibration S3 _. S4k+3 ~ The general
philosophy is that we can endow the fibre S3 of a choosen basepoint
p E S4k+3 with any homogeneous CR structure, and PkH with either the
trivial or the usual almost complex structure. We pull back this structure
on P~ to the orthogonal complement of T S~ in TS;k+3 and extend

homogeneously. With respect to the homogeneous almost CR structure
on S4k+3 constructed in this fashion, both S3 - S4k+3 and S4k+3 ___~ pk
become CR maps. More precisely, we can choose

(i) the trivial structure on p~ and any of the CR hypersurface structu-
res given above for S3, which yields a family of CR structures of type
(4k + 3, 1 ) parametrized by (0, 1 ],

(ii) the almost complex structure on lpk and the trivial one on S3,
which yields a single non-integrable almost CR structure on S4k+3
of type (4k + 3, 2k),

(iii) the almost complex structure on p~ and any homogeneous CR
hypersurface structure on S3. However, there is a complication in
this case: an equivalence of two CR structures on S3 can, in gene-
ral, not be extended to S4k+3 without changing the structure of P~ .
So, instead of (0, 1], we get a certain parameter space of three dimen-
sions which is described more precisely later However, it turns out
that the only integrable, among these almost CR hypersurface struc-
tures, is the one S4k+3 inherits from the complex vector space 

The following consequence of this classification had been proved in [10],
using a different approach.

COROLLARY 4.2. Up to CR diffeomorphism, the only homogeneous
CR hypersurface structure, which S2k+l, for k &#x3E; 2, admits, is the one it inherits

from c k+1. .

OPEN QUESTION 4.3. Theorem (4.1 ) leaves open the possibility that the
given parameter spaces are larger than necessary. Indeed, the more technical
classification which it summarizes is up to weak equivalence (in the sense

of the previous chapter). It is conceivable that two structures are not weakly
equivalent, but do admit a CR diffeomorphism between them.

However, in the case of S3 it is well known that two homogeneous CR
hypersurface structures corresponding to different parameter values do not admit
CR diffeomorphisms between them, see [9]. As it will be shown later in this
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chapter, this can be generalized easily to cover the homogeneous CR structures
of type (4k + 3, 1) on S4k+3.

This implies that the families of integrable CR structures given above are
not unneccessarily large. However, the corresponding question for the families
of non-integrable almost CR structures on S5 and S4~+3 remains open.

After this summary of our results, we now give a more detailed version and
its proof. Both rest on the following theorem, which summarizes a classification
of Lie groups acting transitively on spheres which has been carried out in the
40s and 50s by Borel, Montgomery, Samelson, and Poncet, see [6], [7], [23],
[24], [28].

THEOREM 4.4. (Homogeneous spheres). Choose n &#x3E; 2, let G be a real
Lie group which acts transitively and effectively on the n-sphere S’. Then there
exists a connected, compact and simple subgroup K of G which still acts

transitively on Sn. More precisely, the following is a complete list of the cases
which can occur for Sn = K/L:

Here, a Lie group is called simple iff all normal proper subgroups are
discrete. It turns out that SO(4) = (SU(2) x SU(2))/ 1 } is not simple, which
is why n = 3 has to be excluded in (A).

PROOF. That we can restrict our attention to compact groups can be derived
from [23]. A concise account of this classification can be found in either [15]
or [26]. For some information on (B)-(F), see [12], on (D), also [14].

THEOREM 4.5. (Classification). For each of the six cases (A)-(F) of the
preceeding theorem, the following presents a list of all strong equivalence
classes of nontrivial homogeneous almost CR structures which does not contain
the same strong equivalence class twice.

(n = 2): The Riemannian sphere.
(n &#x3E; 3): No nontrivial SO(n + l)-homogeneous almost CR structure on Sn

exists.

(B) S2k+I = SU(k + 1)/SU(k):
(k = 1): This is the same as S3 = Sp( 1 )/Sp(O) and will be dealt with

under (C).
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(k = 2): All nontrivial SU(3)-homogeneous almost CR structure on S5 are
hypersurface structures. The strong equivalence classes can be
parametrized by the closed interval [- l, 1]. The 

correspond to the only integrable structures, namely the one inheri-
ted from C and its conjugate. Two structures corresponding
to distinct parameter values s and t are weakly equivalent iff
s = -t, which is the case i, ff they are conjugate.

(k &#x3E; 3): The hypersurface structure which S2k,l inherits from ek+I and its
conjugate, which are weakly equivalent.

(k = 0): A family of CR hypersurface structures parametrized by the half-
open interval (0, 1]. Any two structures which are weakly equiva-
lent are strongly equivalent. Each structure is strongly equivalent
to its conjugate. The parameter value 1 corresponds to the struc-
ture which S3 inherits from e2. Any other parameter value cor-
responds to a CR hypersurface structure which has been pulled
up to S3 from a generic orbit (topologically p3 ) of =

= SO(3) in the complex quadric {(ZI, Z2, Z3) E CC 3 : zf +z2 +z3 = I ).
(k &#x3E; 1): Any two structures which are weakly equivalent are strongly

equivalent.

(i) An infinite family of equivalence classes of CR structures of type
(41~ + 3, 1 ) parametrized by the half-open interval (0, 1], each
structure being equivalent to its conjugate,

(ii) a single equivalence class of non-integrable almost CR structures
of type (4k + 3, 2k), and

(iii) a family of equivalence classes of almost CR hypersurface struc-
tures parametrized by the set of all points (x, y, z) E R 3 which
are not contained in the line (0, R, 0) and satisfy either x &#x3E; 0

or x = y = z2 - 1 = 0. Conjugation corresponds to (x, y, z) --&#x3E;
- (x, -y, z). The structure which S4k+3 inherits from (viewed
as a complex vector space) spans the only strong equivalence
class containing (integrable) CR structures. It corresponds to the
parameter (0, 0, -1 ).

(D) S6 = G2/SU(3): The usual almost complex structure on S6, which is strongly
equivalent to its conjugate.

(E) S 7 = Spin(7)/G2: No nontrivial homogeneous almost CR structure.

(F) S15 - Spin(9)/Spin(7): No nontrivial homogeneous almost CR
structure.

PROOF. The proof of this theorem will be given in a case-by-case study
which will take up the rest of this chapter.
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REMARK 4.6. Given a real Lie group G and a G-homogeneous almost CR
structure (RM, J) on M, where 7r : G - G/H = M is a homogeneous space
with basepoint p = 7r(e), then RMp is an even-dimensional H-invariant subspace
of TMp and Jp a H-equivariant map Conversely, we can extend
any such data (RMp, Jp) to a unique G-homogeneous almost CR structure on
M.

PROOF 4.7 OF (A), n = 2: (S2 = SO(3)/SO(2)). Note that so(2) is a maximal
torus of so(3). Let {c~ 2013c~} denote the two roots of sl(2, C ) = with respect
to this torus. There are only two candidates for classifying spaces of nontrivial
CR structures, which lead to the Riemannian structure and its conjugate. As
the Weyl group contains an inner automorphism which maps one to the other,
these two are strongly equivalent. An equivalence can be given directly by the
map z --&#x3E; 

PROOF 4.8 OF (A), n &#x3E; 3: (S’~ = SO(n + (It does not hurt to
include the case n = 3 here.) Identifying SO(n) with the isotropy group of the
unit vector en+1 1 e we consider the action of SO(n) on the tangent space

This action can be identified with the usual action of SO(n) on R". As
this action is irreducible, the only nontrivial SO(n)-invariant possibility for 
is R’~ itself. So can be viewed as an anti-involutive endomorphism
of Rn centralizing SO(n). This implies that the subgroup of GL(n, R ) generated
by and SO(n) is compact, hence, after possible change of inner product,

O(n). Clearly, = 1. But the center of SO(n) does not contain an
anti- involution, which yields a contradiction.

For the following considerations, two well-known algebraic results are

needed.

SCHUR’S LEMMA 4.9. Let G be a Lie group which acts linearily and
irreducibly on a finite-dimensional real vector space V. Then the set EndG(V)
of all G-equivariant maps Y --~ V is a finite-dimensional associative
division algebra over R.

FROBENIUS’ THEOREM 4.10. The only finite-dimensional associative divi-
sion algebras over Rare R, C, and IHI.

PROOF 4.11 OF (B), k = 2: (S5 = SU(3)/SU(2)). The only nontrivial SU(2)-
invariant vector subspaces of are Cei 0153 Ce2 and R ie3, which forces

Ce1 OCe2 for any nontrivial SU(3)-homogeneous almost CR structure

(RS5, J) on S~.
Pulled up to sl(3, ~ ) - su(3), the complexification of Cei e Ce2

corresponds to
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Using root theory or direct calculations, one verifies that the only two

possibilities for the classifying space q to become an algebra are

and

The first corresponds to the usual structure which S5 inherits from C~ 3, the
second to its conjugate. So these are only nontrivial (integrable) CR structures.

To find all almost CR structures, identify RS5 = Cei © C e2 with the space
H of quaternions. Then 

-

becomes multiplication with a + bj on the right. By Schur’s Lemma and
Frobenius’ Theorem, any R-linear map H ~ H which is equivariant with respect
to this SU(2)-action can be written as multiplication with some quaternion on
the left. In particular, the equivariant anti-involutions correspond to the points
of the set S2 of purely imaginary unit quaternions. Clearly, the conjugate of the
structure given by u E S2 is given by -u.

Now any inner automorphism of SU(3) stabilizing SU(2) acts on HERie3 =
su(3)/su(2), preserving the two summands. The restrictions to H of all such
automorphisms form a group S 

1 
x SU(2), where SU(2) acts as above and

Sl c C C H by multiplication on the left. So z E S’ induces a map u -~ z-luz
on the sphere of anti-involutions, i.e., we can rotate that sphere around the
axis connecting i and -i. So {ti E [-1,1 ] } contains exactly one
element from each strong equivalence class.

Finally, the outer automorphism A ---+ A of SU(3) can be restricted to
H, where it yields The corresponding map of the sphere of
anti-involutions reverses the i-coordinate. As this automorphism, together with
all inner ones, generates the full group of automorphisms of SU(3), we see that
ti and si + correspond to weakly equivalent structures iff

PROOF 4.12 OF (B), k &#x3E; 3: = The only nontrivial
SU(k)-stable vector subspaces of 

1 
are C ei 0" and Riek+1, forcing

RS2k+l 1 Cel E) ... ED Cek- 
+1

RSek+1 = eel EÐ... EÐ Cek.
Consider the algebra a of all R-linear endomorphisms of C e 0 " ’ 

which are equivariant with respect to the action of SU(k). The set Z c C of all
~th roots of unity is contained in the center of SU(k), hence also in the center of
a, as is the real vector space C spanned by Z. Schur’s Lemma and Frobenius’
Theorem now imply a = C, so the only SU(k)-invariant anti-involutions on
Cel 0" (DCek are :f:i. They correspond to the CR hypersurface structure which
S2k+I inherits and its conjugate. A weak equivalence between these
structures is given by (v ~ v, A - A). Any inner automorphism of SU(k + 1)
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which stabilizes SU(k) comes from a matrix which stabilizes CCek+I I as well, so
that inner automorphism is an inner automorphism of SU(k) and hence also of
the classifying algebra q of either of the two structures under consideration.
This shows that these structures are not strongly equivalent.

PROOF 4.13 OF (C), k = 0: (S3 = SU(2) = Sp(l)). The material presented
here can also be found in [9], and the structures thus obtained have also been
studied elsewhere, see, for example, [3].

Any complex vector subspace q of sl(2, C~ ) = su(2)c is invariant under the

(trivial) isotropy group. Assuming that q is not trivial itself, q n q = {ol implies
dimc q = 1 and hence that q is an algebra, so the structure classified by q is

automatically integrable. The classifying algebras are parametrized by p2 Bp2R
after identifying sl(2, C) with C  via the basis

of su(2). As all automorphisms of SU(2) are inner, the notions of strong and
weak equivalence coincide. The equivalence classes correspond to the orbits of
SU(2) on via the restriction of the adjoint action of SL(2,C), which
yields the covering map SU(2) - SO(3).

Given v, w e R~, then [v + iw] E iff v and w are linearly
independent. If this is the case, we can multiply with some complex number
to achieve Using the action of SO(3), we see that any orbit in p2C 2
contains a point [xo + ityo], where t &#x3E; 0. The image of [xo + ityo] under the
element of SO(3) which rotates zo to yo fixing zo is [yo - itxo] = [xo + 
So each orbit contains one point of {[xo + ityo] : t E (0, I]}. Assume there are
some s, t E (0, 1] and some A E SO(3) such that [A(xo + ityo)] = [xo + isyo].
This implies that A stabilizes and hence restricts to an element of

0153 Ryo). So there exist a, {3 E R, a2 +,Q2 = 1, such that A(xo) = axo + (3yO
and A(yo) = :f:( -(3xo + ayo). A straightforward calculation yields

which equals iff s = t. This shows that no orbit can contain two such

points.
The CR hypersurface structure which S3 inherits from CC 2 has

as its classifying algebra, which consists of nilpotent elements and thus, using
det(xo + ityo) = 1 - t2, corresponds to the parameter value t = 1.

Because of det(uxo + vyo + wzo) = u 2 + v2 + w2, for all u, v, w E C, we
can identify the complex quadric with the set Q of matrices in sl(2, C) which
have determinant 1. All of these have Jordan normal form xo, so SL(2,C) acts
transitively on Q. The projection e3 -&#x3E; P2C restricts to a 2 : 1-cover Q - D,
where D is a dense open set in P~ . Given p E D, the isotropy algebra q of p
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in SL(2, C), viewed as a point of C, coincides with p. So the CR structure
on S3 parametrized by t E (0, 1) is the one lifted from the SU(2)-orbit through
[xo + ityo] in D, or from the corresponding orbit in Q.

PROOF 4.14 OF (C), k &#x3E; 1: (s4k+3 _ Sp(k + Choose a maximal

torus of Sp(k + 1) stabilizing Sp(k) and a system

of simple roots of Sp(k + 1) such that À, 11,... 1 form a system of simple
roots of Sp(k). Then the long root a = A + 271 + ... + is the only positive
root perpendicular to any root of Sp(k). The corresponding copy Z of SU(2) is
the centralizer of Sp(k) and naturally isomorphic to N(Sp(k)) /Sp(k), and hence
also to the group of equivalences, acting on the set of all Sp(k + 1)-homogeneous
almost CR structures on S4k+3, the orbits being the equivalence classes. (That
these groups are connected uses the fact that an automorphism of Sp(k + 1) is

given by its restrictions to Sp(k) and Z, and that all automorphisms of these
two are inner).

Let us now consider the Sp(k)-invariant splitting

which restricts to the Sp(k)-invariant space leaving three nontrivial
cases.

If c Riek+i 61 61 Rkek+1, the classifying space q satisfies

q = 61 (q n where z is the Lie algebra of Z. Any automorphism of
Sp(k + 1) fixing sp(k) restricts to an automorphism of Z and vice versa, so we
are essentially in the situation of case k = 0 and get the same parameter space.

If c we must have equality, as Sp(k) acts irreducibly
on the right-hand side. Using Schur’s Lemma and Frobenius’ Theorem, we
see that must agree with left multiplication by some purely imaginary
quaternion. The structures given by the special cases and 

are strongly equivalent via left multiplication with j, viewed as an equivalence
~ S4k+3 , That any other structure is equivalent to one of these can be

concluded from the fact that maximal tori in S3 c IHI are conjugated.
Finally, consider the case = W 1 ® W2, where WI = Hei 61 ... 61 IHI ek

and W2 c Rjek+1 61 are both not trivial. Then there are anti-
involutions JI of Wl and J2 of W2 such that Jek+1 = Using the preceding
argument, we may assume that J1 coincides with multiplication from the left
by i. By what we know about the normalizer of Sp(k), the only maps which
yield equivalences which fix JI are, on the level of multiplications
from the left with elements of S 1 C C c H. After identifying W2 with R 3 via
the basis jek+1, kek+1 ) of W2, those multiplications correspond to rotations
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around the ei-axis in R 3. Any choice of J2 is uniquely defined by its +i-

eigenspace, viewed as a point [v + iw] E P# (Pj§ , where v, w E R 3 are linearly
independent. As we may rotate around the e 1-axis, we may assume that e2 is
contained in 0153 Rw. Multiplying with some nonzero complex number then
yields [v+iw] = [e2 +i(x, y, z)], for some (x, y, z) E We can multiply with
the complex number -1 and then rotate back, which yields [e2 + i(- X, Y, Z)l - So,
without loss of generality, x &#x3E; 0. If x &#x3E; 0, then the orbit through [e2 + i(x, y, z)]
contains only one such point. Otherwise, we can multiply with some nonzero
complex number to find [e2+i(0,~~)] = [v’ + iw’], where v’, w’ E 0153 R e3 are
perpendicular. Rotating again, we are left with the two possibilities [e2:f: ie3].
Straightforward computation shows that these two points are indeed contained
in distinct orbits.

Now we need to show that, given Hei 0153 ... 0153 IHI ek c RS4k+3 and some
fixed choice of a restriction of to Hei 0153 ... 0153 Hek, there is only one
integrable structure. One such choice for the restriction of can be fixed

by the decree that all root spaces which have a lk-component of +1 belong to
the classifying space. There is indeed only one possibility to extend this to a
classifying algebra.

Straightforward (though somewhat involved) computations show what has
been said about conjugation and that the structure which S4~+3 inherits from

corresponds to the parameter (o, o, -1 ).

LEMMA 4.15. Two Sp(k + l)-homogeneous (integrable) CR structures on
S4k+3 are strongly equivalent iff there is a CR diffeomorphism between them.

PROOF. In the case l~ = 0, it has been known for a long time that the
parameter space given above corresponds to a family of homogeneous CR
structures on S3 such that no two distinct such structures are CR diffeomorphic,
see, for example, [9].

In the case k &#x3E; 1, we only need to consider CR structures of type (4k+3, 1).
We use B : x RS4k+3 ~ and

as in (2.2) to construct

which, by (2.4) and (2.5), is a Sp(k + I)-invariant involutive subbundle of TS4k+3.
The integral manifold X of XS4k+3 through ek+l is an orbit of the centralizer Z
of Sp(k) in Sp(k + 1 ). This is true for either one of the two structures.

if o : : s4k+3 ~ S4k+3 is the CR diffeomorphism between them, we can
use the Sp(k + I)-action to achieve = ek+1. As we have expressed X as
an integral manifold in terms of the CR structures only, without refering to
the groups, this implies V)(X) = X. But the given CR structures on S4~+3 are

completely determined by their "restrictions" (using the obvious generalization
of (1.3)) to X = S3. So we have reduced the general case to k = 0.
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PROOF 4.16 OF (D): (S6 = G2/SU(3)). The group G2 of automorphisms
of the normed division algebra ® of Cayley numbers acts transitively on
the sphere S6 of purely imaginary unit Cayley numbers, the isotropy group
being isomorphic to SU(3). There is a natural G2-invariant nonintegrable almost
complex structure on S6, the fibre of J at p E S6 simply being given by left
multiplication with p.

In the root system of G2 with respect to some maximal torus of SU(3),
the roots of SU(3) are the long ones. Distribute the short ones into two disjoint
families and ~2 of three roots each such that any two distinct roots from the
same family span an angle of 2~r/3. Then EÐEÐQ!E1/&#x3E;i(g2)~’ for i E { 1, 2},
are the only possible classifying spaces of nontrivial G2-homogeneous almost
CR structures on S6. As there exists an element w of the Weyl group of G2
such that w(~1 ) _ ~2, the two structures are strongly equivalent.

PROOF 4.17 OF (E): (S’ = Spin(7)/G2). The action of Spin(7) on S’
is effective and comes from a linear action of Spin(7) on I1~ g, so G2 acts

nontrivially on TS~ where p E S7 denotes the basepoint. Representation theory
shows that the smallest non-trivial linear representation of G2 is on a space
of dimension 7, so there is no even-dimensional G2-invariant subspace of TS7
other than { 0 } .

PROOF 4.18 OF (F): (S15 = Spin(9)/Spin(7)). Let p E S15 denote the

basepoint. It turns out that splits into two irreducible Spin(7)-components,
one of dimension 7 and one of dimension 8. The second one is the only
nontrivial candidate for RSI5, but a corresponding anti-involution would yield
an irreducible complex representation of the Lie algebra so(7) of Spin(7), which
would be of complex dimension 4. Such a representation does not exist.
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